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Abstract Versatile methods for the manipulation of

individual quantum systems, such as confined particles,

have become central elements in current developments in

precision spectroscopy, frequency standards, quantum

information processing, quantum simulation, and alike. For

atomic and some subatomic particles, both neutral and

charged, a precise control of magnetic fields is essential. In

this paper, we discuss possibilities for the creation of

specific magnetic field configurations which find applica-

tion in these areas. In particular, we pursue the idea of a

magnetic bottle which can be switched on and off by

transition between the normal and the superconducting

phase of a suitable material in cryogenic environments, for

example, in trap experiments in moderate magnetic fields.

Methods for a fine-tuning of the magnetic field and its

linear and quadratic components in a trap are presented

together with possible applications.

1 Introduction

Traps for charged particles, in particular Paul- and Penning

traps [1–3], find application within precision spectroscopy

from the radio-frequency to the X-ray regime of photon

energies, within quantum state preparation, quantum sim-

ulation and possibly quantum computation, within anti-

particle and anti-matter studies, and within experiments

with non-neutral plasmas including Coulomb ion crystals.

They provide techniques for particle confinement and

cooling of the particle motion and hence are ideal tools for

precision studies on long time scales. They also provide

numerous manipulation techniques where the confining

fields are used to create a specific influence on the confined

particles which interrogates the properties of interest or

creates desired states.

Overviews of trap principles, realisations, and applica-

tions have been given in [1–3]. Of fundamental importance

for many applications is well-defined confinement, detailed

knowledge of the ion motion in the trap, and in many cases

motional cooling, which is true both for single-ion exper-

iments and confined ion clouds or plasmas. Corresponding

treatments for Penning traps have, for example, been given

in [4–6] and are based on homogeneous magnetic fields.

Also for neutral atoms, magnetic fields, sometimes in

combination with optical fields, represent an important

experimental ingredient for confining, cooling, and

manipulating atomic quantum systems. One prominent

example for exciting applications is given by the realisation

and investigation of Bose-Einstein condensates [7–9] and

quantum-degenerate fermionic matter in dilute atomic

gases [10]. A large variety of trap configurations, based on

inhomogeneous magnetic fields, are used, including the

magneto-optical trap (MOT) [11], a workhorse in many

current experiments, conservative magnetic traps for pure

magnetic confinement [12, 13], and integrated and minia-

turised trap configurations, typically summarised as ‘atom

chips’ [14–17].

Figure 1 gives an impression of applications of

(switchable) magnetic bottles, in Penning traps (left), in
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planar trap arrays with individual switching by a heating

laser (centre), and in optical dipole traps where a

(switchable) magnetic bottle can be superimposed to the

optical configuration. In this paper, we present a class of

methods based on the temporal control of specific magnetic

field configurations which deviate from the homogeneous

case and discuss experimental possibilities connected with

those.

2 Applications and benefits of field gradients

and magnetic bottles

Magnetic field gradients find numerous applications, for

example, in magnetic mirrors [18], magnetic bottle spec-

trometers [19, 20], or Zeeman slowers [21, 22]. In con-

nection with traps, the shaping of fields by introduction of

gradients has two main aspects. One is that in a position-

dependent field, we may choose the absolute value of the

field seen by the particles according to positioning. In the

presence of a field gradient, a shift of the position will

result in a change of the absolute value of the magnetic

field at the position of the ion and hence changes the value

of the Zeeman splitting of spectral lines and so forth, which

finds application, for example, in (Zeeman-tuned) level-

crossing spectroscopy [23–29], magneto-optical traps [11],

and individual addressing of trapped particles via a posi-

tion-dependent magnetic field [30], particularly in quantum

logic with confined particles [31].

