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Abstract Reformulation of conventional beam defini-

tions into their bidirectional versions and use of Hertz

potentials make beam fields exact vector solutions to

Maxwell’s equations. This procedure is applied to higher-

order elegant Laguerre–Gaussian beams of transverse

magnetic and transverse electric polarization. Their vortex

and anti-vortex co-axial compositions of equal and oppo-

site topological charges are given in a closed analytic form.

Polarization components of the composed beams are

specified by their radial and azimuthal indices. The longi-

tudinal components are common for beam compositions of

both types; meanwhile, their transverse components are

different and comprise two—nonparaxial and paraxial—

separate parts distinguished by a paraxial parameter and its

inverse, respectively. The new solutions may appear useful

in modeling and tailoring of arbitrary vector beams.

1 Introduction

Light beams can transport angular momentum (AM) along

their propagation direction [1]. In general, AM of vector

beams is composed of two parts—spin angular momentum

(SAM) and orbital angular momentum (OAM). SAM is

associated with beam circular polarization, and OAM is

associated with phase profiles of beam fields. For propa-

gation in free space and homogeneous beam polarization,

both parts of AM are independent of each other and sep-

arately conserved [2]. However, in other cases, SAM and

OAM are in general interrelated and can be even inter-

converted. The phenomena of the SAM–OAM coupling or

their spin-to-orbital conversion are not only interesting by

themselves but may be used in many photonic applications

[3]. For these reasons, spatial structures of vector beams

are recently under intense study. In particular, complex

structures of paraxial vector Laguerre–Gaussian (LG)

beams and their superpositions were analyzed and inter-

relations between their polarization and field vortex struc-

tures were indicated [4–8]. However, for beams of

transverse diameters close to a wavelength or for pulses of

duration close to one cycle, paraxial description of them is

no longer adequate and exact beam representations gov-

erned by a full set of Maxwell’s equations should be

implemented instead. Several inventions were already

published within this range, mainly for localized wave

solutions of fundamental mode, cf. references in [9]. In this

letter, exact wave packet solutions built from the LG

functions were recently proposed. Their specification to

exact beam solutions is described in this work.

The approach presented in this work consists of three

subsequent steps. In the first step, time and a spatial coor-

dinate along a beam propagation direction are treated on

equal footing. That results in a bidirectional representation

of beam fields, where the beam envelopes depend not only

on spatial coordinates but also on time. This technique,

known in electromagnetics and optics for a long time [10,

11], has been extensively used in construction, for example,

focus modes and localized wave packets [12–14]. Next, a

scalar solution to the propagation problem is stipulated in

the modified form of the elegant (complex argument) La-

guerre–Gaussian (eLG) beams known from their paraxial

version [15, 16]. Basic definitions and characteristic features

of such beams were also presented in [17] in the context of

their cross-polarized interactions with dielectric interfaces.
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However, because of the different definitions of the beam

envelope and the field propagation factors introduced in the

first step, the scalar eLG beam fields are now exact, not

paraxial, as they obey exactly the wave equation. In the final

step, a full vector representation of the beam field is given in

terms of Hertz vector potentials [10]. Transverse magnetic

(TM) and electric (TE) exact solutions to Maxwell’s equa-

tions can be then readily obtained and further superposed

into a form of new solutions.

There are two main characteristic features of the new

solutions obtained. The first one is the systematic use of

higher-order eLG beams in the construction of the bidi-

rectional vector solutions. The eLG beams are well-

behaved physical entities. They constitute a complete and

bi-orthogonal base for square integrated functions and

carry finite energy, linear and angular momenta per unit

length along their propagation direction. They can always

be given in a closed form in both configuration and spectral

domains. Thus, no approximations or expansions are nec-

essary in this approach. The field is given explicitly in an

analytic form with beam spatial shape determined by

indices of the eLG functions and a beam cross-section

diameter. The second characteristic feature of this analysis

is the explicit separation of exact beam fields into two

ingredients recognized as nonparaxial and paraxial parts of

exact solutions. They are also exact scalar solutions to the

wave equation by themselves and are distinguished by

factors expressed by a paraxial parameter and its inverse,

respectively. This field separation can be accomplished by

appropriate scaling of spatial and spectral coordinates in

the beam field representations. Hence, in all expressions,

except these in Eqs. (12) and (13), in which the propagation

direction is not specified, spatial coordinates are in nor-

malized, dimensionless form.

