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papers [5–9], because of the quickness and robustness of 
the algorithms and the availability of specialized commer-
cial and open-source software [10]. The idea at the basis 
of most of the ANNs applications to the analysis of LIBS 
spectra is, in fact, the construction of nonlinear combina-
tion of a given number of inputs (LIBS spectral intensities), 
optimized for obtaining the best representation of a set of 
outputs (elemental concentrations) on a number of known 
samples (training). The coefficients of this multivariate, 
nonlinear combination, after a proper validation and testing 
can be used for calculating the desired outputs from a set of 
inputs obtained on unknown samples (prediction).

A reason of the success of ANNs in LIBS analysis is 
the extreme facility by which is possible, in a LIBS experi-
ment, to accumulate hundreds of spectra, thus providing a 
quite large database for the most critical steps of the ANN 
procedure, i.e., the training and validation of the ANN 
model [11].

On the other hand, the ANN approach has important 
limitations that in some cases are similar to the one encoun-
tered in linear multivariate analysis [12] or even in standard 
monovariate analysis (calibration curves) [13].

In fact, one can intend the training of the network in a 
manner similar to the construction of a (multidimensional 
and nonlinear) calibration curve (which eventually becomes 
a surface in a multidimensional parameters’ space).

For linking effectually a series of ‘inputs’ to the ‘out-
puts’ (in a LIBS application, one can think about spectral 
lines’ intensities as inputs and elemental concentration as 
outputs), one should bring in mind that the general rules 
for the building of calibration curves [14] hold also for the 
ANN approach, i.e.,:

Rule 1—The experimental conditions in which the ‘cali-
bration’ spectra are acquired must be the same through all 
the calibration process and must be maintained constant 
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1  Introduction

The use of artificial neural networks (ANNs) [1, 2] in laser-
induced breakdown spectroscopy (LIBS) [3, 4] quantita-
tive analysis has been recently proposed in several research 
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during the acquisition of the LIBS spectra on the unknown 
samples;

Rule 2—The methods based on a calibration approach 
are good for interpolation but might fail when used for 
extrapolating data out of the range of the calibration set. 
In other words, it is advisable that the samples used for 
training the ANN would bracket the concentrations of the 
unknown samples.

These two requirements put, obviously, important con-
straints on the applicability of the ANN method for the anal-
ysis of LIBS spectra that, by their nature, are extremely vari-
able in response to changes, either intentional or unwanted, 
in the physical parameters of the plasma, i.e., ablated mass, 
electron number density and electron temperature. In LIBS 
experiments, the variation of the experimental parameters 
during the measurement is often unwanted but almost una-
voidable, because of the laser energy fluctuations and the 
matrix changes between one sample and the other. To over-
come the limitation of the classical calibration approach, 
either monovariate or multivariate, the authors proposed 
several years ago a method called calibration-free LIBS [15–
18], which is based on the possibility of measuring the above 
parameters, by which the atomic emission is governed, with 
the aim of obtaining outputs (concentrations) which would 
not depend on the fluctuations in laser energy and cou-
pling with the target. In fact, these fluctuations are the main 
responsible for the variation of ablated mass, plasma temper-
ature and electron number density and, in the last instance, 
for the indetermination in the relation between the inputs 
(line intensities) and the outputs, which is reflected in a cor-
responding indetermination on the calibration curve or the 
ANN model to be used for the determination of the composi-
tion of the unknown samples.

In a recent paper [19], the authors demonstrated the pos-
sibility of integrating the information obtained from the 
CF-LIBS method with the ANN algorithm, proposing a fast 
method for measuring electron temperature and number 
density on a pure titanium target, at the varying of the laser 
beam fluence on the target.

In this paper, we will demonstrate that using an approach 
based on the same concept, the composition of a metal-
lic alloy can be determined even when the rules described 
above are not followed, providing a result which is much 
more precise than the one that can be obtained using the 
calibration curves approach and much faster than the one 
obtained by the use of the CF-LIBS approach, with a simi-
lar precision.

2 � Experimental approach

For obtaining a better understanding of the advantages of an 
approach with respect to the others, we decided to work on 

synthetic LIBS spectra, simulated using a software devel-
oped by the authors [20]. The software is able to reproduce 
a number of complex experimental plasma (multi-elemen-
tal, inhomogeneous, subject to self-absorption and with 
temperature and electron number density gradients) but, for 
the present application, the LIBS spectra of a simple binary 
alloy (Cu–Ni) were simulated, assuming a homogeneous 
plasma at a given constant temperature and electron number 
density, with negligible self-absorption effects.

