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and public safety fields [2–4]. However, the spectral data 
always contain noise and disturbance signals (i.e., overlap 
effect), so it is significant to perform data preprocessing to 
obtain highly precise and accurate data. As a result, many 
experimental schemes or techniques have been proposed 
for sensitivity improvement and resolution enhancement 
[5–8], generally classified into two categories: software- 
and hardware-based techniques.

Digital filtering techniques based on software for online 
noise reduction or off-line data processing of recorded 
spectra are a better choice when temporal resolution and 
lower system cost are priorities. The key point is the opti-
mization and choice of its input parameters when applying 
the selected digital signal processing techniques. Multi-
signal averaging is a relatively simple and widely adopted 
method for noise suppression; however, it is time con-
suming and only adaptive to white noise [9]. Generally, 
derivative calculation is used as a resolution enhancement 
technique to facilitate the detection and location of poorly 
resolved components in the complicated spectra; however, 
numerical computation of the higher-order derivatives has 
also computational (time) costs. Among various filter tech-
niques, wavelet transform (WT) is a powerful signal de-
noising technique [14], but this method depends on more 
parameters, for example, mother wavelet type, thresh-
olding method, threshold estimation, and decomposition 
level. Recently, the Savitzky–Golay (S–G) smoothing filter 
has been shown to be especially attractive since both the 
smoothed signal and the derivatives can be calculated in a 
single step [11–14], and only two parameters must be set, 
i.e., the width of the smoothing window and the degree of 
the smoothing polynomial.

Analogous to other digital signal processing techniques, 
the effectiveness of the S–G filter is found to be strongly 
dependent on the window size. Selection of the appropriate 

Abstract Based on the Savitzky–Golay filter, we have 
developed in the present study a simple but robust method 
for real-time processing of tunable diode laser absorption 
spectroscopy (TDLAS) signals. Our method was developed 
to resolve the blindness of selecting the input filter param-
eters and to mitigate potential signal distortion induced 
in digital signal processing. Application of the developed 
adaptive Savitzky–Golay filter algorithm to the simu-
lated and experimentally observed signals and compari-
son with the wavelet-based de-noising technique indicate 
that the newly developed method is effective in obtaining 
high-quality TDLAS data for a wide variety of applica-
tions including atmospheric environmental monitoring and 
industrial processing control.

1 Introduction

Development of TDLAS has continued for several dec-
ades since the first demonstration of high-resolution spec-
troscopy with lead–tin telluride diode laser by Hinkley 
et al. [1]. Advantages of TDLAS include high sensitiv-
ity and selectivity, rapid response speed, and nondestruc-
tive detection. Sensors based on this technique can be 
tailored to determine parameters such as temperature, pres-
sure, species concentration, or velocity. TDLAS has been 
extensively used in atmospheric environmental monitor-
ing, industrial process control, medical diagnosis, military, 
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window size is essential for achieving the correct trade-off 
between reducing noise and avoiding bias [15]. For exam-
ple, Edwards and Willson [16] have found that the optimum 
width of the smoothing array is 0.7 times the full width at 
half maximum (FWHM) of the narrowest Gaussian line of 
their spectra. In a similar study considering Lorentzian- as 
well as Gaussian-shaped lines, Enke and Nieman [17] con-
cluded that the best signal-to-noise ratio (SNR) enhance-
ment from a single-pass (quadratic–cubic) smoothing 
occurs for a smoothing array that is twice as wide as the 
FWHM of the peak being smoothed. In the study of Mad-
den’ work [18], it is found that optimum width can some-
times be greater than 25 points for spectral data with 512 
sampling points. Therefore, the optimum filter window 
width will depend on the signal features and the criteria 
set by the user. Moreover, an approach based on compar-
ing the fitting residuals with the noise of the instrument was 
reported for selecting the optimal window size of the S–G 
algorithm [19]. However, in the case of non-stationary sig-
nals, the optimal window size will vary with the dynam-
ics of the signal. Addressing this issue, the S–G filter with 
varying window size based on evaluation of the residuals 
of the smoothed data (with Gaussian lineshape) in the local 
region was proposed by Browne et al. [20]. This strategy 
was shown to be superior to fixed window S–G smooth-
ing for a test signal at various SNR for noise removal. In 
the case of trace gas detection using TDLAS, the peak 
height or the integrated absorbance area of spectral signal 
is directly proportional to the gas concentration of the tar-
geted species. Therefore, signal preservation is an impor-
tant quality indicator in signal preprocessing, and this issue 
is often overlooked. In this work, a study of the simulated 
and measured TDLAS data (with Gaussian, Lorentzian, 
and Voigt profiles) by an adaptive S–G filter with varying 
window size has been conducted, in order to guide TDLAS 
signal preprocessing.

