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Abstract We present a theoretical analysis of the

implementation of an entangling quantum gate between

two trapped Ca? ions which is based on the dipolar inter-

action among ionic Rydberg states. In trapped ions, the

Rydberg excitation dynamics is usually strongly affected

by mechanical forces due to the strong couplings between

electronic and vibrational degrees of freedom in inhomo-

geneous electric fields. We demonstrate that this harmful

effect can be overcome using dressed states that emerge

from the microwave coupling of nearby Rydberg states. At

the same time. these dressed states exhibit long-range

dipolar interactions which we use to implement a con-

trolled adiabatic phase gate. Our study highlights a route

toward a trapped ion quantum processor in which quantum

gates are realized independently of the vibrational modes.

1 Introduction

A central effort in trapped ion quantum computation is the

realization of controllable interactions between spatially

separated qubits [1]. This is the key to establishing qubit

entanglement for quantum information processing [2–4]

and for transferring quantum information between remote

qubits [5, 6]. In trapped ion quantum computation, an

effective qubit-qubit interaction [7–9] is typically engi-

neered by a state-dependent laser coupling of ions to

quantum harmonic oscillations (phonons) of the ion crystal

[10, 11]. This use of phonons as quantum bus is currently

limited to rather small arrangements of ions as the vibra-

tional mode structure of a crystal becomes increasingly

dense and complex as the number of ions grows. Executing

gates in large ion crystals, therefore, can become very slow

if one requires individual phonon modes to be spectro-

scopically resolved as proposed in many gate schemes [7–

9]. Hence, when scaling up a trapped ion quantum com-

puter, the resulting low gate speeds make it challenging to

maintain quantum coherence within qubits which typically

have a finite coherence time.

An alternative to the phonon induced effective interac-

tion among qubits are long-range dipolar interactions that

are currently much studied in the context of neutral atoms

[12]. These interactions occur when two atoms are excited

to electronically high-lying (Rydberg) states [13].

Depending on the specific Rydberg state, the corresponding

interaction strength can reach tens of MHz over a distance

of several micrometers. This has pronounced consequences

for the excitation dynamics of atoms which are excited

from electronically low-lying (ELL) states to Rydberg

states. In the extreme case, it can lead to the so-called

dipole blockade effect [14], i.e., the suppression of multiple

excitation of Rydberg atoms within a certain volume [12,

15, 16]. This phenomenon has been extensively explored in

the context of many-body physics, and it has been shown to

be a central ingredient for the realization of two-qubit gates

[17]. Recently, the experimental demonstration of two-

atom entanglement [18] and a controlled-NOT quantum

gate [19] using the dipole blockade between Rydberg

atoms has been reported.

Motivated by this, attempts to integrate dipolar inter-

action into trapped ion systems have generated consider-

able interest [20]. In terms of electronic structure, an atom
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and a singly charged ion in a Rydberg state share many

similarities. One would therefore intuitively think that one

could simply migrate the ideas developed for neutral atoms

to the trapped ions. However, dramatic differences between

neutral Rydberg atoms and trapped Rydberg ions emerge in

both the motional and electronic dynamics. For neutral

atoms, one commonly encounters situations where the

atomic motion is frozen during the course of the Rydberg

excitation [21, 22]. This condition can typically not be

fulfilled for trapped ions, and coherent couplings between

electronic states and phonon dynamics are vitally important

for understanding the trapped ion excitation dynamics.

In Rydberg states, the weakly bound electron can

strongly couple to the ionic vibration. This is rooted in the

fact that the Rydberg ion can not be regarded as a point-

like particle but rather a composite object [20]: The orbital

length of the Rydberg electron scales as n2 [13] (with n the

principal quantum number of the Rydberg state). This

length can be tens of nm at large n, which is several times

larger than the typical oscillator length corresponding to

the ionic vibration, *10 nm (the situation is depicted in

Fig. 1a). The strong coupling not only affects the electronic

dynamics but also generates an additional ponderomotive

potential for the external ionic motion [23]. This potential

is proportional to Rydberg polarizability (*n7) and thus

modifies significantly the Rydberg ion-trapping potential

compared with ions in ELL states. This affects the laser

excitation of ions from ELL states to a Rydberg state

through the emergence of non-trivial Franck–Condon (FC)

factors that characterize the overlap of phonon modes

belonging to the two different potential surfaces. In gen-

eral, this leads to the mixing of vibrational state during the

laser excitation which can cause qubit decoherence.