The transverse coordinates x and y are normalized to

(divided by) a transverse scale ww of the meaning of a

Gaussian beam radius at its waist. The longitudinal (along the

propagation direction) coordinate z and s = ct, as well as the

phase front curvature radius R, are normalized to (divided by)

zD = kww
2 of the meaning of a beam diffraction or Rayleigh

length; k, c, and t are a wave number, phase velocity, and time,

respectively. The ratio of both scales determines a beam

paraxiality level f = 2-1/2zD
-1ww. Similarly, in the spectral

domain, the transverse, kx and ky, coordinates are normalized

to (multiplied by) ww. The same normalization is also applied

to the alternative, longitudinal (real), and transverse (com-

plex) coordinates, respectively, [9]:

z� ¼ z� s; 1� ¼
1
ffiffiffi

2
p ðx � iyÞ; j� ¼ 1

ffiffiffi

2
p ðkx � ikyÞ:

ð1Þ

Equivalent expressions 1± = 1\ exp(±i/) and j± = j\

exp(±iu) for the transverse coordinates relate them to the

angular coordinates / and u defined by tan / = yx-1 and

tan u = kykx
-1 in the transverse planes x - y and kx - ky,

respectively. Further, the wave number k is also normalized

to (multiplied by) zD, what finally results in the dimen-

sionless relation k = zD
2 ww

-2.

The beams considered here propagate in free space. They

are of cylindrical symmetry in intensity, with their beam

axes along the z-axis and their waists placed at a transverse

plane z = 0. Their electric and magnetic fields are normal-

ized to (multiplied by) by square roots of the free space

admittance and impedance, respectively. Scalar and vector

versions of the exact eLG beams of arbitrary order will be

analyzed in Sects. 2 and 3, respectively. Vortex and anti-

vortex superpositions of two overlapping and co-propagating

eLG beams will be presented in Sects. 4 and 5, respectively.

The analysis will be shortly concluded in Sect. 6.

2 Exact scalar eLG beams

Let us start from the scalar field g0 obeying the wave

equation in free space:

2 ww=zDð Þ2ozþoz� þ o1þo1�

h i

g0 1þ; 1�; zþ; z�ð Þ ¼ 0: ð2Þ

The function g0, given for the specified wave number k,

depends on both longitudinal coordinates z±. If g0 is fac-

torized into the envelope g dependent on z? and the

propagation factor dependent on z-; g0 = g exp(ikz-), then

the wave equation reduces exactly to the paraxial equation

with its fundamental Gaussian solution g [9]:

2iozþ þ o1þo1�

� �

g 1þ; 1�; zþð Þ ¼ 0; ð3Þ

g 1þ; 1�; zþð Þ ¼ v�2 zþð Þ exp �1þ1�v�2 zþð Þ
� �

: ð4Þ

The beam complex radius v specifies the real beam

parameters: the beam width diameter 2w and the radius R

of phase front curvature; m2 = 1?i2-1z?=(w-2 - iR-1)-1.

On the other hand, the paraxial Eq. (3) describes also the

conventional Gaussian envelope g
^

after the replacement of

z? by 2z, as its complex width squared v
^2 ¼ 1þ iz depends

only on z.

Higher-order eLG solutions Gp,±l to (3) are obtained by

the appropriate differentiation of g : G0,0 [17]. That

separates vortex factors in the beam definition, Gp,±l=Qp,l

exp(±il/), where

Gp;�l 1þ; 1�; zþð Þ ¼ op
1�

opþl
1�

g 1þ; 1�; zþð Þ; ð5Þ

Qp;l 1þ; 1�; zþð Þ ¼ �1ð Þpþl
p!v� 2pþlð ÞulLl

p u2
� �

g 1þ; 1�; zþð Þ;
ð6Þ

u2 = 1?1-m-2, l = |l| and Q0,0 = g. The function Qp,l and

the associated Laguerre polynomials Lp
l are specified by the
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nonnegative radial and azimuthal indices p and l and are

independent of u and the sign of ±l. The signs ± refer to

opposite helicities presented by the vortex factors in the

eLG solutions. Note that the conventional paraxial eLG

beams G
^

p;�l are also defined by (5) and (6) with the single

replacement z? by 2z.