2  Savitzky–Golay smoothing filter

The S–G filtering technique is well known for smoothing 
data, so it will not be described in detail. Only some termi-
nology and two key points considered in this work will be 
discussed. The main idea is similar to a moving average, 
but instead of just averaging the sampling points, it per-
forms a least-squares-fit convolution procedure. The basic 
method of the S–G algorithm comprises the following 
steps: (i) data interval is selected (i.e., window size), (ii) a 
low-order polynomial function is fitted to the selected data 
interval, and (iii) the smoothed data point at the center of 
the selected interval is calculated from the polynomial coef-
ficients. This smoothing process is repeated after shifting 
the analysis interval to the right by one sampling interval, 

as depicted in Fig. 1. More detailed discussions of least-
squares-fit smoothing can be found in the original paper by 
Savitzky and Golay [21] and the corrected versions [17, 22] 
as well as a review paper by Willson and Edwards [23].

Generally, the criterion to quantitatively illustrate 
the effectiveness of the de-noising operation is the SNR 
improvement, defined as follows:

where std refers to the standard deviation, Snoise-free, and 
SSG-denoised are the ideal simulated spectral signal, and S–G-
filter-de-noised spectral signal, respectively. However, 
for real-world applications, the optimal filtering param-
eters cannot be directly determined from the SNR defini-
tion, since the real signal (i.e., noise-free signal) and noise 
source are completely unknown. To address this challenge, 
we proposed a varying window S–G filtering by integrating 
two additional criteria for TDLAS signal processing. The 
first criterion is to introduce a “real signal” or “noise-free 
signal” referred to “PolyFit” which is generated by fitting a 
polynomial function (initialization: polynomial order = 5, 
window size = 7) to a small segment (typically 50 sam-
pling points) near the absorption peak of the raw signal, 
as shown in Fig. 2. The multiple linear regression analy-
sis method is used to calculate the correlation coefficient R 
between the “PolyFit” and the same segment in the S–G-
filter-smoothed data, instead of using SNR for assessing the 
optimal filtering parameters (in case of experimental data). 
Indeed, this condition is valid for noise reduction, while not 
credible for signal preservation. The second criterion is to 
employ a threshold “Th” defined as the difference of peak 

(1)SNR(dB) = 10log10

(

std(Signalnoise−free)

std(Signalnoise−free − SignalSG−denoised)

)

Fig. 1  Illustration of least-squares smoothing by locally fitting a 
low-order polynomial (solid line) to five input samples: dot denotes 
the raw input samples, circle denotes the least-squares smoothed 
samples, and x denotes the effective impulse response samples. The 
dotted line denotes the polynomial approximation to centered unit 
impulse
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Fig. 2  Typical example of experimentally determined CO2 absorption spectrum and corresponding results by applying S–G filter and wavelet 
de-noising techniques (for details see text)

Fig. 3  Flowchart of the newly 
developed adaptive S–G filter 
algorithm (for details see text)
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heights between “PolyFit” and the S–G filtering smoothed 
data, in order to optimize filtering parameters without 
excessive signal distortion. The flowchart of the adaptive 
S–G filter algorithm is shown in Fig. 3. Note that the win-
dow size must be an odd integer number, and the polyno-
mial order must be less than window size.

