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angular momentum. Since Franken et al. [1] first found the 
second-harmonic generation (SHG) in 1961, many oth-
ers were studied following it, such as sum frequency (SF), 
difference frequency (DF), optical parametric amplifiers 
(OPA) and optical parametric oscillator (OPO). As crys-
tal materials develop, nonlinear frequency conversion has 
made rapid progress in laser sources owing to its simplic-
ity and wavelength flexibility [2–6]. From 1995, the first 
demonstration of high-efficiency polarization entanglement 
generation with BBO crystal [7], spontaneous parametric 
down-conversion (SPDC) in nonlinear crystals has been the 
mainstay for entanglement production in quantum optics 
[8, 9]. This entangled photon source based on SPDC has 
strong correlations beyond the classical physics limitation 
and has great potential applications in quantum informa-
tion processing. Nevertheless, the phase mismatching and 
low nonlinear optical coefficient of uniaxial crystal confine 
its application in high-intensity source of multi-entangled 
photon pairs. Thus, there is a renewed interest in calcula-
tion of the phase matching parameters for biaxial crystals, 
especially the applications in non-classical optics.

Generally, nonlinear crystals are classified as uni-
axial crystals and biaxial crystals by optical birefrin-
gence phenomenon. Comparing with uniaxial crystal, 
the biaxial crystals normally have two different refrac-
tive index ellipsoids, and the traditional ordinary and 
extraordinary waves are no longer valid. Both the intrin-
sic polarizations correspond to extraordinary waves, with 
the wave vector not coinciding with Poynting vector 
inside crystal. The work about phase-matching condi-
tions must be done accurately, which is influenced by the 
pump radiation wavelength and crystal temperature. As 
biaxial crystal has two optical axes with complex opti-
cal structure, the calculation of phase matching param-
eters is so complicated that less work has been done. Yao 

Abstract We present an effective method for calculating 
phase-matching conditions in biaxial crystals, especially 
for nonlinear orthorhombic crystals. Exploiting the angle 
definition introduced by Japanese mathematician Kodaira 
Kunihiko, we deduce the angular relations in geometry and 
obtain the expressions of refractive indices depending on 
angular orientation of wave vector k and optical axis angle. 
Then, we directly calculate the phase-matching conditions 
with BIBO crystal in spontaneous parametric down-conver-
sion (SPDC) process and gain the optimum phase match-
ing schemes for the type I and type II. On its basis, we dis-
cuss the angular gradients of the pump and emission wave 
refractive index near the exact phase matching direction 
and compare the SPDC with double-frequency process in 
geometrical relations of the refractive index ellipsoids. This 
method based on angle-dependent refractive index can be 
applied to three-wave interactions. It is convenient to cal-
culate the phase matching parameters without solving the 
quadratic Fresnel equations.

1 Introduction

Nonlinear frequency conversion has attracted a great deal 
of attention because of its applications in laser technology 
and quantum optics. It is an interaction of light with mat-
ter, allowing for no conversion of energy, momentum and 
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et al. [10] first calculated phase-matching conditions in 
biaxial crystals. They make biaxial crystal equivalent 
to uniaxial crystal, with the two optical axes symmetri-
cally distributed around the wave vector. In the follow-
ing years, the improved methods for phase matching in 
biaxial crystals are worked out [11–16]. In these stud-
ies, they mainly focus on optical second-harmonic gen-
eration, and the refractive indices under phase-matching 
conditions are all obtained by solving quadratic Fresnel 
equations. Recently, new nonlinear orthorhombic biaxial 
crystals have become increasingly important for nonlin-
ear frequency conversion for its highly effective non-
linear coefficient, especially in quantum entanglement 
generation [17, 18]. We used Yao’s method to calculate 
the parameters for SPDC process, such as temporal and 
spatial walk-off, the acceptance angles, spectral accept-
ance bandwidth and effective nonlinear coefficient. We 
still do not avoid solving quadratic Fresnel equations. 
These approaches are complicated and cannot gain the 
angular derivative of refractive index in phase match-
ing direction, which influences the spatial distribution 
of entangled photons [19, 20]. In crystal optical, the two 
refractive indexes of biaxial crystal can be easily worked 
out by wave normal Fresnel equations with θ1, θ2, which 
are angles between wave vector and two optical axes. 
However, there is no knowledge about the angles θ1, θ2 
applied in nonlinear frequency conversion. It is worth to 
explore the angular relation of refractive index in biaxial 
crystals. This work can introduce a convenient method to 
calculate the phase-matching conditions, and it is crucial 
for studying the unique characters of the angular deriva-
tive of refractive index in biaxial crystal.