We considered an ideal set of samples, with Ni concen-
trations ranging from 0 to 10 %, analyzed by LIBS in dif-
ferent experimental conditions, roughly corresponding to 
the use of laser energies varying from 50 to 150  mJ in a 
typical LIBS configuration (1,064-nm laser wavelength, 
10-ns pulse width and 200-μm laser spot on the target). 
These data were chosen to mimic the results of a real 
experiment (not shown here) from where realistic values of 
the parameters used in the simulation (electron temperature 
and number densities and ablated mass) were derived.

The experimental configurations considered to generate 
this set of data are summarized in Table 1.

The ablated mass was considered proportional to the 
electron density.

The most intense emission lines of Cu and Ni, as experi-
mentally observed in real LIBS experiments in the wave-
length range between 200 and 500 nm, were simulated. The 
corresponding central wavelengths are shown in Table 2.

In Table 2, the symbols ‘I’ and ‘II’ refer to the neutral 
and singly ionized species of the element, respectively. The 
equations used for the generation of the synthetic spectra 
were based on the local thermal equilibrium approximation 
[21]: The Boltzmann equation, which links the intensities 
of the lines emitted by the same species:

Table 1   Parameters used for the generation of the synthetic LIBS 
spectra: Ni concentrations, electron temperature and electron number 
density corresponding to the three simulated laser energies

Sample Laser energy [Ni] (%) T (eV) ne (cm−3)

S1 50 0 1.1 3 × 1016

S2 50 2 1.1 3 × 1016

S3 50 5 1.1 3 × 1016

S4 50 10 1.1 3 × 1016

S5 100 0 1.2 3.5 × 1016

S6 100 3 1.2 3.5 × 1016

S7 100 5 1.2 3.5 × 1016

S8 100 8 1.2 3.5 × 1016

S9 100 10 1.2 3.5 × 1016

S10 150 0 1.25 4 × 1016

S11 150 2 1.25 4 × 1016

S12 150 5 1.25 4 × 1016

S13 150 10 1.25 4 × 1016
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and the Saha–Boltzmann equation, which links the concen-
trations of the two different ionization stages of the same 
element:
.

In Eqs.  (1) and (2), F is a factor, proportional to the 
ablated mass, which in real experiments also takes into 
account the (constant) efficiency of the spectral detec-
tion system, T represents the electron temperature, ne is 
the electron number density, N is the concentration of the 
species, Ek and Eion are the energies of the upper level of 
the transition and the ionization energy of the element, 
respectively, Aki and gk are the transition probability and 
the degeneracy of the upper level, tabulated in the NIST 
database [22], U(T) is the partition function of the species 
considered, k is the Boltzmann constant, me is the electron 
mass and h is the Planck constant. We assumed as usual in 
LIBS measurements that CI + CII = Cs, where Cs repre-
sents the concentration of the element in the sample. The 
variability between the spectra was simulated by applying a 
random Poisson noise at each considered wavelength, with 
� value equal to the average value of the emission intensity 
at that wavelength. Then, 1,000 independent spectra were 
simulated for each ‘sample’ in Table 1 at the different laser 
energies.

3 � Quantitative analysis of the synthetic LIBS spectra

3.1 � Calibration‑free analysis

Since the simulated LIBS spectra were obtained using 
the basic LTE equation in ideal conditions (homogene-
ous plasma, no self-absorption effects), the application of 
the CF-LIBS method, which is based on exactly the same 
assumptions, would give a perfect agreement between the 
nominal concentrations and the ones determined by the 

(1)Ik = F C(I,II) Aki gk

U(I,II)(T)
e−

Ek
kT

(2)
ne CII

CI
=

(2π me kT)3/ 2
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UII(T)
exp

(

−
Eion

kT

)

analysis. In principle, the CF-LIBS is able to take into 
account the unavoidable variations in laser energy and 
coupling with the sample on a single spectrum basis, 
but this possibility is seldom exploited in practice, since 
in a real experimental condition, the application of the 
method on thousands of samples would take a prohibi-
tively long time. The approach generally used in CF-
LIBS analysis is working on averaged spectra, although 
it should be clear that the sample compositions calcu-
lated on an averaged spectrum could be different from 
the average of the compositions determined on the single 
spectra.