The other important aspect is the geometry of the field

itself which can give rise to desired effects, for example,

magnetic gradient forces on dipoles [32] as used in time

orbiting potential (TOP) traps [33], in Ioffe-Pritchard traps

[13], and various magnetic microtraps [14–17]. Quadratic

distortions of the magnetic field in the shape of a so-called

‘magnetic bottle’ are valuable to Penning-trap experiments,

for example, when the continuous Stern-Gerlach effect [34]

is used for measurements of magnetic moments of unbound

electrons [35, 36], unbound protons and antiprotons [37],

and bound electrons in highly charged ions [38–44], or

when defined couplings amongst oscillatory degrees of

freedom in the Penning trap are used for spectroscopic

purposes [45, 46]. Nested Penning traps [47] can benefit

from introduced magnetic field gradients, regarding, for

example, Penning-Ioffe traps as used in antihydrogen

research [48].

In the following, we will discuss the generation, mea-

surement, and application of magnetic field gradients and

in particular magnetic bottles to experiments with confined

particles and pursue the idea of a switchable magnetic

bottle.

3 Magnetic bottles

We will speak of a magnetic bottle in terms of a field

configuration with a quadratic component of the form

Bðz; qÞ ¼ B2

2z2 � q2

2
ez � qzeq

� �
ð1Þ

where ez is the axial symmetry axis and eq is the radial unit

vector. The parameter B2 is a measure of the bottle strength

as defined in the expansion of the absolute value of the

magnetic field near the bottle centre

Bzðz; qÞ ¼ B0 � 2B1zþ B2 z2 � 1

2
q2

� �
þ . . . ð2Þ

where B0 is the homogeneous part of the field and B1

describes a gradient along ez.

Such a field configuration is, e.g. produced by a material

of certain radially symmetric geometry when its magneti-

sation is different from that of its surroundings. For the

sake of an analytical calculation, we assume this material

to be an annular disc, i.e. a torus of rectangular cross

section, with inner radius r1, outer radius r2, and a thick-

ness of 2a in an external homogeneous magnetic field (see

also Fig. 1, left), as they are used in several experiments

[38–44]. For simplicity, we will speak of a ‘disc’ from here

on. In principle, the geometry may be chosen differently;

however, a mathematical description then becomes tedious,

see for example [49]. This would not change the validity of

the arguments to follow.

First, we are interested in the magnetic field contribu-

tions in the disc centre (z = q = 0). They can be calculated

by use of Maxwell’s equations with the scalar magnetic

potential U given by DU ¼ r �M, where M is the mag-

netisation which we assume to be homogeneous throughout

the disc and equal to M0. The scalar magnetic potential

written in terms of the magnetic surface charge density

2a z=0
r1

r2

=0

SWITCHING LASER

SUPERCONDUCTOR

B z

Fig. 1 Application examples for (switchable) magnetic bottles in

particle traps. Left cylindrical Penning trap with the ring electrode

forming a magnetic bottle. Centre array of planar Penning traps on a

substrate with locally switchable magnetic bottle(s). Right Optical

dipole trap for neutral atoms with magnetic bottle
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rM ¼ n �M on the z-axis is thus given by the integral over

the closed surface S [50]

UðzÞ ¼
I
S

rM

jx� x0j da0 ð3Þ

which for our homogeneously magnetised disc is

M0

Z2p

0

Zr2

r1

q0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞ2 þ q02

q � q0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ aÞ2 þ q02

q d/0dq0: ð4Þ

Defining for convenience v
ð1;2Þ
� ¼ ððz� aÞ2 þ r2

ð1;2ÞÞ
1=2; this

integration results in

UðzÞ ¼ 2M0 vð2Þ� � vð1Þ� � v
ð2Þ
þ þ v

ð1Þ
þ

� �
: ð5Þ

The magnetic field on the axis is given as the

corresponding derivative of the magnetic potential, i.e.

HzðzÞ ¼ dU=dz such that

HzðzÞ ¼ 2pM0

z� a

vð2Þ�
� z� a

vð1Þ�
� zþ a

v
ð2Þ
þ
þ zþ a

v
ð1Þ
þ

 !
: ð6Þ

Defining further wð1;2Þ ¼ða2 þ r2
ð1;2ÞÞ

1=2; using that in

vacuum we have B = l0H, and performing a series

expansion of the square roots yields the value of the

contribution of the disc to the homogeneous field in the

disc centre (z = q = 0) to be

DB0 ¼
l0M0

2

2a

w2
1

� 2a

w2
2

� �
¼ l0M0

2

2a

a2 þ r2
1

� 2a

a2 þ r2
2

� �
:

ð7Þ

The linear gradient B1 is zero in the disc centre due to the

symmetry of the field. The quadratic contribution (bottle

strength) is found to be

B2 ¼
l0M0

2

3

w1

� a

w2
1

þ a3

w4
1

� �
þ 3

w2

a

w2
2

� a3

w4
2

� �� �
; ð8Þ

which can be simplified to

B2 ¼
3l0M0

2

2ar2
1

ða2 þ r2
1Þ

5=2
� 2ar2

2

ða2 þ r2
2Þ

5=2

 !
: ð9Þ

Corresponding off-centre solutions will be presented in

Sect. 4.1.3.

Assuming a given M0, the maximum of B2 for the

annular disc geometry is reached when r2 � r1 and the

ratio a/r1 is chosen such that the Legendre polynomial

P4ðcos bÞ ¼ 35=8 cos4 b� 30=8 cos2 bþ 3=8 evaluated at

b ¼ tan�1ða=r1Þ vanishes, see the discussion in [4]. This

puts up the condition a/r1 & 0.577 for annular discs.

Slightly higher values of B2 can be reached for geometries

which more closely follow the conditions imposed by the

behaviour of P4, for details see again [4].

For the following, it is useful to visualise the resulting

magnetic field lines. Concerning such a disc configuration

and an external homogeneous magnetic field, we wish to

distinguish four cases:

• case 1: a ferromagnetic disc in an external magnetic

field

• case 2: a disc is made superconducting within an

already existing external magnetic field

• case 3: a magnetic field is established when a flux-free

superconducting disc is already present

• case 4: a flux-pervaded superconducting disc as in case

2 after the external magnetic field is removed again

Figure 2 gives a qualitative picture of the field configu-

rations in these cases. The field configurations have been

simulated by use of the FEMM (Finite Element Method

Magnetics) software package [51] and the artist’s impres-

sion in Fig. 2 is a quantitative exaggeration to make the

effects visible to the eye. We now discuss these cases in

more detail.

3.1 Ferromagnetic bottle (case 1)

A magnetic bottle can be produced by a ferromagnetic

annular disc which distorts the otherwise homogeneous

magnetic field B0 it is placed in. The strength of a magnetic

bottle is given by its geometry and by its actual magneti-

sation in the external field, see Eq. (9). Many experiments

which feature such bottles [38–44] are performed in

superconducting magnets of several Tesla strength, in this

case the actual magnetisation M0 is usually identical to the

saturation magnetisation Ms \ B0/l0 of the material. In the

field line picture, the magnetisation distribution of the disc

distorts the external field such that field lines are attracted

into the ferromagnetic material from the outside and from

CASE 1 CASE 2

CASE 3 CASE 4

Fig. 2 Schematic of the magnetic field configurations in cases 1–4,

see text. The annular disc has been cut in half for better visibility
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the inside of the annular disc (see also Fig. 2), i.e. the field

strength in the centre (z = q = 0) is smaller than B0 by the

amount DB0 given in Eq. (7). Typical materials for disc

electrodes to form a strong magnetic bottle come from the

Nickel, Cobalt, Iron, CoFe, SmCo, NdFeB, and AlNiCo

families. The saturation field strengths l0Ms of specific

high permeability iron alloys such as Hisat50 are as high as

2.44 T. Using specialised geometries, magnetic bottles B2

of up to about 400 mT/mm2 have been achieved [52–55].

To illustrate this number, note that an axial particle shift by

one millimetre changes the magnetic field seen by the

particle by about one Tesla.