In addition a second issue arises, namely that the dipolar

interaction between Rydberg ions is generally weaker than

between neutral Rydberg atoms. This can be seen by the

fact that the van der Waals (vdW) interaction (which typ-

ically is used to establish interactions among Rydberg

atoms) scales as 1=Z6 where Z is the net charge of the

ionic core. This scaling immediately shows that the vdW

interaction strength of Rydberg ions (with Z ¼ þ2) is

relatively weak compared with neutral atoms (with

Z ¼ þ1). Indeed, we will later show for the case of Ca?

and typical trap parameters that it is not advantageous to

use the vdW interaction for realizing two-qubit gates.

In this work, we show how to overcome these two

problems. Our solution relies on the application of a

microwave (MW) field which couples ionic Rydberg

states that have a polarizability of opposite signs (see

level scheme depicted in Fig. 1b). The polarizability of

the emerging dressed Rydberg states (Fig. 1c) can be

dynamically switched off. In this case, the difference of

the potential surface of ions in the Rydberg state and the

ELL states is lifted, and the Rydberg excitation decouples

from the phonon dynamics. In addition, the large per-

manent (rotating) dipole moment of the MW-dressed

Rydberg states generates a dipole–dipole (DD) interaction

that is substantially stronger than the vdW interaction.

This permits the implementation of a fast and robust

quantum gate.

The paper is organized as follows. In Sect. 2, we present

and analyze the Hamiltonian governing the coupled

vibrational and electronic dynamics of two Ca? ions

trapped in a linear Paul trap in the presence of laser and

MW fields. Here, we will elaborate in more detail on the

aforementioned MW control of the Rydberg excitation and

interaction strength. In Sect. 3, we discuss the implemen-

tation of a controlled two-qubit phase gate relying on the

DD interaction between MW-dressed Rydberg states. We

conclude in Sect. 4.

2 System and Hamiltonian

We consider two Ca? ions of mass M trapped in a linear

Paul trap whose electric potential is given by

(a)

(b) (c)

Fig. 1 a System schematics. Two Ca? ions form a crystal along the

z-axis of the linear Paul trap. The equilibrium position of the jth ion is

f0; 0; �Zjg. In Rydberg states, the size of the valance electron orbit

becomes comparable or even larger than the width of the ionic wave

packet (sketched as Gaussian in gray). The two ions (separated by R0)

interact through a dipolar interactions once excited to Rydberg states.

b Relevant electronic levels used to describe the laser excitation and

the MW dressing. A laser couples the low-lying D-state with the

target Rydberg state, jnP1=2ð1=2Þi. The MW field couples the

jnP1=2ð1=2Þi-state with a Rydberg jn0S1=2ð1=2Þi-state. c For a strong

MW field, the dressed Rydberg states are separated by a large energy

splitting given by the microwave Rabi frequency. Here, the selective

laser addressing of individual MW-dressed Rydberg state is possible

38 W. Li, I. Lesanovsky

123



Uðr; tÞ ¼ a cos Xtðx2 � y2Þ � bðx2 þ y2 � 2z2Þ. Here a and

b are the electric field gradients of the radio-frequency and

static field, respectively, and X is the oscillation frequency

of the radio-frequency field. At the trap center, this field

configuration gives rise to an effective ponderomotive

harmonic potential [24] for the ions with radial and lon-

gitudinal trap frequencies xq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½ðea=MXÞ2 � eb=M�
q

and xZ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi

eb=M
p

, respectively (e the elementary

charge). The Hamiltonian of ion j (j = 1, 2) is [20]