The Fourier transform of Weyl type [10] yields the

definitions (5) and (6) restated in the spectral domain [17]:

Gp;�l 1þ; 1�; zþð Þ ¼ i

2p

Z

djþdj� ~Gp;�l jþ; j�; zþð Þei jþ1�þj�1þð Þ:

ð7Þ
~Gp;�l jþ; j�; zþð Þ ¼ i2pþljp

�jpþl
� ~g jþ; j�; zþð Þ; ð8Þ

~Qp;l jþ; j�; zþð Þ ¼ �jþj�ð Þpþl=2 ~g jþ; j�; zþð Þ; ð9Þ

where ~Gp;�l ¼ ~Qp;l expð�iluÞ and ~g ¼ expð�jþj�v2Þ.
The definition (8) allows also for alternative representa-

tions of the eLG functions in the spectral domain:

~Gp;�l ¼ ~Gpþ1=2;� l�1ð Þe
�iu ¼ ~Gpþ1;� l�2ð Þe

�2iu; ð10Þ
~Gp;�l ¼ ~Gp�1=2;� lþ1ð Þe

�iu ¼ ~Gp�1;�ðlþ2Þe
�2iu; ð11Þ

and, in parallel, for Gp,±l in the configuration domain [9],

all interrelated by the transform (7).

In both, scalar and vector, beam solutions, their radii v,

w, and R depend on z? and in turn z? depends on both,

longitudinal and time, spatial coordinates z and s = ct.

Therefore, the eLG beams Gp,±l differ in general from the

conventional paraxial eLG beams G
^

p;�l dependent on

z instead of z?. However, at the initial time t = 0, z? =

z = z- and the beams copy their conventional counter-

parts, although with its coordinate z shortened twice.

Moreover, at the phase front plane and for any time

moment, z = ct or z- = 0 and z? = 2z. In this case, the

beam field distribution remains exactly in the conven-

tional form with the following shifts along the z-axis: its

waist position (at z? = 0) is shifted by -z, together with

its on-axis phase shifted by -2kz. Similar relations for the

beam on-axis phase shift and waist position can be found

for arbitrary values of t and z. Thus, the exact eLG beams

are physical entities to the same extent as the conven-

tional paraxial eLG beams are.

3 Exact vector eLG beams

Exact solutions to Maxwell’s equations can be built from

the Hertz vector potentials M0 and N0 [10]. For symmetry

reasons, both of them are taken directed along the beam

axis, that is, they possess only one nonzero component M0z
and N0z, respectively. The total field can be then

decomposed of the two collinear and orthogonal TM and

TE solutions:

E0 ¼ E0 tmð Þ þ E0 teð Þ ¼ r �r�M0 � osr � N0; ð12Þ

H0 ¼ H0 tmð Þ þH0 teð Þ ¼ r �r� N 0 þ osr �M0; ð13Þ

where, exceptionally, the coordinates x, y, z, and t are not

normalized. In the cylindrical circular polarization frame

êR; êL; êzð Þ and with scalar potentials M0z ¼ M0w2
w and

N 0z ¼ N 0w2
w, Eqs. (12) and (13) yield [9]:

E0 tmð Þ ¼ � 2êzo1þo1�M0

þ ww=zDð ÞðêRo1þ þ êLo1�ÞozM
0;

ð14Þ

E0 teð Þ ¼ i ww=zDð ÞðêRo1þ � êLo1�ÞosN
0; ð15Þ

with qz = qz? ? qz- and qs = qz? - qz-. The TM and TE

solutions are in general independent. If, however,

N0z = ±M0z, then by duality H0(tm) = ±E0(te) and

H0(te) = ;E0(tm).

Let the Hertz scalars M0 and N0 and the field vectors

E0(tm) and E0(te) be represented by the envelope factors M,

N, E(tm), and E(te) dependent on z? and the common

propagation factor exp(ikz-) dependent on z-. Consider

first the case of equal scalar Hertz potentials expressed by

the eLG function N = M=ww
2 Gp,±l and convert (14) and

(15) from the frame êR; êL; êzð Þ to the cylindrical polar

(radial/azimuthal) frame êq; ê/; êz

� �

:

êq ¼ 2�1=2ðê0R þ ê
0

LÞ; iê/ ¼ 2�1=2ðê0R � ê
0

LÞ; ð16Þ

ê
0

R ¼ êRe�i/; ê
0

L ¼ êLeþi/: ð17Þ

Equation (17) defines the new polarization frame

ê
0
R; ê

0
L; êz

� �

called here as a cylindrical circular hybrid

frame. Transverse components of this frame are of zero

AM as their SAM is canceled by their vortex factors of

opposite OAM. Now, Eqs. (14), (15), (16), and (17),

together with the definitions of the paraxial Eq. (3) and the

scalar eLG beams (4) and (6), yield four solutions, namely

the TM and TE solutions in two cases of opposed chirality,

with transverse components of radial and azimuthal

polarization, respectively:

E
ðtmÞ
p;�l ¼� 2êzQpþ1;le

�il/

þ iêq f�1Qp;lþ1 þ fþ1 Qpþ1;lþ1

� �

e�il/;
ð18Þ

E
ðteÞ
p;�l ¼ ê/ f�1Qp;lþ1 � fþ1 Qpþ1;lþ1

� �

e�il/; ð19Þ

On the grounds of the identities (10) and (11) and the

duality principle, Eqs. (18) and (19) are equivalent to Eqs.