Here, we focus on the angle calculation and angle-
dependent refractive index in biaxial crystals and present 
a straightforward method for calculating the phase match-
ing in SPDC process. Applying the angle definition intro-
duced by Japanese mathematician Kodaira Kunihiko, we 
deduce the expressions of refractive indices dependent 
on the angular orientation of wave vector and optical axis 
angle in biaxial crystal. Then taking biaxial crystal BiB3O6 
(BIBO) as an example, we calculate the phase-matching 
conditions and obtain the optimum phase matching direc-
tions for two types of collinear phase matching. Compar-
ing the SPDC with double-frequency process in biaxial 
crystals, we know how to choose the refractive index ellip-
soids of the pump and emission waves according to angu-
lar gradient of refractive index near the exact phase match-
ing direction. It permits convenient calculation of phase 
matching parameters in biaxial crystals, and it offers a new 
way to determine which ellipsoids the pump and emission 
waves will take.

2  The angular calculation

For biaxial crystals under principal coordinates system des-
ignated as (xyz), we can calculate refractive index at any 
directions by wave normal Fresnel equations. However, the 
crystal parameters, in fact, are measured in crystallographic 
coordinates system (abc), whose axes are not parallel to 
those in principal coordinates system. Therefore, in order 
to find the angle dependence of refractive index, we rotate 
the principal coordinates system (xyz) φ around z axis and 
acquire coordinates x′y′z′, and then, we rotate the above 
coordinate (x′y′z′) θ around y′ axis and get coordinates 
x′′y′′z′′, where θ represents the polar angle relative to the 
optical z axis in plane x′z′ and φ represents the azimuthal 
angle measured from x axis in the xy plane. The schematic 
in Fig. 1 shows the coordinate transformation of dielectric 
axis (xyz), crystal principal axis (abc) and laboratory frame 
(x′′y′′z′′). The two optical axes designated as C1 and C2 dis-
tribute symmetrically about z axis, and the angles between 
z and C1, C2 are Ω, −Ω, respectively. Moreover, θ1, θ2 are 
angles between wave vector k and C1, C2, and θ ′, θ ′′ are 
angles between z axis and the projections of k in the yz and 
xz plane.

Proved by wave normal Fresnel equations [21], the 
refractive indexes of two perpendicular linear polarized 
beams n1,2 can be calculated by

(1)
1

n21,2
=

cos2 [(θ1 ± θ2)/2]

n2x
+

sin2 [(θ1 ± θ2)/2]

n2z
,

Fig. 1  Schematic showing the coordinate transformation of the die-
lectric axis (xyz), the crystal principal axis (abc) and the laboratory 
frame (x′′y′′z′′)
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where nx and nz are the indexes in x and z directions, 
respectively. When we take the upper (lower) sign “+” 
(“−”) in the two terms of right side, we get n1 (n2). Thus, 
the angles θ1 and θ2 are key parameters for calculating the 
refractive index. More importantly, the derivative of refrac-
tive index is crucial for phase-matching conditions in non-
linear frequency conversion and decides the birefringence 
anisotropy in space distribution which can be applied in the 
problem of quantum entangled wave packet distribution.