Hj ¼ HCMðRjÞ þ HeðrjÞ þ HecðRj; rjÞ þ Vext; ð1Þ

where HCM(Rj) describes the harmonic oscillation of the

center-of-mass (CM) coordinate (Rj = {Xj, Yj, Zj }) of the

respective ion. Furthermore, He(rj) is the Hamiltonian of

the valence electron (rj = {xj, yj, zj}) and Hec(Rj, rj) is the

electron–CM coupling Hamiltonian of the jth ion,

respectively. The explicit form of the individual terms is

given by

HCMðRjÞ ¼
P2

j

2M
þM

2
x2

qðX2
j þ Y2

j Þ þ x2
ZZ2

j

h i

; ð2Þ

HeðrjÞ ¼
X

L

�LjLihLj þ HetðrjÞ; ð3Þ

HecðRj; rjÞ ¼ �2e a cos xtðXjxj � YjyjÞ
�

ð4Þ

�bðXjxj þ Yjyj � 2ZjzjÞ
�

; ð5Þ

where HetðrjÞ ¼ �eUðrj; tÞ is the coupling between the

valence electron and the electric field of the Paul trap. To

label the electronic states, we introduce the multi-index

L = {n, L, J, mJ}, where n, L, J are the principal, angular,

total angular quantum number and mJ is the projection of

J on the quantization axis [25] with �L to be the respective

state energy. Finally, the term Vext describes the interaction

of the ion with external laser and microwave fields, whose

form will be given later. Note that the effect of micromo-

tion [24] has been neglected in this description.

The constituents of the two ions interact with the Cou-

lomb interaction. In linear ion traps, the typical inter-ion

separations are about 5 lm, which is far larger than the

characteristic length of both electron orbits and ionic

vibration. This allows us to Taylor expand the Coulomb

interaction in terms of the inter-ion separation R0 [20]

VðR1;R2; r1; r2Þ=C0 �
1

R0

þ n12 � ðr1 � r2Þ
R2

0

þ r2
1 � 3ðn12 � r1Þ2 þ r2

2 � 3ðn12 � r2Þ2

2R3
0

þ r1 � r2 � 3ðn12 � r1Þðn12 � r2Þ
R3

0

:::

ð6Þ

where C0 ¼ e2=4p�0 with �0 being the vacuum permittiv-

ity. We have furthermore used R0 ¼ j �R1 � �R2j and n12 ¼
ð �R1 � �R2Þ=R0 with �Rj being the equilibrium position of the

jth ion. On the right hand side of Eq. (6), the first term is

the Coulomb interaction between the two singly charged

ions. Higher-order terms in the expansion give contribu-

tions due to electron-charge and electron–electron inter-

action. The second and third terms are the dipole-charge

and quadrupole–charge interaction. The fourth term is the

dipole–dipole interaction. Note that corrections in Eq. (6)

due to the ionic vibration in the vicinity of the equilibrium

positions [26] can be safely neglected.

These higher-order terms have different impacts on the

electronic and ionic dynamics. For the linear crystal,

the dipole–charge interaction cancels the z-component of

the electron–CM coupling. Hence, the equilibrium posi-

tions of the ions are unaffected by a change of the elec-

tronic state. The quadrupole–charge interaction modifies

the electronic Hamiltonian as He
0(rj) = He(rj) ? C0

(xj
2 ? yj

2 - 2zj
2)/(2R0

3) [20]. Consequently, the electronic

energies are shifted according to �0L ¼ �L þ d0e where the

corresponding energy shift d0e can be calculated via second

order perturbation theory as discussed in Ref. [25].

As highlighted in the introduction, the importance of

certain terms in the two-ion Hamiltonian strongly depends

on the considered electronic states. For example, in ELL

states, the electron–CM and electron-trap coupling as well

as higher-order terms in Eq. (6) can be safely neglected.

However, due to the strong scaling of characteristic

quantities such as the polarizability as a function of the

principal quantum number n [13], terms whose effect is

negligible in case of ELL states become important for the

system dynamics when ions are excited to Rydberg states.

This will have an impact, e.g., on the laser excitation

dynamics. In the following, we will discuss this in detail.

2.1 Hamiltonian of ions in ELL states

In an ELL state, the dynamics of the valence electron is

hardly affected by the electric fields of the trap, and the

electronic and phonon dynamics are essentially decoupled.