3.2 Superconducting bottle (case 2)

Instead of a ferromagnet, the disc material may be chosen

to be a superconductor. In principle, it acts like a perfect

diamagnet and, however, has additional features. Initial

experiments to form a magnetic bottle from a supercon-

ducting current loop have been successful to create variable

field gradients up to B2 = 2 lT/mm2 [56, 57] and, how-

ever, have not been pursued further to experimental

application. In its superconducting phase, the Meissner-

Ochsenfeld effect [58] provides that the interior of the

superconducting material is field-free and hence distorts

the outer magnetic field to form a magnetic bottle similar to

the ferromagnet and of opposite sign, however, and limited

strength as will be discussed below. Other than for the

ferromagnetic disc from case 1 (as discussed in Sect. 3.1),

for such a superconducting bottle we need to distinguish

the three cases 2, 3, and 4 from above:

The external magnetic field penetrates the whole

arrangement without any noteworthy distortion as long as

the disc is normal-conducting. When it is cooled below its

critical temperature, the disc material expels the field from

it, but the bore of the annulus still has magnetic flux passing

through, albeit distorted in the shape of a magnetic bottle

(case 2), see also Fig. 2. This case is inverse to the ferro-

magnetic case (case 1) in the sense that field lines concen-

trate towards the central axis. It is possible to ‘trap’

magnetic field lines when, e.g. a circular disc is cooled

radially from the outside to the inside and gradually

becomes superconducting from the outside to the inside

(‘circle of frost’). Then, all field lines, which initially pen-

etrated the whole disc, are forced into the non-supercon-

ducting centre. If this centre is well-defined, for example, by

different choice of material, the field shape and strength in

this centre are well-defined as well, and it is possible to

produce magnetic fields up to the critical field strength (see

below) even in the absence of an outer magnet, simply by

‘compression’ of the Earth’s magnetic field.

When the disc is superconducting before the external

field is switched on, magnetic flux is expelled from the

entire annular disc including the bore (case 3), see also

Fig. 2. This is a consequence of the fact that while in the

superconducting state, the flux through the whole super-

conductor area cannot change since persistent currents in

its outer surface shield the interior from the external flux

exactly. This is true up to the point when residually

penetrating fields (see Sect. 3.3) exceed the critical field

strength of the superconductor. For a given field, this

determines the diameter of the inner disc region which

stays superconducting. Figure 3 shows results from a

FEMM [51] simulation, where the magnetic field strength

directly above the disc’s outer surface (indicated in the

inset of Fig. 3) has been calculated in a given homoge-

neous magnetic field B0 and for a given geometry. For a

disc thickness of 2a = 0.92 mm (the disc in [38–44]), the

field exaggeration factor g (actual field strength directly

above the surface measured in units of the ambient field

strength B0) is plotted as a function of the outer disc radius

r2. Note that the choice of r1 does not change these values.

As can be seen, already for moderate disc geometries, the

exaggeration factor may reach values much above 1, such

that outer parts of the disc lose superconductivity if the

external field B0 is chosen larger or of the order of Bc/g
where Bc is the (lower) critical field strength of the

superconductor at the given temperature, as discussed

below. The induced persistent currents that maintain the

magnetic flux within the superconductor represent a mag-

netic moment l which in presence of an outer magnetic

field gradient rB leads to a force l � rB. Simplifying the

disc to a current loop of radius R and picking a one-

dimensional gradient in z-direction, the force Fz induced by

OUTER
EDGES

Fig. 3 Magnetic field exaggeration factors g as a function of the

outer disc radius r2 according to a FEMM simulation of case 3, the

outer ring edges under discussion are marked in the inset (for details

see text). Exponential saturation curves have been fit to guide the eye.

They converge towards gmin = 3.2 and gmax = 10.4, respectively.

The error bars reflect the finite resolution of the simulation
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an outer magnetic field gradient qB0 / qz can be estimated

by

Fz �
2pR3B0

l0

oB0

oz
ð10Þ

which for R = 10 mm at a field of B0 = 1 T and a gradient

of qB0/ qz = 1 T/m would be 5 N. For an annulus in a field

with a gradient, the real situation is more complicated, but

the order of magnitude of the force remains true. This force

can either be seen as mechanical stress on immovable parts

or as a means to exert a force, e.g. to remotely operate a

mechanical switch or perform another motion in high

magnetic field at low temperatures simply by heating or not

heating, e.g. with a laser. In a homogeneous outer magnetic

field (as assumed so far), however, this effect does not

occur as the gradient is zero.