For nonlinear frequency conversion process, we gener-
ally express the signal and idler wave vectors in laboratory 
frame defined by the rotated axes (x′′y′′z′′), which is con-
venient to calculate the output efficiency. In crystal’s die-
lectric axes (xyz), it is easier to solve the refractive index 
exerting an influence on phase-matching conditions and 
birefringence anisotropy. Therefore, in order to applied the 
crystal parameters at will, we can seek the angular conver-
sion relations between the dielectric axis (xyz) and the labo-
ratory frame (x′′y′′z′′) systems. With the method of angle 
projecting and the angle definition introduced by Japa-
nese mathematician Kodaira Kunihiko [22], we obtain the 
expressions of θ1, θ2 with usual angles Ω, θ and φ which are 
presented below.

In dielectric coordinate system, the optical axis angle Ω 
in Fig. 1 can be expressed by [23]

where nx, ny and nz are the principal refractive indices in x, y 
and z directions, respectively. They are constants for a given 
crystal. According to geometrical description in Fig. 1, we 
project the wave vector k (

⇀

OK) and line segment zK  onto 
zy, xz plane and get the projections 

⇀

OK1, 
⇀

OK2, 
⇀

zK1 and 
⇀

zK2, 
respectively. Then, the value of θ can be calculated by

Since zK1 is the projection of zK  in yz plane, the edges 
and angles in the right-angled triangle zK1K meet the rela-
tion of

In yz plane, θ ′ is the included angle of Oz and OK1. 
Applying the relation of Eq. (4), its tangent value is

According to cosine theorem in tetrahedron O-C2zK1, it 
can be written as

(2)Ω = arcsin





nz

ny

�

n2y − n2x

n2z − n2x



,

(3)tan θ =
zK

Oz
.

(4)zK1 = zK · cos(π/2− φ).

(5)

tan θ ′ =
zK1

Oz
=

zK · cos(π/2− φ)

Oz
= tan θ · cos(π/2− φ).

(6)cos(∠C2OK1) = cos θ ′ · cos(Ω),

where ∠C2OK1 represents the included angle of lines OC2 
and OK1.

For zK2 is the projection of zK  in xz plane, the right-
angled triangle zK2K meets the relation below:

In the xz plane, utilizing the result of Eq. (7), the tangent 
value of θ ′′ can be expressed by

According to cosine theorem in tetrahedron O-C1zK2, it 
can be written as

where ∠C1OK2 represents the included angle of lines OC1 
and OK2.

From the geometrical description in Fig. 1, we can get 
the below relationships

In the xy (θ = 90◦) plane, we use the cosine theorem and 
get the relations below:

In the K2OK plane, the line segment K2K  is perpendicu-
lar to K2O, and it is parallel to zK1. We can easily get the 
following equations:

The tangent value of ∠K2OK is gained by

Similar to above process, we use the cosine theorem in 
tetrahedron O-KK2z and get

For common conditions of 0◦ ≤ θ < 90◦ and 0◦ ≤ φ ≤ 90◦, 
in tetrahedrons O-KK2C1 and O-KK2C2, we can get the fol-
lowing relations according to cosine theorem:

(7)zK2 = zK · sin(π/2− φ).

(8)tan θ ′′ =
zK2

Oz
=

zK · sin(π/2− φ)

Oz
= tan θ · sin(π/2− φ).

(9)cos(∠C1OK2) = cos θ ′′ · cos(−Ω),

(10a)∠C1OK2 = Ω − θ ′′,

(10b)∠C2OK2 = θ ′′ − (−Ω).

(11a)cos(∠C1OO
′) = cos(π/2−Ω) · cosφ,

(11b)cos(∠C2OO
′) = cos(π/2− | −Ω|) · cos(π − φ).

(12)K2K = zK1 = zK · cos(π/2− φ),

(13)K2O = Oz/ cos θ ′′.

(14)
tan∠K2OK =

K2K

K2O
=

zK · cos(π/2− φ)

Oz/ cos θ ′′

= tan θ · cos(π/2− φ) · cos θ ′′.

(15)cos θ = cos∠K2OK · cos θ ′′.