3  Parameter optimization by simulation

In order to understand the dependence of the S–G filter on its 
input parameters (i.e., window size and polynomial order) as 
well as other effects such as sampling points and signal pro-
files, we have performed a large numbers of spectral simula-
tions. The simulated datasets were modeled by considering 
a range of undesired spectral anomalies and variations that 
can often occur in measured spectra, such as baseline varia-
tions, noises, and pressure effects. We first evaluated the S–G 
filter for the synthetic spectral signals, modified with varying 
magnitudes of random noise and sampling points. A com-
puter program has been written in the numerical script lan-
guage Python for the computations and signal simulations. 
The CO2 spectroscopic parameters were used for simulation, 
which were extracted from HITRAN database [24], are com-
piled in Table 1. A set of given experimental conditions, such 
as temperature, pressure, gas concentration, and optical path 
length, was considered.

First, various spectral absorption signals with 1024 sam-
pling points and different SNR have been simulated with 
partial signals, and the corresponding S–G filter-smoothed 
results are presented in Fig. 4. It can be seen that the win-
dow size must be chosen appropriately in order to preserve 
peak height. For a given polynomial degree, smaller win-
dow sizes will not give the best SNR; higher window size 
will produce a smoother result but could introduce bias of 
signal preservation, which in turn induces measurement 
errors of gas concentration. The SNR enhancement factor 
and the best window size as a function of polynomial order 
are shown in Fig. 5. This figure illustrates that the higher 
the polynomial order used in the S–G filter, the higher the 
window size needed for achieving the best SNR. On the 
other hand, we can see that the SNR enhancement factors 
are almost same for polynomial orders between 2 and 8. 
Furthermore, we evaluate the S–G filter by applying to the 
simulated signals with different sampling points, as pre-
sented in Fig. 6. Note that we found the larger the number 

of total sampling points, the higher the SNR enhancement 
factor achieved for the same noise level. Therefore, the 
noise level can be more effectively reduced by increasing 
the number of sampling points to which the S–G filter is 
applied. However, one has to compromise between noise 
reduction and temporal resolution in real-world applica-
tions. Moreover, we found that the proposed algorithm can 
also construct an optimal calibration model for TDLAS 
spectra with different background structural characteristics 
(linear or nonlinear baseline drift) [25].

4  Experimental application

From the simulations discussed above, it is recommended 
to set the polynomial order of the S–G filter in the range of 
2–8, while the window size is the primary factor strongly 
that limits the filtering efficiency. In order to verify this 
conclusion and use of the algorithm for real measured sig-
nals, various spectral data are recorded by our TDLAS sys-
tem. For creating the “PolyFit,” a polynomial (order = 5, 
used throughout this section) function was fitted to a small 
segment (50 sampling points) of the original signal (4096 
sampling points) near the absorption peak. The linear cor-
relation coefficients R calculated between “PolyFit” and 
the same segment in the S–G filter-smoothed results are 
calculated to replace SNR for assessing the optimal filter-
ing window size. In theory, the higher the R values, the 
smoother the S–G-filtered results. Considering the second 
criterion, a threshold of 0.01 is typically selected. A com-
parison with powerful wavelet-based de-noising technique 
is also conducted. As demonstrated in Fig. 2, the best S–G-
filter-smoothed result is comparable to that obtained from 
the best wavelet filtering (where Stein thresholding policy, 
wavelet db10, and decomposition level 6 are used). Finally, 
Fig. 7 presents the values of R2 and difference of absorption 
peak heights as a function of window size for polynomial 
order between 1 and 8. Obviously, the R2 and difference of 
line peak heights shows inverse trend with the optimal win-
dow size. When the difference of line peak heights over-
flows the threshold, the R2 presents decline trend or abrupt 
change. Figure 8 shows the parameters determined from 
the developed S–G filter algorithm as a function of polyno-
mial order. Here, the SNR enhancement factor was directly 
calculated from the ratio of standard deviation of the seg-
ments containing no absorption baseline in the unfiltered 

Table 1  Summary of spectroscopic parameters of CO2 line pair studied in this work, data are taken from HITRAN2012 database [23]

Species Transition  
frequency 
(cm−1)

Line intensity at  
296 K [cm−1/(cm−2  
molecule)]

Air-broadened  
half width  
(cm−1/atm)

Self-broadened  
half width  
(cm−1/atm)

Lower state  
energy  
(cm−1)