At sufficiently low temperature, the ions form a Wigner

crystal as a result of the interplay between the Coulomb

repulsion and the trap confinement [27]. For our linear two-

ion crystal, the equilibrium positions are

�Xj ¼ �Yj ¼ 0 ð7Þ

��Z1 ¼ �Z2 ¼
C0

16eb

� �1=3

: ð8Þ
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When displaced from the equilibrium positions, the two

ions couple with each other through the Coulomb

interaction. The resulting coupled vibrations are

described in terms of phonon modes with the

Hamiltonian (�h ¼ 1)

Hv ¼
X

v¼X;Y ;Z

X

j¼1;2

xv;ja
y
v;jav;j: ð9Þ

Here, a
y
v;j (av,j) is the creation (annihilation) operator of the

jth phonon mode along the v-axis. The phonon frequencies

xv,j are calculated by diagonalizing the Hessian matrix,
P

mHðg;vÞmn Aðv;jÞm ¼ x2
v;jA

ðv;jÞ
n (A(v,j) denotes the eigenvector

of the respective phonon mode) with the matrix elements

Hðg;vÞmn ¼
x2

v �
cv

ð2 �Z1Þ3
; n ¼ m

cv

ð2 �Z1Þ3
; n 6¼ m

(

where cX = cY = 1, cZ = - 2.

2.2 Dynamics of the laser excitation of Rydberg states

Let us now study the dynamics of the laser excitation of

ions from the ELL state to Rydberg states. Specifically, we

consider that the Ca? ions are excited from the low-lying

jDi ¼ j3D3=2ð1=2Þi to the Rydberg jPi ¼ jnP1=2ð1=2Þi
state (see Fig. 1b) via a single photon transition as it can be

achieved with a vacuum ultraviolet laser (a thorough dis-

cussion of such vacuum ultraviolet laser in the context of

ionic Rydberg excitations can be found in Refs. [25, 28]).

To understand the excitation process, it is instructive to

characterize first the effective trapping potential experi-

enced by a Rydberg ion. In the Rydberg state, the large

electron–CM coupling gives rise to an additional ponder-

omotive potential to the CM motion. The details of the

derivation can be found in Refs. [23, 29]. Note, further-

more, that similar state-dependent modifications of the

trapping potential occur also in case of neutral Rydberg

atoms in magnetic traps [30]. In the jPi state, the additional

trapping potential experienced by the jth ion is

VaðRjÞ � �e2a2PPðX2
j þ Y2

j Þ; ð10Þ

where PP is the polarizability in the Rydberg state. Here,

terms containing the static gradient b has been neglected

with respect to those containing the gradient a of the radio-

frequency field as typically a � b in linear ion traps. Since

PP / n7, the additional potential can result in a major

modification of the harmonic confinement that strongly

affects the phonon mode structure. This can be exploited

for the dynamical mode shaping within ion chains [29].

The Hessian matrix characterizing the transverse phonon

modes in the Rydberg state is given by

HðP;vÞmn ¼
x2

v � 2e2a2PP � 1

ð2 �Z1Þ3
; n ¼ m

1

ð2 �Z1Þ3
; n 6¼ m

(

ð11Þ

with v = X, Y. The eigenvector BðP;v;jÞ and eigenfrequency

mP;v;j of the phonon modes are obtained by solving
P

mHðP;vÞmn BðP;v;jÞm ¼ m2
P;v;jB

ðP;v;jÞ
n . The respective

(electronic state-dependent) phonon Hamiltonian is

HðPÞv ¼
X

v¼X;Y

X

j¼1;2

mP;v;jb
y
P;v;jbP;v;j; ð12Þ

with b
y
P;v;j and bP;v;j being the phonon creation and anni-

hilation operators, respectively.

We are now in a position to investigate the laser exci-

tation dynamics and how it is affected by the electronic

state-dependent phonon modes. We assume that the exci-

tation laser propagates along the z-axis and that it is

polarized along the y-axis. The ion–laser interaction is

described by the coupling Hamiltonian

VLðtÞ ¼ �eE0ðZjÞ½ri � ê0� cos x0t; ð13Þ

where E0(Zj) is the strength of the laser field at the position

of the jth ion and x0 is the laser frequency. In order to

obtain an explicit expression for the laser coupling induced

between the states jDi and jPi we change into a rotating

frame with the unitary transformation UL ¼ PD þ eix0tPP,

using the projection operators PD ¼ jDihDj;PP ¼ jPihPj.
In the interaction picture and within the rotating wave

approximation, we obtain the Hamiltonian of the resonant

Rydberg excitation of the jth ion [23]