(16)

cos θ1 = cos∠K2OK · cos(∠C1OK2)

= cos{arctan[tan θ · cos(π
/

2−φ) · cos θ ′′]} · cos(Ω − θ ′′)

= (cos θ/ cos θ ′′) · cos(Ω − θ ′′)

,
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where θ ′′ = arctan(tan θ · cosφ). While in the range 
of 90◦ < θ ≤ 180◦ and 0◦ ≤ φ ≤ 90◦, we get the same 
relations with θ ′′ = − arctan(tan θ · cosφ). When 
θ = 90◦, 0◦ ≤ φ ≤ 90◦, we can get the expressions of θ1, 
θ2 from Eqs. (11a), (11b):

Equations (16)–(19) are the angle transformations 
between the dielectric axis (xyz) and the laboratory frame 
(x′′y′′z′′). Knowing the parameters of Ω, θ and φ, we can 
obtain θ1, θ2 in dielectric axis, which can be used to cal-
culate the refractive index easily in Eq. (1). The angular 
relations of the wave vector and the two optical axes can 
be used to calculate the phase matching parameters and to 
deduce the angular derivative of refractive index in spatial 
distribution in biaxial crystals.

In above demonstration, Eqs. (16) and (17) give the 
angular dependence in conditions of 0◦ ≤ φ ≤ 90◦, 
0◦ ≤ θ ≤ 180◦ (θ �= 90◦). According to the angle defini-
tion introduced by Kodaira Kunihiko, θ ′ and θ ′′ in fact can 
be thought as the projections of θ in yz and xz plane. From 
Eqs. (5) and (8), we can get the expressions of θ ′ and θ ′′ as 
following:

In Eq. (20a), θ ′ is a monotone increasing function of φ, with 
the smallest value of 0◦ at φ = 0◦ and the biggest value of 
θ at φ = π

/

2; on the contrary, θ ′′ in Eq. (20b) decreases 
monotonously from θ to 0◦. For θ = 90◦, 0◦ ≤ φ ≤ 90◦ 
shown in Fig. 2, the wave vector k is on x′ axis, and the 
angles θ1, θ2 become ∠C1OO

′, ∠C2OO
′, which can be cal-

culated by Eqs. (18) and (19) according to the cosine theo-
rem in tetrahedrons.

When φ = 0◦, we can get θ ′ = 0, θ ′′ = θ according to 
Eqs. (5) and (8). Substituting θ ′′ into Eqs. (16) and (17), the 
cosine of θ1, θ2 can be simplified as

Figure 3 gives the geometric sketch of angle relations for 
φ = 0◦. We can see that the wave vector k is in xz plane, 
and the projections of θ in yz and xz plane are θ ′ = 0 and 

(17)

cos θ2 = cos∠K2OK · cos(∠C2OK2)

= cos{arctan[tan θ · cos(π
/

2− φ) · cos θ ′′]}

· cos[θ ′′ − (−Ω)]

= (cos θ/ cos θ ′′) · cos(θ ′′ +Ω)

,

(18)cos θ1 = cos(∠C1OO
′) = sinΩ · cosφ,

(19)cos θ2 = cos(∠C2OO
′) = − sinΩ · cosφ.

(20a)θ ′ = arctan(tan θ · sin φ),

(20b)θ ′′ = arctan(tan θ · cosφ).

(21a)cos θ1 = cos(Ω − θ),

(21b)cos θ2 = cos(Ω + θ).
θ ′′ = θ, respectively. It is clear that the angles between 
k and two optical axes (C1, C2) are θ1 = |θ −Ω| and 
θ2 = θ +Ω. These results coincide with the discussion in 
Eq. (21).

Fig. 2  Schematic diagram of the angle relations in biaxial crystal for 
θ = 90

◦

Fig. 3  Schematic diagram of the angle relations in biaxial crystal for 
φ = 0

◦
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Similar to above process, we get θ ′ = 90◦, θ ′′ = 0◦ for 
φ = 90◦ from Eqs. (5) and (8). Equations (16) and (17) are 
simplified as

Figure 4 is the geometric sketch of angle relations for 
φ = 90◦. In this case, the wave vector k is in yz plane, and 
the projections of θ in yz and xz plane are θ ′ = 90◦, θ ′′ = 0◦. 
We find the angles θ1, θ2 equal, because the plane formed 
by k and y axis is perpendicular to the xz plane, and C1, 
C2 distribute symmetrically about z axis. According to the 
cosine theorem in tetrahedrons O-KzC1 and O-KzC2, we get 
the relations of cos θ1 = cos θ2 = cos θ · cosΩ which are 
coincided with the discussion in Eq. (22).