When the external field is switched off while the

superconducting disc is flux-pervaded as in case 2, this

results in magnetic flux trapping and the disc maintains the

bottle field forever even in the absence of an external field

(case 4). This may prove valuable to experiments which

need a local magnetic bottle, but are otherwise sensitive to

magnetic fields. One can hence ‘load’ the bottle initially

and then remove the outer field for the experiment to be

performed. This is also an ideal tool to create arrays of

permanent magnetic micro-bottles of identical strength,

some of which can then individually be switched off again

by short heating laser irradiation (as e.g. depicted in Fig. 1)

and will remain switched off even after cooling back. This

allows to manufacture complicated arrangements of planar

(micro-)traps with and without magnetic bottles and may

find application in quantum information processing.

3.3 Minimum dimensions

In terms of a minimum possible size, the creation of a

bottle from a superconductor is limited by finite values of

the residual field penetration depth and of the coherence

length. The London effect [59, 60] allows a certain non-

vanishing magnetic field penetration into the supercon-

ductor. The penetrating magnetic field strength decays

exponentially with the depth d according to

BðdÞ ¼ B0 exp � d

kL

� �
ð11Þ

with a London penetration depth kL on the scale of several

tens of nanometres (e.g. 39 nm for pure niobium, 37 nm

for lead [61]). The same length scale is valid for the

coherence length in typical superconductors which defines

the smallest region in which superconductivity can be

achieved. For example, this length is 38 nm for niobium

and 83 nm for lead [61]. Hence, the minimum size of well-

defined arrangements is limited to micrometres and above,

which does not restrict any of the applications to be dis-

cussed. The same is true for limits set by magnetic flux

quantisation. The magnetic flux is quantised by nature [61,

62]; however, for structures of the present sizes, this

quantisation can be ignored due to the smallness of the

quantum U ¼ hc=2e � 2� 10�15 Tm2 [61].

3.4 Switching superconductivity on and off

Coming back to the case of a superconductor in an existing

outer field (case 2, which experimentally may be more

prominent than the cases in which the outer field is swit-

ched), when the superconductor is slightly heated above its

critical temperature, it loses superconductivity and thus the

field distortion vanishes, i.e. the magnetic bottle is switched

off. This process can be reversed back and forth within a

short time and for an unlimited number of cycles.

Type-I superconductors like lead, vanadium, and tanta-

lum have critical temperatures slightly above typical

cryogenic temperatures like that of liquid helium and may

thus be interesting for applications. Their critical field

strengths are limited to somewhat below 100 mT, see

Table 1. Also type-II superconductors like niobium are

interesting for our purposes. They provide a complete

Meissner effect up to a critical magnetic field strength Bc1.

Above this field strength, the Meissner effect is incomplete

(‘Shubnikov phase’ [60]). Magnetic flux pinning by artifi-

cial material imperfections (doping) may help to shift the

limits beyond Bc1, but this needs further study. Above a

second critical field strength of Bc2, superconductivity is

lost completely. Generally, the lower critical field strength

depends on the actual temperature like [60]

Bc1ðTÞ � Bc1ð0Þ 1� T

Tc

� �2
 !

; ð12Þ

where the empirically found exponent for pure niobium is

2.13 instead of 2 [63]. The upper critical field strength has a

temperature dependence given by [64]

Bc2ðTÞ � Bc2ð0Þ 1� T

Tc

� �2
 !

1þ T

Tc

� �2
 !�1

: ð13Þ

Table 1 Critical magnetic field strength of several relevant super-

conductors. Values are taken from [60, 63, 64]

Superconductor Bc1 (T = 0) Bc2 (T = 0) Tc (B = 0)

Pb 81 mT 7.2 K

V 102 mT 5.3 K

Ta 83 mT 4.5 K

NbTi 35 mT 10.3 T 9.3 K

Nb3Sn 19 mT 24.5 T 18 K

Nb 180 mT 410 mT 9.25 K
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While the value of Bc2 can reach many Tesla, the lower

critical field strength is typically only several tens to hun-

dreds of mT. Table 1 lists the critical field strengths for

several relevant superconductors.