HL �
X

v¼X;Y
½m�;½k�

XðZjÞ
2

K
½k�
½m�b

y
P;v;½k�av;½m� � jPijhDj þ H:c:; ð14Þ

where XðZjÞ ¼ E0ðZjÞd0 is the laser Rabi frequency with

d0 ¼ �ehPjyjjDi being the transition dipole moment

between the jDi and jPi state. The coefficients K[m]
[k] are the

FC factors and given by the overlap integrals between the

vibrational modes in the potential surface corresponding to

the jDi and jPi state. We furthermore have defined

b
y
P;v;½k� ¼ ðb

y
P;v;1Þ

k1ðbyP;v;2Þ
k2=

ffiffiffiffiffiffiffiffiffiffiffi

k1!k2!
p

, where ki is the pho-

non number of the ith mode along the v-axis. A similar

definition is used for the operators av, [m] in Eq. (14).

From Eq. (14), it is evident that the Rydberg excitation

depends strongly on the FC factors [31] when the trapping

potential is state-dependent. In general, this results in a

strong and rather intricate coupling between vibrational

and electronic degrees of freedom. For the implementation

of quantum gates, this is not desirable and indeed for many

gate schemes, it is advantageous to have a trapping

potential that is essentially independent of the electronic

state [32–34].
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2.3 MW dressing of Rydberg states

In order to achieve such a trapping potential that does not

depend on the electronic state and therefore give rise to

trivial FC factors, i.e., K[j]
[k] = djk, we do not work with bare

Rydberg states. Instead, we create dressed states by a strong

MW field that couples the Rydberg jPi state with a Rydberg

jSi ¼ jn0; S1=2ð1=2Þi as shown in Fig. 1b. The states are

chosen such that the signs of their respective polarizabilities

are opposite, i.e., Pn0S [ 0 and PnP \ 0. With an appro-

priate choice of the MW coupling, this permits the creation

of dressed states with vanishing polarizability and thus

removes the additional potential (10) in the Rydberg state.

Our method is similar to the one demonstrated in a recent

experiment [35], where a MW field modulates the dipole

moment of neutral Rydberg atoms.

Let us now discuss the practical implementation of this

idea. The interaction Hamiltonian of the jth ion with the

MW field is given by VMWðrjÞ ¼ �eE1½rj � ê� cos x1t, with

E1, x1 and ê the strength, frequency and polarization (along

y-axis) of the MW electric field. We use the unitary

transformation Ut ¼ PD þ PPeix0t þ PSeðix0�x1Þt to move

into a rotating frame with respect to both the MW and the

laser with PS ¼ jSihSj. In the unitary transformation, the ?

corresponds to the situation �P\�S and - to the situation

�P [ �S. For concreteness we will assume �P [ �S in the

following.

We consider the regime of a strong MW field [36], i.e.,

the timescale related to the MW coupling is much shorter

than that of the ionic motion and the ion–laser interaction.

In this regime, the interaction between MW field and the

jth ion is described by Li et al. [29]

HMWðrjÞ ¼ DSjSijhSj þ DPjPijhPj

þ XMW

2
ðjSijhPj þ H:c:Þ;

ð15Þ

where DS ¼ �0S � ðx0 � x1Þ;DP ¼ �0P � x0, and XMW ¼
E1d1 is the MW Rabi frequency with d1 ¼ �ehPjyjjSi
being the transition dipole moment between the Rydberg

jPi and jSi state. Diagonalizing this Hamiltonian, we

obtain two MW-dressed Rydberg states

j�ij ¼ N� C�jPij þ jSij
� �

; ð16Þ

where C� ¼ D��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
MWþD2

�

p
XMW

with D� ¼ DP � DS and N� ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C2
�

p

is the normalization constant. The dressed

state energy is d� ¼ Dþ
2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
MW þ D2

�

q

. The polariz-

ability of the dressed state, P� ¼ N2
�ðC2

�PnP þ Pn0SÞ, can

be controlled by tuning the MW parameters. For example,

for n0 ¼ n;P� � 0 when |C±| & 0.68, i.e., the polariz-

ability vanishes. When exciting such a dressed state with

vanishing polarizability, the trapping potential of the

Rydberg ion becomes identical with that of the ions in ELL

states. Here, the FC factors [23] become trivial, and the

laser excitation is not different as compared to laser tran-

sitions driven among ELL states.