3.2 � Calibration curve approach

A simpler approach to the quantitative analysis of a large 
number of spectra is the building of a suitable calibration 
curve by plotting the line intensity of one of the character-
istic emission lines of the element versus its known con-
centration in the sample. In the case of the LIBS simulated 
data that are the subject of our discussion, the calibration 
curve approach in correspondence of the three configura-
tions considered, roughly corresponding to laser energies 
of 50, 100 and 150 mJ, produces, as it should, three differ-
ent linear curves (see Fig. 1).

The effect of the variation of laser energy is often 
compensated, in the framework of the calibration curve 
approach, by plotting the ratio of the line intensity of the 
minor element of interest (in this case, Ni) to the line 
intensity of an element in the matrix (Cu), as a function 
of the concentration ratio. In our case, being the alloy 
binary, the two concentrations of Cu and Ni are related as 
[Ni] = 100 % − [Cu] and the square brackets indicate the 
concentration of the element in percent. It is therefore very 

Table 2   Spectral parameters of the lines considered

Species Wavelength (nm) gk Ek (cm−1) Aki (s
−1)

Ni II 241.6 8 5.64 × 104 2.10 × 108

Ni II 251.1 10 5.34 × 104 0.58 × 108

Cu I 330.8 12 7.11 × 104 2.22 × 108

Ni I 349.3 3 2.95 × 104 0.98 × 108

Ni I 362.0 7 3.1 × 104 0.66 × 108

Cu I 521.8 6 4.99 × 104 1.22 × 108

Cu I 578.2 2 3.05 × 104 0.02 × 108
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Fig. 1   Calibration curves for the samples analyzed at the laser 
energy of 50 mJ (black squares), 100 mJ (green squares) and 150 mJ 
(red squares)
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simple to obtain the individual concentrations of Ni and 
Cu once their ratio is known. However, this approach does 
not completely reduce the spread between the calibration 
curves obtained at the different energies, as evidenced in 
Fig. 2.

In fact, the ratio of two lines of Ni and Cu can be written 
as

Neglecting the dependence on the temperature of 
the partition function U(T), the only dependence on 
the electron temperature T of the line ratio of Eq.  (3) 
is through the exponential, which becomes close to 1 
when ECu

k ≈ ENi
k . This is apparently the case of the lines 

considered in Fig.  2, where the Ni I line at 362.0  nm 
(Ek  =  3.1  ×  104  cm−1) is divided by the Cu I line at 
578.2  nm (Ek  =  3.05  ×  104  cm−1). However, the Saha–
Boltzmann equation [Eq.  (2)] states that even when 
ECu

k ≈ ENi
k , the ratio between two lines of the same ioni-

zation stage is proportional to the ratio between the con-
centrations of the two corresponding species, which is not 
the same as the ratio of the concentrations of the elements, 
because [Cu] =  [Cu I] +  [Cu II], [Ni] =  [Ni I] +  [Ni II] 
and the ratios [Ni II]/[Ni I] and [Cu II]/[Cu I] depend on 
the temperature differently for the two elements, according 
to the predictions of Eq. (2).

It is thus evident that a simple approach based on the 
building of a calibration curve would not allow for the 
quantitative analysis of LIBS spectra when both the Ni 
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concentration and the laser irradiance on the sample are 
unknown.

3.3 � Artificial neural network analysis

Artificial neural networks are data-driven intelligent sys-
tems with the capability to learn from examples. Based on 
suitable collected data, ANNs can be trained to approxi-
mate any input–output relationship with any desired degree 
of accuracy. We therefore decided to apply the neural net-
work approach to the specific case under study in order to 
overcome the unsatisfactory results of the calibration curve 
approach. To this aim, we built a neural network using as 
output the Ni concentration of the samples, and as inputs 
the simulated intensities of a suitable subset of the avail-
able spectral lines shown in Table 2. We chose for this pur-
pose two neutral copper lines (Cu I at 521.8 and Cu I at 
578.2  nm) and two lines belonging to different stages of 
ionization of Ni (Ni II at 241.6 and Ni I at 362.0 nm). The 
network was trained using as inputs the values of the LIBS 
intensities of the four spectral lines selected and as out-
put the known Ni concentration of the samples. After the 
training, the ANN model is expected to give the Ni concen-
tration in unknown samples on the basis of the measured 
LIBS intensities of the same lines used at the training stage.