Pure niobium has a critical field-free temperature of

Tc(B = 0) of 9.25 K [63] which is lowered in the presence

of a magnetic field according to [60]

TcðB0Þ � Tcð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B0

Bc

� �s
: ð14Þ

For example, at an ambient temperature of T = 4.2 K, the

Meissner effect in pure niobium is complete up to a mag-

netic field strength of about 142 mT. Hence, by choice of

the applied magnetic field strength B0 close to this value,

the critical temperature Tc(B0) is close to the given ambient

temperature of 4.2 K. It is thus possible to shift the critical

temperature Tc(B0) arbitrarily close to the ambient tem-

perature, such that deliberate heating to break the super-

conducting state (bottle ‘off’) can be achieved with

arbitrarily small amounts of energy. The same argument

can be turned around such that a variation of the magnetic

field strength at a fixed temperature can be used to switch

the bottle on and off.

It is advantageous for this application that the heat

capacity particularly of metals is very small at cryogenic

temperatures, for pure niobium at 4.2 K it is around 300 lJ/

g-1K-1 [65]. Let us look at an example: when a disc of pure

niobium with a weight of 10 g at 4.2 K is to be heated by 100

mK to lose superconductivity, the required energy is 300 lJ,

i.e. a heating power of 10 mW (which is feasible in a typical

cryogenic setup) needs to be applied for 30 ms. When the

heating is switched off, the superconducting state is soon

restored within the cryogenic surrounding and the magnetic

bottle is switched on again. While heating is feasible, e.g.

with an electric current through an attached resistor within

short times, the cooling back to superconducting tempera-

ture may take longer, depending strongly on the details of

heat conduction and radiation in the chosen arrangement.

However, also other means of heating may be favourable

when the desired magnetic field is likely to be disturbed by

the electric current used for heating. Such alternatives

comprise heating with thermal radiation or lasers. Since

timescales for heating and re-cooling depend largely on the

total heat capacity of the superconductor, these can be made

very small when, for example, small-scale planar traps with

thin films of superconductors are considered [66, 67].

4 Magnetic field gradients

Field gradients such as linear slopes and magnetic bottles

are valuable tools for specific manipulation of confined

particles. Applications are the precise control of individual

oscillation frequencies of ions by position-dependent con-

fining fields, axial and radial positioning of particles in a

trap, tailored coupling of individual oscillatory degrees of

freedom, adjustability of Zeeman splittings in the magnetic

field (e.g. for double-resonance spectroscopy as discussed

in [68, 69]), and the so-called ‘continuous Stern-Gerlach

effect’ for the observation of spin transitions of free or

bound electrons in a magnetic bottle [1, 40].

In the following, we will speak about confined ions,

keeping in mind that the presented concepts also apply to

electrons, antiprotons, and anions when signs are changed

appropriately.

4.1 Generation of a linear field gradient

We discuss three possibilities to produce a well-defined

non-zero magnetic field gradient B1 by electromagnetic or

magnetostatic arrangements.

4.1.1 Maxwell arrangement

A pair of co-planar and coaxial loops with counter-propa-

gating currents I is a so-called ‘Maxwell configuration’,

sometimes also named ‘anti-Helmholtz configuration’.

This situation is depicted in Fig. 4. For loops with a radius

r and a separation s along the z-axis, the axial magnetic

field is given by

BðzÞ ¼ l0Ir2

2 r2 þ s
2
� z

	 
2
h i3=2

� l0Ir2

2 r2 þ s
2
þ z

	 
2
h i3=2

: ð15Þ

For z = 0 (in the symmetry centre of the arrangement), the

magnetic field B(z = 0) = 0. For reasons of symmetry, this

is also true for all even expansion terms B2; B4; . . . at

z = 0. The odd terms are given by

B1 ¼
oBðzÞ

oz
¼ 3

2
l0Ir2 s

r2 þ s2

4

� �5=2
ð16Þ

and

B3 ¼
o3BðzÞ

oz3
¼ 15

2
l0Ir2 s3 � 3sr2

r2 þ s2

4

� �9=2
: ð17Þ

The cubic term vanishes exactly if the separation s is

chosen to be s ¼ r
ffiffiffi
3
p

. In this case, all even terms are

exactly zero for all values of z, and all odd terms except B1

vanish or are of order z5 and higher and thus can be

considered negligible. This leaves a linear magnetic field

gradient B1 along the z-axis given by

B1ðz ¼ 0Þ ¼ 33=2

2 7
4

	 
5=2

Nl0I

r2
: ð18Þ
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Here, the factor N describes a Maxwell arrangement of

