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Abstract We demonstrate that the optical bottle-shaped

fields can be controllably generated by the focused spatial-

variant linearly polarized vector beams. Based on the

vectorial Rayleigh–Sommerfeld formulas under the par-

axial approximation, we present theoretically the analytical

expression for the focused field of the vector beam and

predict the evolution of the sate of polarization (SoP) in the

focal region. Experimentally, we observe the vector bottle-

shaped field that is in agreement with the numerical sim-

ulations. In particular, we validate that both the SoP and the

size of the optical bottle field are manipulated easily by

varying the azimuthal topological charge and the radial

mode index.

1 Introduction

In the past few years, the optical bottle-shaped field, which

consists of low intensity surrounded by regions of higher

intensity, has received extensively attention due to its

specific applications in optical tweezers for trapping and

manipulating different micro-objects, including light-

absorbing particles [1–4], cold atoms [5–7], and particles

with a refractive index lower than that of the surrounding

medium [8]. Up to now, the optical bottle field has been

generated by many methods. For examples, Arlt and

Padgett [9] obtained the optical bottle beam arising from

destructive interference between two linearly polarized

Laguerre-Gaussian modes with different Gouy phases.

Shvedov et al. [10] generated linearly polarized optical

bottle beams by double-charge white-light optical vortices.

Chremmos et al. [11] demonstrated elegant paraboloid

optical bottles formed by Fourier-transforming lens. Alp-

mann et al. [3] reported the generation of holographic

optical bottle beams to manipulate absorbing particles.

Genevet et al. [12] presented two-dimensional plasmonic

bottle beams by the interference of a non\diffracting beam.

It is noteworthy that all these methods are concentrated on

shaping the intensity distribution while ignoring the

polarization distribution of light.

As an intrinsic vectorial nature of light, polarization

plays an important role in the interaction of light with

matter. Very recently, researchers used cylindrical vector

beams to trap micrometer-sized dielectric particles [13],

gold nanoparticles [14], and carbon nanotubes [15]. It is

well established that the trapping efficiency depends

strongly on the intensity profile and the SoP of the trapping

beam [13–15]. Besides, Skelton et al. [16] have demon-

strated that the polarization dependence adds additional

flexibility to control the optical trap strength in optical

tweezers. Therefore, it is highly desirable to generate the

controllable bottle-shaped field with the desired polariza-

tion distribution for contactless manipulation of micro-

objects. However, reports of vector bottle-shaped beams

are sporadic in the literature. As an example, Shvedov

et al. [17] have generated vector bottle beams with a uni-

axial crystal very recently.

In this work, we report a theoretical and experimental

investigation of the focused spatial-variant linearly polar-

ized vector beams. By varying the azimuthal topological
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charge and the radial mode index of the vector beam, we

demonstrate that both the SoP and the size of the vector

bottle-shaped field can be easily manipulated.

2 Theory

The electric field distribution of the spatial-variant linearly

polarized vector beam at the z = 0 plane can be expressed

as [18]

Eðr;/; 0Þ ¼ Erðr;/; 0Þer þ E/ðr;/; 0Þe/; ð1Þ

where

Erðr;/; 0Þ ¼ AðrÞ cos
2npr2

r2
0

þ m/� /þ u0

� �
; ð2Þ

E/ðr;/; 0Þ ¼ AðrÞ sin
2npr2

r2
0

þ m/� /þ u0

� �
: ð3Þ

Here, er and e/ are the unit vectors in the polar

coordinate system (r, /). The real number n is the radial

mode index, whereas the integer m is the azimuthal

topological charge, which can be positive or negative

depending on the handedness of the orbital angular

momentum. u0 and r0 are the initial phase and the

radius of the vector beam, respectively. A(r) represents the

radial-dependent amplitude. For the uniform-intensity

beam focused by a thin lens with a focal length of f, we

have A(r) = E0 exp (- i k r2/ 2f) for 0 B r B r0, else

A(r) = 0. Here, k = 2p /k is the wavenumber and k is the

wavelength of the laser. It should be emphasized that the

spatial-variant linearly polarized vector beam has the

spatial distribution of SoP with the simultaneous

azimuthal and radial variant.

Based on the vectorial Rayleigh–Sommerfeld formulas

under the paraxial approximation, the radial and azimuthal

components of the electric field vector can be given by [19]

Erðq; h; zÞ ¼ �
ik

2pz
eikz
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� �
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ik
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eikz
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z
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It is noteworthy that the coordinate origin z = 0 is at the

plane of the lens. Accordingly, one gets z = f at the lens

geometrical focus.