We used a feed-forward neural network with one hidden 
layer, to implement the fitting model. The transfer func-
tions for the hidden neurons and the output neurons are, 
respectively, the usual hyperbolic tangent sigmoid function 
and linear function, as Fig. 3 shows. We tried a number of 
hidden neurons ranging from 3 to 10. For each number of 
hidden neurons, we performed ten different experiments by 
training, validating and testing the network with 70, 15 and 
15 %, respectively, of the spectra. The spectra at our dis-
posal were 13,000. For each experiment, the network per-
formance was evaluated as the average of the mean squared 
errors (MSE) made on the test set in the ten runs. The best 
performance was achieved with three hidden neurons. The 
parameters used are summarized in Table 3.

Figure 4 shows the regression graphs for the training, val-
idation and test sets, and the whole data set: the R value = 1 
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Fig. 2   Calibration curves for the samples analyzed at the laser 
energy of 50 mJ (black squares), 100 mJ (green squares) and 150 mJ 
(red squares). The intensity ratio between intensities of the Ni I line 
at 362.0 and the Cu I line at 578.2 nm is plotted versus the ratio of Ni 
and Cu concentrations

Fig. 3   Network model employed in the experiments. The model has 
four inputs, three hidden neurons with hyperbolic tangent sigmoid 
transfer function, and one output neuron with linear transfer function 
(the figure was depicted in the Matlab® environment)
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indicates an optimal linear fitting of the model to the data. 
Indeed, the MSE is of the order of 10−4. Figure 5 shows the 
error histogram for the training, validation and test sets.

Note that the ANN model correctly predicts the Ni concen-
tration of the test samples independently on the experimental 
parameters used for the generation of the simulated spectra, 
in a way very similar to the CF-LIBS approach. However, a 
more sensible assessment of the ANN performance can be 
obtained by testing the network on ‘unknown’ samples that 
were never used during the training phase. To this purpose, 
we generated another set of simulated LIBS spectra, roughly 

corresponding to laser energies of 75 and 125 mJ, as reported 
in Table 4.

As done before, 1,000 spectra per sample were simu-
lated and used as test of the performance of the ANN.

The results of this test (Fig. 6) are unsatisfactory. Indeed, 
the MSE of the ANN predictions on spectra obtained in 
conditions different from the ones used for the training of 
the net is of the order of 10−1, showing that the information 
provided to the ANN is, evidently, not enough to disentan-
gle the complex link between temperature, electron num-
ber density, Ni concentration and the LIBS line intensities. 

Table 3   Parameters of the neural network model employed

Parameter Value

Number of hidden layers 1

Number of hidden neurons 3

Transfer functions Hyperbolic tangent sigmoid (hidden 
layer), linear (output layer)

Training algorithm Levenberg–Marquardt |

Stopping criterion 1,000 Interactions
Gradient <10−5 |
After 6 validation failures

Number of input variables 4

Number of output variables 1

Fig. 4   Regression performance of the ANN predictions with respect 
to the nominal Ni concentration for training, validation and test sets, 
and the whole data set. Continuous lines correspond to the ideal con-
dition where the output coincides with target

Fig. 5   Error histogram of the ANN predictions with respect to the 
nominal Ni concentration for training, validation and test sets
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Fig. 6   Comparison between the target values and the neural outputs 
for the Ni concentrations related to the ‘unknown’ LIBS spectra cor-
responding to the parameters in Table 4. Continuous line corresponds 
to the ideal condition where the output coincides with the target
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Similar results can be obtained using as inputs all the seven 
spectral lines simulated in the experiment.

The strategy that we applied for improving the ANN per-
formance on ‘unknown’ samples derives from the results 
obtained in Ref. [19]; in that paper, the authors demonstrated 
the possibility of training an ANN for determining, using only 
the spectral information obtained from the LIBS spectrum, the 
electron temperature and electron number density of the corre-
sponding LIBS plasma. The main issue faced in Ref. [19] was 
the problem related to the acquisition of LIBS spectra with 
‘known’ values of electron temperature and electron number 
density to be used for the training of the ANN. A feasible solu-
tion was found associating to all the spectra acquired in the 
same experimental conditions the same values of the electron 
temperature and number density, as previously calculated 
using the CF-LIBS algorithm on the corresponding averaged 
spectra. This simplification reduces dramatically the time 
needed for the preliminary analysis of the samples to be used 
for the training. The robustness of the ANN algorithm toler-
ates the intrinsic experimental uncertainty on these parameters 
and the ANN model created, after the training stage, was dem-
onstrated to give reliable information on the electron temper-
ature and electron number density of unknown spectra, on a 
single spectrum basis, in fractions of a second. Of course, for 
the method to be effective, the spectral lines used as inputs for 
the network must bring the information needed for determin-
ing the parameters of the LIBS plasma. Actually, the relative 
intensities of the lines selected for the previous experiments 
depend on the electron temperature (that could be calculated 
from the two neutral copper lines at 521.8 and 578.2  nm), 
while the two Ni lines, belonging to different stages of ioni-
zation (Ni II at 241.6 and Ni I at 362 nm) would allow the 
determination of the electron number density. The same lines 
provide information about the Ni concentration in the samples. 
Therefore, in this case, the outputs of the neural network are 
the values of the electron temperature and the electron number 
density (properly rescaled for having all the variables in the 
same order of magnitude), together with the Ni concentration. 
The network architecture has been experimentally determined 
as explained earlier (see Fig. 7).