2.4 Dipolar interaction between MW-dressed Rydberg

ions

As discussed at the beginning of Sect. 2, the operator

describing the electron–electron interaction between two

ions is given by

VddðR1;R2Þ ¼ C0

ri � rj � 3ðnij � riÞðnij � rjÞ
R3

0

: ð17Þ

For typical experimental parameters, the resulting interac-

tion energy is negligible for ions in ELL states. In Rydberg

states, this interaction can become significant, and its actual

functional form depends strongly on whether or not the

electronic states possess a permanent dipole moment. We

investigate these two situations in the following.

In the absence of MW dressing (see discussion in Sect.

2.2), the laser excites the Rydberg state jPi which possess

no permanent dipole moment. As a result, the interaction

energy shift between two ions excited in the jPi state has

the form of a van der Waals potential, VvdW = C6/R0
6, with

C6 being the dispersion coefficient (see Fig. 2a). For

n = 65, we obtain C6 & 2p 9 0.3 GHz lm6, which results

in an interaction shift of 2p 9 20 kHz at R0 = 5 lm. For

all practical purposes, e.g., the implementation of a two-

qubit gate protocol, this interaction energy is too small.

This changes, however, in the presence of the MW field.

The dressed Rydberg states of the ion exhibit a rotating

dipole moment that leads to resonant exchange of MW

photons between the two ions. This process gives rise to a

DD interaction [15] of the form

Vddð�Þ �
C0

R3
0

ðd2
�P� þ d2

þPþÞ; ð18Þ

where Pþ ¼ j þ þihþ þ j (using the notation

j þ þi ¼ jþi1jþi2) and P� ¼ j � �ih� � j are the pro-

jection operators on the respective ion-pair states. The

interaction strength is determined by the parameter

d± = N±
2 C±|d1|/e. In order to derive expression (18), we

have performed several approximations. First, fast oscil-

lating terms (with frequency 2x1) and DD couplings

between the two dressed states are neglected. The latter is

justified due to the large Autler–Townes splitting between

the dressed states (illustrated in Fig. 2b). Second, we

neglected the x and z components in the DD interaction

operator Eq. (17) as these couplings are vanishingly small

in the MW-dressed state. To verify this second approxi-

mation, we numerically calculate the two-ion interaction

potential by including both the MW driving [Eq. (15)] and
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the DD interaction [(Eq. (17)]. As shown in Fig. 2c, the

potential in the pair j � �i state based on this full calcu-

lation (without the aforementioned approximations) agrees

well with that of the simplified calculation [Eq. (18)].

Hence, we can reliably obtain the DD interaction strength

from Eq. (18). Using typical parameters, e.g., XMW ¼
2p	 400 MHz, DS ¼ 2p	 136:074 MHz and DP ¼ 2p	
293:957 MHz, the DD interaction strength is C3ð�Þ ¼
C0d2

� � 2p	 0:309 GHz lm3 for n = n0 = 65. For an ion

separation of R0 = 5 lm, the DD interaction energy is

&2p 9 2.5 MHz, which is significantly larger than the

Rydberg excitation Rabi frequency (typically smaller than

1 MHz). In this parameter regime, the simultaneous exci-

tation of ions into Rydberg pair states is strongly sup-

pressed. We will use this so-called dipole blockade in the

following section for the implementation of a two-qubit

entangling gate—the controlled phase gate.

3 Implementation of a two-qubit phase gate

Among the many existing protocols [12], we focus on an

adiabatic scheme for the implementation of the phase gate.