Substituting Eqs. (2) and (3) into Eqs. (4) and (5), and

using the integral theorems [see Eq. (4) in [20] ] , we obtain

Erðq; h; zÞ ¼
ð�iÞmþ1

kE0

2z
expðikzÞ A1 expðiWÞ þ A2 expð�iWÞ½ �;

ð6Þ

E/ðq; h; zÞ ¼
ð�iÞmþ2

kE0

2z
expðikzÞ A1 expðiWÞ � A2 expð�iWÞ½ �;

ð7Þ

where

Ajðq; zÞ ¼
Zr0

0

expð�idjr
2ÞJmðbrÞrdr; ðj ¼ 1; 2Þ: ð8Þ

Here, W ¼ mh� hþ u0; d1 ¼ k=ð2f Þ � k=ð2zÞ �
2np=r2

0 ; d2 ¼ k=ð2f Þ � k=ð2zÞ þ2np=r2
0, and b = kq/z. Jm

(�) is the Bessel function of mth order. Expanding the

Bessel function into series and recalling the incomplete

gamma function Cða; xÞ ¼
R1

x
e�tta�1dt and the gamma

function CðaÞ ¼
R1

0
e�tta�1dt, we rewrite Eq. (8) as

Aj ¼
X1
l¼0

ð�1Þlbmþ2l

2mþ2lþ1l!ðmþ lÞ!ðidjÞm=2þlþ1

� Cðm
2
þ lþ 1Þ � Cðm

2
þ lþ 1; idjr

2
0Þ

h i
:

ð9Þ

Equations (6) and (7) combined with Eq. (9) are the

basic results of the present work, which provides an

analytical expression for the electric components of a

spatial-variant linearly polarized vector beam in the focal

region under the paraxial approximation. Interestingly, the

paraxial result can be regarded as a special case of the

nonparaxial result. In the nonparaxial condition, the

longitudinal component of electric field should be

considered in the analysis. Similar to the focal field we

presented in this work, the three-dimensional electric field

can be derived by means of the vectorial Rayleigh–

Sommerfeld formulas under the nonparaxial approximation

[19].

The evolution of SoP of the focused spatial-variant

linearly polarized vector beam is explored as follows.

With the aid of er ¼ ðe�ihrþ þ eihr�Þ=
ffiffiffi
2
p

and

e/ ¼ �iðe�ihrþ � eihr�Þ=
ffiffiffi
2
p

, where r? and r- are the

unit vectors of the left-handed (LH) and right-handed (RH)

circular polarizations, respectively. Accordingly, we revise

Eqs. (6) and (7) as

Eðq; h; zÞ ¼
ffiffiffi
2
p
ð�iÞmþ1

kE0

z
eikz Eþrþ þ E�r�½ � ð10Þ
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with E? = A1 exp(imh ? iu0) and E- = A2 exp(- imh
- iu0). In general, the LH and RH circularly polarized

components have different amounts (i.e., |E?|2 = |E-|2)

due to |A1| = |A2|. Accordingly, the focused spatial-variant

linearly polarized vector beams exhibit the hybrid SoP

mainly originating from the localized elliptical polariza-

tion. And that the polarization evolution of a spatial-variant

linearly polarized vector beam through the focus is obser-

vable, as we demonstrate in Fig. 5. Specially, for z = f one

gets |A1| = |A2| (subsequently, |E?|2 = |E-|2) from Eq. (9),

which suggests the focused spatial-variant linearly polar-

ized vector beam with localized linear polarization at the

lens’ geometrical focal plane. If n = 0, one finds A1 = A2

for any values of both z and q from Eq. (9). In this case, the

focused field preserves the localized linear polarization at

any propagation position.

3 Experiment

The spatial-variant linearly polarized vector beams have

been generated by many methods [21–24]. Following the

same method presented by Wang et al. [18, 22] and using a

532-nm CW laser beam, we generate the spatial-variant

linearly polarized vector beams with different values of

m and n by a common path interferometer implemented

with a computer-controlled spatial light modulator. The

experimental arrangement and the detailed description can

be found elsewhere [18, 22].