As in the previous test, the ANN demonstrates a good 
ability in reproducing almost perfectly the plasma parame-
ters and Ni concentration, at the three laser energies consid-
ered in this paper (see Figs. 8 and 9). The MSE on training, 
validation and test sets is of the order of 10−4.

The real test of the performance of the improved ANN 
exploits a set of samples not used for the training stage. As 
in the previous case, we used as test set the new set of LIBS 
spectra simulated using the parameters in Table  4. The 
results of the analysis are shown in Fig. 10.

In this case, the improved ANN is capable of predicting 
with appreciable precision (MSE of the order of 10−3) the 
Ni concentration in the ‘truly unknown’ samples used for 

Fig. 7   Improved neural network model employed in the experiments. 
The model has four inputs, three hidden neurons with hyperbolic tan-
gent sigmoid transfer function, and three outputs with linear transfer 
function

Fig. 8   Regression performance of the improved ANN for training, 
validation and test sets, and the whole data set

Fig. 9   Error histogram of the improved ANN outputs with respect to 
the target for training, validation and test sets
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the test. One should note that the improved ANN gives also 
the correct values of the electron temperature and electron 
number density (with an error around 2  %), on a single 
spectrum base, as shown in Fig. 11.

4 � Conclusion

In this paper, we have demonstrated that in the presence 
of large variations, either wanted or undesired, of the 
laser beam energy or of its coupling with the sample, an 
approach based on the use of a single calibration curve 
might not be appropriate. Using a set of simulated LIBS 
spectra, synthetized assuming different experimental 
parameters (electron temperature, electron number density 
and ablated mass) we have also shown that a ‘general pur-
pose’ approach based on the application of a simple ANN, 
having as inputs the LIBS line intensities, might have a 
poor precision in predicting the Ni concentration on a Cu 
matrix. However, a hybrid approach where the ANN is 
trained using the results of a CF-LIBS calculation of the 
electron temperature and electron number densities (on 
the averaged spectra) has demonstrated to be much more 
precise, giving as fringe benefit also a good information 
on the electron temperature and electron number densities 
on the unknown samples, on a single spectrum base, as in 
CF-LIBS analysis but in a much faster way. These results 
underline the importance to deal with the mathematical 
aspects of the ANN method without forgetting the physi-
cal principles at the basis of the LIBS technique, when 
the objective is using the ANN technique for ‘real world’ 
applications.

Table 4   Parameters used for the generation of the ‘unknown’ syn-
thetic LIBS spectra

Sample Laser energy [Ni] (%) T (eV) ne (cm−3)

S1 75 2.5 1.15 3.25 × 1016

S2 75 5 1.15 3.25 × 1016

S3 75 8 1.15 3.25 × 1016

S4 125 2 1.21 3.7 × 1016

S5 125 4 1.21 3.7 × 1016

S6 125 7 1.21 3.7 × 1016
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Fig. 10   Comparison between the target values and the output of the 
improved ANN for the Ni concentration related to the ‘unknown’ 
LIBS spectra corresponding to the parameters in Table  4. Continu-
ous line corresponds to the ideal condition where the output coincides 
with the target
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Fig. 11   Predictions of the improved ANN for the spectral parameters 
of the set of ‘unknown’ LIBS spectra, corresponding to the param-
eters in Table 4. Left: Electron temperature; Right: Electron number 

density. The curve in red represents the predictions of the ANN, the 
one in black the nominal value of the parameters. Each point corre-
sponds to a single LIBS spectrum
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