(6), (7), (9), and (10) in Ref. [9].

The representation (18) and (19) shows quite regular

field structure—for the separate paraxial and nonparaxial

parts, the field spatial distribution appears of the same
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form for both transverse polarization components. The

parameter f indicates what part of the solution prevails for

paraxial (f � 1) or nonparaxial (f � 1) values of the

ratio of the beam waist radius to the field wavelength.

The paraxial, longitudinal, and nonparaxial contributions

to the total field possess the same vortex factor exp(±il/)

specified by the azimuthal index l. Note that the paraxial

and nonparaxial field ingredients in (18) and (19) satisfy

exactly the paraxial Eq. (3); meanwhile, the field polari-

zation components in (14) and (15) satisfy exactly the

wave Eq. (2).

4 Vortex composition of two co-axial vector eLG beams

For vortex compositions, the scalar Hertz potentials in

(14) and (15) are equal; N = M. In the hybrid polarization

frame ê
0
R; ê

0
L; êz

� �

, cf. (17), the coherent superpositions

with relative phase ;p/2 of the TM and TE vector eLG

beams (18) and (19) of same p and ±l indices result in

two new vector structures E
ðaÞ
p;�l ¼ 2�1=2 E

ðtmÞ
p;�l � iE

ðteÞ
p;�l

� �

and E
ðbÞ
p;�l ¼ 2�1=2 E

ðtmÞ
p;�l þ iE

ðteÞ
p;�l

� �

of vortex beams:

E
ðaÞ
p;�l ¼ E

ðaÞ
?;p;�l � 21=2êzQpþ1;le

�il/; ð20Þ

E
ðbÞ
p;�l ¼ E

ðbÞ
?;p;�l � 21=2 êzQpþ1;l e

�il/; ð21Þ

E
ðaÞ
?;p;�l ¼ i ê

0

Lf�1Qp;lþ1 þ ê
0

Rfþ1Qpþ1;lþ1

� �

e�il/; ð22Þ

E
ðbÞ
?;p;�l ¼ i ê

0

Rf�1Qp;lþ1 þ ê
0

Lfþ1Qpþ1;lþ1

� �

e�il/; ð23Þ

with the transverse field components labeled by the sub-

script \. In each case (a) and (b), there are two indepen-

dent solutions differentiated by the sign of ±l. The field

structure is now even more regular than that one in the

cylindrical polar polarization frame. For the separate—

paraxial, longitudinal, and nonparaxial—field contribu-

tions, the exact field spatial structures (a) and (b) appear of

the same spatial form in four solutions given in (20), (21),

(22) and (23). The transverse beam components (22) and

(23) show symmetry with respect to the beam polarization;

E
ðaÞ
p;�l can be obtained from E

ðbÞ
p;�l, and vice versa, by the

simple replacement ê
0
R $ ê

0
L. The amplitude ratio between

the nonparaxial and paraxial parts of the field is always

related by the ratio ðf=vÞ2ðp þ 1ÞLl
pþ1

.

Ll
p dependent on

z?. For all the polarization field components, OAM

amounts ±l⁄ per photon [1, 2]. In spite of the use of elegant

rather than standard LG beams, the paraxial parts of the

solution (20), (21), (22) and (23) correspond to the com-

positions of the paraxial solutions (I)–(IV) presented in [8]

for standard LG beams.