If the crystal axis angle Ω = 0, there is the relation of 
θ1 = θ2 = θ. The biaxial crystal becomes uniaxial crystal, 
and Eq. (1) can be simplified as

where θ is the angle between the wave vector and opti-
cal axis, no, ne are the refractive indexes of ordinary and 
extraordinary beam in uniaxial crystal.

From the above analyzation, we conclude that 
Eqs. (16)–(19) give the expressions of angles θ1, θ2 
with the parameters of Ω, θ, φ under the conditions of 
0◦ ≤ θ ≤ 180◦ and 0◦ ≤ φ ≤ 90◦. If we know the three 
angles, we can get the values of θ1 and θ2 that can be 

(22)cos θ1 = cos θ2 = cos θ · cosΩ .

(23)no = nx and
1

n2e
=

cos2 θ

n2x
+

sin2 θ

n2z
,

used to calculate the refractive indexes of two perpen-
dicular linear polarized beams in monolithic crystal and 
orthorhombic crystal. The optical axis angle Ω is defined 
by the principal refractive indices, which are influenced 
by wavelength, temperature and so on. The refractive 
indices here contain two space angles (θ1, θ2), so we can 
take advantage of it to study the characters of phase-
matching conditions easily and refractive index angular 
distribution. Besides, the above demonstration is based 
on monolithic crystal, yet this method can be extended 
to triclinic crystal through a more angular projecting 
process.

3  A direct method for phase‑matching conditions

The refractive index value of two perpendicular linear 
polarized beams at any direction can be calculated by 
Eq. (1). It can be written by

where θ1, θ2 are deduced in Eqs. (16)–(19), by exploiting 
the angle definition introduced by Japanese mathematician 
Kodaira Kunihiko [23].

In nonlinear optics, the output efficiency of nonlinear 
frequency conversion is a key parameter. We should firstly 
consider the phase-matching conditions, which is a com-
plex problem in biaxial crystals. At present, all the work 
about it needs to solve quadratic Fresnel equations. Here, 
we introduce a direct method to calculate phase-matching 
conditions with the angular dependence of refractive index. 
Taking SPDC as an example, one incident photon is split 
into a pair of lower-energy correlated photons. It obeys the 
conservation laws of energy and momentum under phase-
matching conditions, which can be written by

where ωp, ωs, ωi are the frequency of incident photon, and 
two down-converted photons, 

⇀

kp, 
⇀

k s, 
⇀

k i are the correspond-
ing wave vectors of pump, signal and idler beams. In the 
SPDC process, the two down-converted photons have equal 
frequency (ωs = ωi = ω).

Generally, there are two transmitting lights in a biax-
ial crystal, which are called the ‘‘fast,’’ with a smaller 

(24a)

n1 =
nxnz

√

n2z cos
2[(θ1 + θ2)/2] + n2x sin

2[(θ1 + θ2)/2]
,

(24b)

n2 =
nxnz

√

n2z cos
2[(θ1 − θ2)/2] + n2x sin

2[(θ1 − θ2)/2]
.

(25a)ωp = ωs + ωi,

(25b)
⇀

kp =
⇀

k s +
⇀

k i,

Fig. 4  Schematic diagram of the angle relations in biaxial crystal for 
φ = 90

◦
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refractive index, and the ‘‘slow,’’ with a bigger one. The 
momentum conservation has the following forms:

Equation (26a) is the type I phase matching configuration, 
and Eq. (26b) is the type II.