Coefficient of T  
dependence of air- 
broadened half width

CO2 4845.636997 2.125E−22 0.0821 0.109 42.9225 0.71
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Fig. 4  Simulated spectra with different SNR (sampling points = 1024) and the corresponding S–G-filter-smoothed results

Fig. 5  SNR enhancement fac-
tor and best windows size as a 
function of polynomial order for 
the S–G filter applying to the 
simulated signals with differ-
ent SNR (number of sampling 
points = 1024)
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Fig. 6  SNR enhancement 
factor and best windows size 
as a function of polynomial 
order for the S–G filter applying 
to the simulated signals with 
different sampling points (raw 
SNR = 6.69)
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and filtered signals. The S–G-filtered results show that the 
highest R2 and the best SNR enhancement factor occurred 
at polynomial order between 2 and 7, while the difference 
of absorption peak heights are within −0.001 and 0.0035 
for each optimal window size, which are much less than the 
selected threshold of 0.01. These results confirmedly prove 
that the developed algorithm is reliable for processing our 
experimentally measured TDLAS signals.

In order to further evaluate the suitability of the devel-
oped adaptive algorithm suitable for absorption spectra 
with different lineshapes, series of experimental spec-
tra (CO2 concentration around 1.5 %) were recorded at 
different pressures (between a few mbar and 1 bar). We 
still use the standard deviation of the segments contain-
ing no absorption baseline in unfiltered and filtered sig-
nal to denote the noise level. The results are demonstrated 
and compared in Fig. 9. The statistical mean values are 
also provided as insets in the figure. Overall, the SNR 

enhancement factor of 5.5 and 4.7 can be calculated from 
wavelet filter and the S–G filter, respectively. Based on 
the study of Chen et al. [11], the developed algorithms 
have finally been applied to a time series of CO2 concen-
trations datasets. As it can be seen from Fig. 10 (upper 
panel), measurement precisions have been significantly 
improved with standard deviations of 1.01, 0.18, and 0.16 
from raw measurements, the output of the S–G filter, and 
output of the wavelet filter, respectively. The Allan vari-
ance in the lower panel shows an optimal averaging time 
of about 200 s for the present system. The measurement 
precision improvement by the developed S–G filter and 
wavelet filter corresponds to a precision level that can 
be obtained by conventional 40-s averaging. Overall, the 
wavelet filter demonstrated a higher ability to remove 
noise, but the method requires more parameters to be 
specified, for example, mother wavelet type, threshold-
ing policy, threshold estimation, and decomposition level. 
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On the other hand, the S–G filter shows great flexibility 
and has great potential for time series datasets with fast 
response, which are particularly attractive for TDLAS and 
other laser spectroscopy applications.

5  Conclusion

In this paper, we have presented a simple but robust 
method based on the S–G filter to smooth out noise pre-
sent in our TDLAS system without distorting signals. By 
applying the newly developed method to both simulated 
and experimental spectral signals, we found that the win-
dow size is the primary factor that limits the smoothing 
efficiency. Comparing the results with those from the pow-
erful wavelet transform-based filter, the developed adap-
tive S–G filter shows the following four advantages: (i) it 
can reconstruct high-quality TDLAS signal by setting only 

two parameters in the S–G filter. Our results suggest that 
the optimal polynomial order is between 2 and 8, which is 
robust in most cases, while the best window size depends 
on the optimal polynomial order and the dynamics of sig-
nal and noise; (ii) it is very simple in theory and easy to 
implement because most commercial software such as 
ORIGIN and MATLAB include the S–G filter in their 
function library; (iii) it can be applied to spectral signals 
with any lineshape (e.g., Gaussian and Lorentzian), and 
there are no restrictions on the scaling of TDLAS datasets; 
(iv) the time cost for searching the optimal window size 
and outputting the best S–G-filtered result is superior than 
wavelet filtering technique. For these reasons, we antici-
pate that the developed method can be further applied to 
real-time smooth TDLAS spectral signals and time series 
concentration datasets for a wide variety of applications 
including atmospheric environmental monitoring and 
industrial processing control.

Fig. 9  Comparison of noise level (see definition at upper panel) before and after applying the S–G filter and wavelet de-noised technique to 
experimental spectra recorded under different pressure
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