For the sake of simplicity, we only consider the vector

beam for u0 = 0 in the whole analysis. Figure 1 illustrates

the measured (top row) and simulated (lower row) intensity

patterns of the vector beams with a horizontal polarizer. In

fact, all the intensity patterns without the polarizer exhib-

iting the vector singularity at the center of the vector beam

have no obviously different. Interestingly, the intensity

patterns behind a polarizer exhibit the spiral structure.

Furthermore, the number of arms is equal to 2m while is

independent of n. Apparently, the spatial-variant linearly

polarized vector beams have the rich SoP (see arrows in

Fig. 1), compared with the azimuthal- or radial-variant

vector beams [18, 22, 25]. The radius of all the generated

vector beams is measured to be r0 = (1.90 ± 0.05) mm.

To illustrate the propagation behaviors of the focused

spatial-variant linearly polarized vector beams, numerical

simulations have been performed using Eqs. (6) and (7) by

taking r0 = 1.9 mm, k = 532 nm, and f = 150 mm. Fig-

ure 2 shows the intensity distributions of a vector beam

with m = 1 and n = 1 in the focal region of the lens.

Figure 2a displays the simulated intensity patterns through

the lens’ geometrical focus in the XZ plane (y = 0). It can

be seen that the focused vector beam forms an optical

bottle-shaped field with zero on-axis intensity surrounded

by a cylindrical light wall. Figures 2b, c show the simu-

lated and measured transverse intensity patterns taken at

planes (1–5) with d = 6.5 mm marked in Fig. 1a, respec-

tively. Obviously, the experimental results are in good

agreement with the numerical simulations. It should be

pointed out that the bottleneck of the generated bottle-

shaped field is two bright rings, in contrast to that of bright

spots [17, 26] or completely closed ends [11].

Numerical simulations indicate that (1) the diameter of

the bottleneck Dd increases as the value of m increases

while is independent of n, (2) the length of the optical

bottle Dz (namely the interval between two bottlenecks) is

linearly increasing function of n while is independent of

m, and (3) the width of the optical bottle DD (i.e., the

width of a vector beam at the lens’ geometrical focus)

increases as the values of m and n increase. This phe-

nomenon can be understood as follows. It is well docu-

mented that the azimuthal-variant vector beam could be

focused into the flower-like patterns [20, 27]. Numerical

simulation indicates that the focused radial-variant vector

beam exhibits bi-foci alone the optical axis. The focal

volume of a spatial-variant linearly polarized vector beam

is modulated by the azimuthal- and radial-variant SoP

simultaneously. As a result, the width of the optical bot-

tleneck is manipulated by the azimuthal topological

charge whereas the length of the optical bottle is con-

trolled by the radial mode index.
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Fig. 1 Measured (top row) and

simulated (lower row) intensity

patterns of the spatial-variant

linearly polarized vector beams

with a horizontal polarizer. The

corresponding arrows in the

lower row illustrate the

schematics of SoP. The radii of

all vector beams are r0 = 1.90

mm
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To verify our theoretical predictions, as examples, we

measure the intensity distributions of the focused vector

beams with m = 2 and n = 1 (see Fig. 3), and m = 1 and

n = 2 (see Fig. 4). As can be seen from Figs. 2, 3, 4, the

radius of the bottleneck increases as m increase, while the

length of the optical bottle increases with increasing the

value of n. Specifically, the geometric sizes of the focused

vector beams are summarized in Table 1. As shown in

Table 1, both the width and length of the optical bottle are

manipulated easily by tuning the azimuthal topological

charge and the radial mode index of the generated vector

beam.

Different from the conventional bottle-shaped field with

homogeneously SoP [9, 11], the bottle-shaped field pre-

sented in this work has the inhomogeneous distribution of

SoP. Figure 5 illustrates the optical bottle-shaped field

generated by the focused vector beam with m = 2 and

n = 2. To identify the vector behavior of the bottle field, a

horizontal polarizer is used. Accordingly, the simulated

and measured transverse intensity patterns with a

horizontal polarizer at planes (1–5) marked in Fig. 5a are

displayed in Figs. 5b, c, respectively. Clearly, the mea-

sured results are in consistent with the numerical simula-

tions. Figure 5d shows the simulated transverse intensity

patterns without a polarizer. As shown in Figs. 5b, c, the

intensity patterns with a horizontal polarizer exhibit the

spiral structure except for the symmetrical rings at planes

of two bottlenecks. At planes of two bottlenecks, the

focusing degree is stronger than that at any other plane.