This scheme benefits from the fact that phonon excitation is

largely negligible and that the laser addressing of individ-

ual ions is not required [17]. The logical qubit states of

each ion are the states jDi and a second ELL state jEi (e.g.,

the ground state j4Si of Ca?). In order to implement the

gate, we use a Rydberg laser driving the jDi $ j�i tran-

sition of each ion (the corresponding level in this gate

scheme is depicted in Fig. 3a). We assume an excitation

laser propagating along the trap axis, whose Rabi fre-

quency is time-dependent, i.e., XðZjÞ ¼ E0ðtÞd0 expðikLZjÞ
where kL is the wave number of the Rydberg laser. Such

time dependence of the laser electric field can be achieved

by varying the laser intensity. The effective Rabi frequency

for the jDi $ j�i transition is X�ðZjÞ ¼

XMWXðZjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4N2
�ðX2

MW þ D2
�Þ

q

which can be further

parameterized as X�ðZjÞ ¼ X�ðtÞ expðikLZjÞ with

X�ðtÞ ¼ XMWd0E0ðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4N2
�ðX2

MW þ D2
�Þ

q

. In what fol-

lows, we assume that only the axial CM phonon mode is

coupled with the electronic dynamics. We expand X�ðZjÞ
in terms of the Lamb–Dicke parameter g and truncate the

expansion up to the first order of g, i.e.,

X�ðZjÞ � X�ðtÞ½1þ igðayz þ azÞ�. Here, ayz (az) is the pho-

non creation (annihilation) operator of the axial CM mode,

g ¼ kLnz=
ffiffiffi

2
p

is the Lamb–Dicke parameter, and nz is the

oscillator length of the CM mode. The resulting two-ion

Hamiltonian is

H � Hv;z þ
C3ð�Þ

R3
0

P�þ

X

j¼1;2

d�ðtÞj�ijh�j þ
X�ðtÞ

2
½1þ igðayz þ azÞ�rðjÞþ þ H:c:

	 


;

ð19Þ

where Hv;z ¼ xza
y
zaz; rþ ¼ j�ihDj; r� ¼ ryþ and d-(t) is

the detuning of the Rydberg excitation laser frequency with

respect to thejDi $ j�i transition. To realize the adiabatic

phase gate, we consider a laser pulse whose Rabi frequency

and detuning are time-dependent (see also Fig. 3b):

X�ðtÞ ¼X0 sin2 p
s

t
� �

;

d�ðtÞ ¼D0

1

2
þ cos2 p

s
t

� �

� �

:

Here, X0;D0 and s (the duration of the gate laser pulse) are

constants.

(a)

(b) (c)

Fig. 2 a Van der Waals interaction between two ions in the Rydberg

j65P1=2ð1=2Þi state as a function of the ion separation R0. The total

angular momentum projection of the two ion is 1, i.e.,

mJ
(1) ? mJ

(2) = 1. The vdW interactions for the ions in other Zeeman

states (different projection quantum number mJ
(1) ? mJ

(2) but same

n and J) are virtually indistinguishable on the scale displayed in the

figure. b DD interaction (as function of R0) between ions in MW-

dressed Rydberg states. The MW field preserves the magnetic

quantum number in the j65P1=2ðm1=2Þi-j65S1=2ðm1=2Þi transition

(mJ = ±1/2). The dressed state (see the main text) are well defined

as long as the mixing of Rydberg states of different mJ by the DD

interaction is negligible, which is guaranteed by the strong MW

driving. The data displayed in the panel are in this strong MW-driving

regime. The parameters used are XMW ¼ 2p	 400 MHz; DS ¼ 2p	
136:074 MHz and DP ¼ 2p	 293:957 MHz. These parameters also

result in a vanishing polarizability of the dressed Rydberg j�i state.

c DD interaction as a function of R0 in the electronic pair state j � �i.
The solid curve is the full calculation, and the dashed one displays the

approximate result given by Eq. (18). Both curves are undistinguish-

able on the scale used in the figure. See text for details.
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When neglecting the phonon dynamics, the adiabatic

unitary evolution of the qubit states under the Hamiltonian

(19) can be calculated analytically [17]. Using the two-ion

state basis fjEEi; jDEi; jEDi; jDDig, one finds that it

implements the following phase rotation:

Ugate ¼

10 0 0

0 ei/DE 0 0

0 0 ei/DE 0

0 0 0 eið/entþ2/DEÞ

0

B

B

@

1

C

C

A

ð20Þ

Here, the entangling phase is given by /ent = /DD - 2/DE

where /DD ¼
R s

0
EDDdt and /DE ¼

R s
0

EDEdt are the

accumulated phase of the jDDi and jDEi state,

respectively [17]. The adiabatic energies of the

instantaneous eigen states are

EDD ¼
1

2
d0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
0 þ 2X2

�

q

� �

; ð21Þ

EDE ¼
1

2
d� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
� þ X2

�

q

� �

; ð22Þ

with d0 ¼ d� � X2
�=ð4d� þ 2C3ð�Þ=R3

0Þ. The controlled

phase gate is realized after removing the trivial phase /DE

and /ED (via single qubit operation). Ideally, the gate

realizes an entangling phase /ent = p that can be achieved

by optimizing the laser parameter set fX0;D0; sg. One

example of such optimal phase evolution is illustrated in

Fig. 4a.

Let us now take into account, the phonon dynamics

according to Hamiltonian Eq. (19). To get a qualitative

idea about the effect of the phonons, we investigate an

idealized situation where we calculate the time evolution of

the initial state jDDi � j0i in which both ions are in the

electronic state, jDi and the CM phonon mode is not

populated. In Fig. 4b, we display the time evolution of the

populations of the electronic ion-pair states during the

application of the gate laser pulse. We find that the popu-

lation pinit of the initial state jDDi � j0i slightly deviates

from the probability to remain in the state jDDi, which is

obtained by tracing out the CM phonons. The same

behavior is found for other pair states, which indicates that

there is a slight population in the phonon states during the

laser pulse. The magnitude of this phonon excitation is

controlled by the trap frequency and can be reduced to an

arbitrary degree if the confinement strength is increased.

Let us briefly discuss further gate errors caused by the

spontaneous decay of ions from the Rydberg state. For

n = n0 = 65, the lifetime of the MW-dressed j�i state is

(a)

(b)

Fig. 3 a Level scheme used for implementing the two-qubit phase

gate. jDi and jEi form the logical states of the qubit, and the states jDi
and j�i are coupled by a laser field with time-dependent detuning and

Rabi frequency profile. b Laser pulse shape. Temporal variation of the

Rabi frequency (dashed line) and detuning (solid line). The param-

eters are X0 ¼ 2p	 0:5 MHz; D0 ¼ 2p	 0:639 MHz and s = 60 ls

(a)

(b)

Fig. 4 a Phase evolution of different ion-pair states. The parameters

are chosen such that after the application of the laser pulse the

entangling phase is /ent = p. b Excitation probability of certain ion-

pair states during the laser pulse when starting from the state

jDDi � j0i. By tracing out the CM phonon states (the maximal CM

phonon number used in the simulation is 5), we obtain the probability

pDD of the state jDDi; pD� of the state jD�i and pDD of the state

j � �i. The probability of remaining in the initial state is pinit. The

parameters used for calculating the data are: The interaction energy

C3(-)/R0
3 = 2p 9 2.5 MHz, xz = 2p 9 1 MHz and Lamb–Dicke

parameter g = 0.5. The remaining parameters are given in the

caption of Fig. 3
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s0 & 132 ls. The corresponding loss from the pair states

jD�i and j � Di can be estimated by Ploss � ð2=s0Þ 	
R s

0
pD�ðtÞdt � 0:052 with pD-(t) being the excitation prob-

ability in the state jD�i. This loss can be further reduced

by increasing the gate speed and considering even higher

Rydberg states with longer lifetimes.

4 Conclusions and outlook

In conclusion, we have studied the implementation of a

two-qubit phase gate with trapped ions, which relies on the

dipolar interaction between ionic Rydberg states. We have

discussed in detail a number of technical difficulties which

highlight central differences with respect to the imple-

mentation of similar gates among neutral atoms and

showed that they can be in principle overcome by utilizing

MW-dressed Rydberg states. Based on these dressed states,

we have briefly discussed the implementation of a con-

trolled two-qubit phase gate and given a first account on the

effect of the electron–phonon coupling on the gate

dynamics. In the future, it will be interesting to extend our

analysis to larger ion crystals with thermal phonon states,

in order to assess the usefulness of dipolar interactions for

achieving a scalable ion trap quantum computer.
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