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Abstract Chigrin et al. (Appl Phys B 105:81, 2011) have

recently presented a general direct solution of the integral

equation for the electric field inside the scatterer, which

does not require inversion of integral operator or, equiva-

lently, solution of large system of linear equations. This

comment points out that the rigorous applicability of the

considered derivation is limited to ellipsoids much smaller

than the wavelength.

In Section 2.1 of reference [1], a general solution of the

integral equation for the electric field inside the scatterer is

provided. The core result is given by Eqs. (9), (14), and

(15). If true, this would provide a breakthrough in simu-

lation of light scattering, because any light-scattering

problem would be solvable by directly computing two

integrals on a dense-enough discretization of the scatterer.

In comparison with current state-of-the-art volume dis-

cretization methods, e.g., the discrete dipole approximation

[2], this would avoid solution of a large system of linear

equations, which is a major computational bottleneck of

this method.

Unfortunately, the provided derivation of the general

solution has two serious flaws:

(1) Equation (10) is correct and agrees with previous

publications [3, 4]. However, the newly proposed Eq. (9),

which defines N
$
ðr0Þ, implicitly assumes that the internal

field is pointwise proportional to the incident field:

Eðr0Þ ¼ N
$
ðr0ÞEiðr0Þ. This assumption can be partly justi-

fied for a particle much smaller than the wavelength, illu-

minated by field Ei that is constant inside the particle (e.g.,

a plane wave). However, it is then correct only for this

narrow class of Ei, which implies that Eq. (9) defines

operator T
$

only for such specific Ei (and not for arbitrary

one). Consider as a counterexample Ei equal to the field of

the point dipole located near the particle. In other words,

Eq. (9) only defines the action of T
$

on a constant vector,

and as such cannot be used to write out T
$

t
$

Ei in Eq. (11).

The only special case where Eq. (9) can be applied to T
$

t
$

Ei

is when t
$

Ei is also constant (inside the particle), which

happens only for an ellipsoid much smaller than the

wavelength. In the latter case not only Ei but also E is

constant, which implies constant t
$

E ¼ E� Ei, and since

any constant Ei is a total field for another properly chosen

incident field, t
$

Ei is also constant.

Moreover, pointwise proportionality is always wrong

in the general case of particle size comparable to the

wavelength, as can be seen from Eq. (10) describing non-

pointwise dependence and from the following example.

Consider a wavelength-sized sphere illuminated by a

plane wave. Rotating incident direction (i.e., Ei) should

change E accordingly; hence, N
$
ðr0Þ should be spherically

symmetric, and obtained E should have a very special

structure. The latter is definitely not observed in real

simulations [5]. To make Eq. (9) correct, one of the

following modifications is required (preserving the line-

arity of the problem):
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• Replace N
$
ðr0ÞEiðr0Þ by

R
V

d3r00N
$
ðr0; r00ÞEiðr00Þ, which

directly follows from Eq. (10).

• Replace N
$
ðr0ÞEiðr0Þ by N

$
ðr; r0ÞEiðr0Þ, which would

suffice since N
$
ðr; r0Þ is further combined with g(r,r0)

under the integral.

However, any of these modifications would make fur-

ther derivations invalid.

(2) Eq. (12) can be rewritten as
R

V
d3r0Hðr; r0ÞE0 ¼ 0,

which is correct for any E0 and r. The authors of [1] stated

that this implies that Hðr; r0Þ ¼ 0 for any r and r0. How-

ever, this would be correct only if E0 is an arbitrary

function of r0. Instead, since E0 is just an arbitrary constant

vector, the only correct implication is that not the inte-

grand, but the whole integral is zero, i.e.,
R

V
d3r0Hðr; r0Þ ¼ 0. The latter is a weaker statement that

cannot be used for direct solution of the integral equation

for the electric field.

Probably the second issue can be corrected by more

elaborate use of (incorrect) Eq. (9), but this surely would

not make the whole derivation valid. Moreover, it should

be noted that the idea of general solution is not original to

[1], but was proposed by Bozhevolnyi et al. [3, 4]. The

details of derivation slightly differ between these papers,

but each of them has serious flaws as well. In [4], the error

is similar to the second issue above. The derivation of Eq.

(28) heavily depends on Eq. (27), stating that

E
ðAÞ
i ðRÞ ¼ E

ðAÞ
0i eikR. Therefore, the text immediately after

Eq. (28): ‘‘E
ðAÞ
i ðR0Þ is an arbitrary function of variable R0’’

is incorrect, since Eq. (28) is valid only for E
ðAÞ
i ðR0Þ

described by Eq. (27), but not for arbitrary one. Then, the

integrand does not have to be zero, but only integrate (with

exponents) to a zero tensor. In [3], Eq. (23) is erroneous—

E
ðAÞ
n ðR0~;XÞ cannot be factored out, since in the second term

this field is originally inside the second integral, depending

on another positional variable R00~ . While the order of

integration in the double integral can be interchanged, this

would also change the order of g and D, breaking all fur-

ther implications.

Coming back to [1], the erroneous derivation affects

only part of this paper. It is used to derive solution in the

Rayleigh regime and corrections based on retardation

(Sections 2.2 and 2.3). Although corresponding formulae

are, at least, not proved, they may provide a certain

approximation to the exact light-scattering quantities.

Unfortunately, the accuracy of these approximations is

unclear, because the authors have not studied it in detail.

The only presented result of using these formulae is shown

in Fig. 3 without comparison with other (rigorous) meth-

ods. In particular, the presented approach is valid for very

small ellipsoids (as discussed above). Moreover, it is

expected to be approximately correct for dielectric particles

with rounded shapes, inside which the electric field is

approximately constant. However, the accuracy of such

approach for a particular system is hard to estimate a priori.

The rest of paper [1], including abstract and conclusions, is

unaffected by the error uncovered by this comment.
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