Accordingly, the difference between the LH and RH cir-

cularly polarized components is larger as described by

Eq. (10), which indicates that the ellipticity e of the

localized elliptical polarization at the bottleneck is larger

than that at any other plane, in contrast to e = 0 at the lens

geometrical focal plane. Interestingly, the chiralities of the

intensity patterns at both sides of the bottleneck are

opposite. This is because the spatial-variant linearly

polarized vector beam forms bi-focusing alone the optical

axis. Thus, the direction of the optical field on both sides of

the true focal plane is opposite. Most importantly, the
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Fig. 2 The optical bottle-

shaped field generated by the

focused spatial-variant linearly

polarized vector beam with

m = 1 and n = 1 when

r0 = 1.9 mm, k = 532 nm, and

f = 150 mm. a Simulated

longitudinal intensity pattern of

the focused vector beam in the

XZ plane. Simulated b and

measured c transverse intensity

patterns taken at planes (1–5)

with d = 6.5 mm marked in a.

Dd the diameter of the

bottleneck; DD and Dz the width

and length of the optical bottle,

respectively

(a)
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Fig. 3 The optical bottle-

shaped field generated by the

focused spatial-variant linearly

polarized vector beam with

m = 2 and n = 1 when

r0 = 1.9 mm, k = 532 nm, and

f = 150 mm. a Simulated

longitudinal intensity pattern of

the focused vector beam in the

XZ plane. Simulated b and

measured c transverse intensity

patterns taken at planes (1–5)

with d = 6.5 mm marked in a
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optical bottle-shaped field with hybrid SoP exhibits the

complicated evolution of SoP at different positions, as

shown in Fig. 5d. Specially, the optical bottle at the lens’

geometrical focus is a localized linearly polarized field, as

we predict in Sect. 2. The size of the bottle-shaped field is

tunable by varying the topological charges of the vector

beam. Analogously, the polarization distribution of the

generated bottle field could be manipulated by tuning the

azimuthal topological charge and the radial mode index.

This vectorial behavior of the generated bottle field offers

additional flexibility to control the optical trap strength in

optical tweezers [16].

4 Conclusion

In summary, we have demonstrated, both theoretically and

experimentally, that the vector bottle-shaped fields can be

controllably generated by focused spatial-variant linearly

polarized vector beams. Based on the vectorial Rayleigh–

Sommerfeld formulas under the paraxial approximation,

we have presented the analytical expression for the focused

Table 1 The geometric sizes of the optical bottle-shaped fields when

r0 = 1.9 mm, k = 532 nm, and f = 150 mm

Vector beam Dz (mm) DD (um) Dd (um)

m = 1, n = 1 13 126 35

m = 2, n = 1 13 141 62

m = 1, n = 2 26 252 35

(a)

31 542

(b) 200 m

(c)

y

x

y

z

(a)

31 542

(b) 200 m

(c)

y

x

y

z

Fig. 4 The optical bottle-

shaped field generated by the

focused spatial-variant linearly

polarized vector beam with

m = 1 and n = 2 when

r0 = 1.9 mm, k = 532 nm, and

f = 150 mm. a Simulated

longitudinal intensity pattern of

the focused vector beam in the

XZ plane. Simulated b and

measured c transverse intensity

patterns taken at planes (1–5)

with d = 13 mm marked in a

(a)
y

z
31 542

(b) 200 m

y

x

(c)

(d)

Fig. 5 The optical bottle-

shaped field generated by the

focused spatial-variant linearly

polarized vector beam with

m = 2 and n = 2 when

r0 = 1.9 mm, k = 532 nm, and

f = 150 mm. a Simulated

longitudinal intensity pattern of

the focused vector beam in the

XZ plane. Simulated b and

measured c transverse intensity

patterns with a horizontal

polarizer taken at planes (1–5)

with d = 13 mm marked in a. d
Simulated transverse intensity

patterns without a polarizer and

the distribution of SoP at planes

marked in a
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field of the vector beam. Especially, we have found the

polarization evolution of the focused spatial-variant line-

arly polarized vector beam. Experimentally, we have

measured the bottle-shaped field with hybrid SoP, which is

in agreement with the numerical simulations. Most

importantly, we have demonstrated that both the SoP and

the size of the optical bottle field are manipulated easily by

varying the azimuthal topological charge and the radial

mode index. This vectorial bottle field with controllable

intensity profile and polarization distribution has prominent

applications in optical tweezers for contactless trapping

and manipulating micro-particles.
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