5 Anti-vortex composition of two co-axial vector eLG

beams

In the case of anti-vortex compositions, the scalar Hertz

potentials in (14) and (15) are of opposite azimuthal indices

and take on the form M = Gp,±l and N = Gp,;l. The TM

solutions in (18) remain the same but the TE solutions (19)

now possess vortex factors of opposite helicity:

E
ðteÞ
p;�l ¼ E

ðteÞ
p;�l exp �2il/ð Þ: ð24Þ

Then, the composition beam fields E
ðcÞ
p;�l ¼

2�1=2 E
ðtmÞ
p;�l � iE

ðteÞ
p;�l

� �

and E
ðdÞ
p;�l ¼ 2�1=2 E

ðtmÞ
p;�l þ iE

ðteÞ
p;�l

� �

equal the ;p/2 phase shifted superposition of these

solutions:

E
ðcÞ
p;�l ¼ E

ðcÞ
?;p;�l � 21=2 êzQpþ1;l e

�il/; ð25Þ

E
ðdÞ
p;�l ¼ E

ðdÞ
?;p;�l � 21=2 êzQpþ1;l e

�il/; ð26Þ

E
ðcÞ
?;p;�l ¼ê

0

L if�1 cos l/ð ÞQp;lþ1 � fþ1 sin l/ð ÞQpþ1;lþ1

� �

� ê
0

R f�1 sin l/ð ÞQp;lþ1 � ifþ1 cos l/ð ÞQpþ1;lþ1

� �

;

ð27Þ

E
ðdÞ
?;p;�l ¼ê

0

R if�1 cos l/ð ÞQp;lþ1 � fþ1 sin l/ð ÞQpþ1;lþ1

� �

� ê
0

L f�1 sin l/ð ÞQp;lþ1 � ifþ1 cos l/ð ÞQpþ1;lþ1

� �

:

ð28Þ

The symmetries ê
0

R $ ê
0

L between E
ðcÞ
?;p;�l and E

ðdÞ
?;p;�l are

similar to those for the vortex composition but in (27) and

(28), the trigonometric functions replace the corresponding

exponent functions in (22) and (23) separately for the paraxial

and nonparaxial parts of the solution. The previous amplitude

ratio between these transverse parts is now additionally

multiplied by ;icot(l/) and ±itan(l/) for the right-handed

and left-handed hybrid polarization components of E
ðcÞ
?;p;�l,

respectively, and vice versa for E
ðdÞ
?;p;�l. This ratio depends

now not only on z? but also on /, and the intensity patterns of

the anti-vortex compositions comprise 2l petals placed in

opposed angular positions for the paraxial and nonparaxial

parts. In centers of these petals, the transverse field is in pure

hybrid states ê
0
R or ê

0
L. Total OAM disappears for the trans-

verse beam components; meanwhile, for the longitudinal

components, it is still equal ±l⁄ per photon. For the paraxial

part of the solution (27) and (28), correspondence can also be

found with results presented in [6] for standard LG beams.

6 Conclusions

In general, the beam field compositions can be obtained by

arbitrary superposition of TM and TE solutions aE
ðtmÞ
p;�l þ
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bE
ðteÞ
p;l0 with complex numbers a and b, where l0 = ±l and

l0 = ;l for the vortex and anti-vortex compositions,

respectively. In Sect. 4, the solutions were given for

b = ±ia. Other composition solutions, like these for

b = ±a, can be derived per analogy. There are also other

choices in construction vector eLG beams by using, for

example, transverse instead of longitudinal vector poten-

tials or collinear eLG beams of different amplitudes and/or

with different vortex charges. However, the vortex and

anti-vortex beam compositions are built here from the

equal in magnitude longitudinal Hertz potentials. Their

characteristics seem to be particularly useful for interpre-

tation of more complex field structures of beams.

Transverse components of these solutions are defined in

the nonuniform orthogonal polarization hybrid frame

ðê0R; ê
0
LÞ and composed of two—nonparaxial and paraxial—

parts, which are always associated with the paraxial

parameter and its inverse, respectively. On the contrary, the

longitudinal part, common for both compositions, does not

depend on this parameter. Each of these beam parts, with

the propagation factor included, satisfies the wave equation

separately and is specified differently by their radial and

azimuthal indices. Although the circular frame (êR; êL) is

convenient in field derivations and the orthogonal solutions

are separated in the polar frame (êq; ê/), the hybrid frame

ðê0R; ê
0
LÞ appears more suitable for description of the beam

compositions.

It should be finally noted that the beams considered

here may be regarded of forward propagation mono-

chromatic type, as obtained for one specified value of the

wave number k. However, the beam fields depend on z-

only through their propagation factors; meanwhile, the

field envelopes depend on z? through the beam complex

width v. Still, after the replacement z± ? z; and appro-

priate redefinition of v in all above expressions, the results

presented remain valid also for backward propagation

case. Therefore, the field compositions of counterpropa-

gating beams are then readily available by analogy. In

general, series consisted of the solutions of both these

types, with different radial and azimuthal indices and

polarization, should yield beam fields determined by

arbitrary initial conditions specified at any plane trans-

verse to the beam propagation direction.
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