The wave vectors are generally expressed as 
⇀

k l = nl(θl,φl)
ωl

c
k̂l (l = p, s, i) for convenience, where nl 

is the refractive index for photons in direction of phase 
matching, k̂l is the unit vector, and θl, φl are the correspond-
ing polar angle and azimuthal angle. For the collinear 
degenerate down-conversion considered, it satisfies the 
relation ωi = ωs = ωp

/

2. Equation (26) can be simplified 
in the form of refractive indices:

where nl,m (l = p, s, i; m = slow, fast) are the refractive 
indices of fundamental and SPDC waves, respectively. 
Combining Eqs. (24) and (27) together, we can get the rela-
tions of phase matching angles (θ ,φ) for type I and type II. 
It is the key for calculating the phase matching characters.

In our numerical simulations, we choose BIBO as the 
monolithic biaxial crystal, with the parameters from Hell-
wig’s data at room temperature [24]. We first calculate 
optical axis angle Ω in Eq. (4) based on Sellmeier coeffi-
cients of dispersion relation; then, we numerically calculate 
Eqs. (24) and (27) and obtain the relationships between 
phase matching angles (θ ,φ). Figure 5a depicts the type 
I phase matching angles with a fundamental wavelength 
of 405 nm, while Fig. 5b is the type II phase matching at 
wavelength 810 nm. It is interesting to note that there are 
two possible phase matching solutions for a given azi-
muthal angle φ in SPDC, which is generally called double-
phase-matching conditions. These relations are fundament 

(26a)
⇀

kp(slow) =
⇀

k s(fast)+
⇀

k i(fast),

(26b)
−→
k p(slow) =

−→
k s(fast)+

−→
k i(slow).

(27a)2nps(θ ,φ) = nsf (θ ,φ)+ nif (θ ,φ),

(27b)2nps(θ ,φ) = nsf (θ ,φ)+ nis(θ ,φ),

for analyzing other parameters, such as the effective non-
linear coefficient deff.

In monolithic BIBO crystal, the effective nonlinearity 
coefficient can be expressed as [25]

Equations (28a) and (28b) are the type I and the type II 
phase matching configuration, respectively, and d1j (j = 1, 
2, 3, 4) is the matrix tensor meeting the Kleinman symme-
try condition [26].

Taking the normalized values of BIBO, 
d11 = 2.53 pm/V, d12 = 3.2 pm/V, d13 = −1.76 pm/V 
and d14 = 1.66 pm/V, we numerically simulate Eqs. (28) 
with the relationships of phase matching angle in Fig. 5 
and acquire the effective nonlinearity coefficient varying 
with azimuthal angle. Figure 6a describes the relation of 
deff, θ and φ at a fundamental wavelength of 405 nm for 
the type I phase matching, while Fig. 6b presents the type 
II at a fundamental wavelength of 810 nm. The solid line 
and dash line are both corresponding to 0◦ < θ < 90◦, 
90◦ < θ < 180◦, respectively. The deff for the type I in 
Fig. 6a has the maximum value of 3.483 pm/V at φ = 90◦

, θ = 152◦ in the case of 90◦ < θ < 180◦. For the type II 
in Fig. 6b, the maximal value of deff is about 2.539 pm/V 
at φ = 11.5◦, θ = 42.8◦. These results indicate that the 
optimum direction of type I phase matching is in prin-
cipal plane, which coincides with our previous work 
[15], yet the best one for type II is in non-principal plane 
(φ = 11.5◦).

From the discussion above, we can obtain the specified 
phase-matching conditions by constructing the energy and 
momentum conserving algorithm for different nonlinear 
process. We apply the angle-dependent refractive indices 
of biaxial crystals in Eq. (24) to phase-matching conditions 

(28a)
dsffeff = −[d11 cos

2 φ − d12(3 cos
2 φ − 1)] cos2 θ sin φ

− d13 sin
2 θ sin φ − d14 sin 2θ cos 2φ

,

(28b)
d
sfs

eff
= [d11 sin

2 φ + d12(3 cos
2 φ − 2)] cos θ cosφ

+ d14 sin θ sin 2φ.

Fig. 5  Relations of phase 
matching angles (θ ,φ) in SPDC, 
a the type I at a fundamental 
wavelength of 405 nm, b the 
type II at a fundamental wave-
length of 810 nm
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and get linear relations of refractive indices with angles 
(θ ,φ), avoiding the complexity of solving quadratic Fresnel 
equations. It is a convenient method for calculating the 
phase matching parameters, especially for biaxial crystal.

4  The superiority of angular dependence 
of refractive index

To demonstrate the superiority of the method above, we 
introduce a degenerate type I collinear phase matching in 
biaxial crystals shown in Fig. 7, meeting the conditions of 
k1 = k2 = kp/2 and �kp � �k1 � �k2 � Oz′′. The point B, where 
the two different refractive index ellipsoids intersect, sat-
isfies the phase-matching condition. The direction of laser 
beams is strictly along the line OB. Here, we consider the 
collinear degenerate type I SPDC in principal plane for 
simplification, just as in uniaxial crystals. So, the SPDC 

emission occurs in small vicinities of exact phase matching 
directions.

With the hypotheses of near axis and wide crystal, the 
function n(θ ,φ) is approximated by its zero and first orders 
of Taylor expansion. The linear detuning is

where

In Eq. (29), n′p(θ0,φ0) is the gradient of refractive index at 
(θ0,φ0), and the linear detuning δ does not equal zero.

From Eqs. (29) and (30), the angular gradient of the 
pump wave refractive index n′p is near the phase matching 
direction oz′′, and its absolute value 

∣

∣

∣
n′p

∣

∣

∣
 has a homologous 

relationship equivalent to the eccentricity of the ellipsoid. 
Known from afore-discussed results in part three, BIBO 
has a maximal value of deff in yz plane for the type I phase 
matching in SPDC process. In this case, the second part of 
n′p in Eq. (30) turns into zero, and its absolute value reaches 
the maximum. The two different refractive index ellipsoids 
in a biaxial crystal evolve as one sphere and one circumro-
tating ellipsoid just as uniaxial crystals, corresponding to 
the case of (e → o+ o). In double-frequency process, we 
should choose the case of (e+ e → o) to make the absolute 
value of n′p gain the maximum. In other words, if we want 
to obtain the optimum phase matching for type I in BIBO, 
the pump wave should take the circumrotating ellipsoid, 
and the SPDC or double-frequency wave take the sphere. 
Thus, utilizing the angular dependence of refractive index, 
it is easy to decide the phase matching angles, and it has 
superiority of ascertaining which ellipsoid the pump and 
emission waves will take.

(29)
δ ≡ �kp(θ ,φ)− �k1(θ ,φ)− �k2(θ ,φ)

=
(

ωp/c
)

n′p(θ0,φ0)/np(θ0,φ0),

(30)
n′p(θ0,φ0) =

{

[dnp(θ ,φ)/dθ + dnp(θ ,φ)/dφ]

−[dn1(θ ,φ)/dθ + dn1(θ ,φ)/dφ]}|θ=θ0
φ=φ0

.
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Fig. 6  Variation relation of deff along with azimuthal angle φ, a the type I at a fundamental wavelength of 405 nm, b the type II at a fundamental 
wavelength of 810 nm

Fig. 7  Umbilicate point for maximal phase matching in biaxial crys-
tal; pump and emission wave vector directions for collinear in the 
given detection
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5  Conclusions

In conclusion, we have presented a direct method for cal-
culating the phase matching in a collinear three-wave mix-
ing process based on angle-dependent refractive index 
in biaxial crystals. Applying the definition of angle intro-
duced by Japanese mathematician Kodaira Kunihiko, we 
deduced the angular relations between the wave vector and 
the two optical axes in geometry and obtained the expres-
sions of refractive indices depending on angular orienta-
tion (θ ,φ) and optical axis angle Ω. Taking the parameters 
of BIBO crystal in SPDC process, we calculated effective 
nonlinear coefficients with angular dependence of refrac-
tive index and gained the optimum phase matching direc-
tions for the type I and type II. Furthermore, we discuss the 
angular gradient of the pump and emission wave refractive 
indexes near the phase matching direction, ascertaining 
which refractive index ellipsoids the pump and emission 
waves will take. This approach is convenient to calculate 
the phase-matching conditions and has superiority in assur-
ing the space distribution of pump and emission waves in 
quantum optics.
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