solenoids with N windings each. This equation is a good

approximation as long as the geometry is close to the

single-loop geometry. For a such an arrangement with

s ¼ r
ffiffiffi
3
p

, and a choice of parameters r = 30 mm, N = 100

windings at a current of I = 1 A, the resulting B1(z = 0) is

about 100 lT/mm.

4.1.2 Conical solenoids

A linear magnetic field gradient can also be produced

inside a solenoid with conical geometry along the axis of

the desired gradient. We assume a solenoid of length l,

radii r1 and r2 on the respective ends and N windings with a

current I. Let the centre of the cone be at z = r = 0 such

that the ends are at z = ±l/2 respectively, and

r0 = r(z = 0) = (r1 ? r2)/2, see Fig. 5. This geometry

defines an opening angle a given by

a ¼ tan�1ððr2 � r1Þ=lÞ. Starting with Biot-Savart’s law for

the on-axis field of N current loops

BzðzÞ ¼
INl0r2

2ðr2 þ z2Þ3=2
ð19Þ

and integrating all contributions from z = -l/2 to z = l/2

along the conical geometry given by rðzÞ ¼ r0 þ z tan a to

the on-axis field in the centre (z = 0) yields an expression

which can be expanded in terms of the opening angle a.

Neglecting higher-order contributions (since the opening

angle is assumed small), one obtains the expression

B1ðz ¼ 0Þ ¼ oBz

oz
ðz ¼ 0Þ � 12INl0l2r0 tan a

ðl2 þ 4r2
0Þ

5=2
ð20Þ

For r1 = 20 mm, l = 50 mm, N = 1,000, I = 1 A and

an opening angle of 5�, the resulting linear field gradient B1

is about 60 lT/mm. Alternatively, as far as the magnetic

field gradient on the symmetry axis and close to the centre

is concerned, one could choose a cylindrical solenoid with

a linearly changing number density of the solenoid wind-

ings. Also configurations of co-axial and co-planar current

loops with linearly increasing current as a function of axial

loop position are possible, as well as co-axial and co-planar

solenoid arrangements with same current but linearly

changing numbers of windings. However, given the tech-

nical limitations of production and alignment, a single cone

with constant winding density and only one current may be

most promising as far as the achievable field definition is

concerned.

4.1.3 Residual gradients from a magnetic bottle

The on-axis (q = 0, z = 0) magnetic field component of

the bottle at a distance of z to the ring centre is given by

BzðzÞ ¼
l0M0

2

zþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

2 þ z2
þ

p � z�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

2 þ z2
�

p
 

� zþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ z2
þ

p þ z�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ z2
�

p
!

ð22Þ

where z± = z ± a. The higher-order components of this

field distortion are given by

BðnÞðzÞ ¼
onBzðzÞ

ozn
ð22Þ

and cause linear gradients B1 = 0 and a residual magnetic

bottle B2 = 0 at positions along the central axis with

z = 0. From Eqs. (21) and (22), we obtain

B1ðzÞ ¼
oB

oz
ðzÞ ¼ � l0M0

2
G1ðzÞ ð23Þ

where G1(z) is given by

rs

z

I

I

Fig. 4 Maxwell arrangement of two circular solenoids with counter-

propagating currents

z

r2

r1

l/2

l/2

z=0

Fig. 5 Conical solenoid with an opening angle a with respect to a

cylindrical solenoid
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G1ðzÞ ¼
r2

1

r2
1 þ ðaþ zÞ2

� �3=2
� r2

1

r2
1 þ ða� zÞ2

� �3=2

þ r2
2

r2
2 þ ða� zÞ2

� �3=2
� r2

2

r2
2 þ ðaþ zÞ2

� �3=2
: ð24Þ

As discussed earlier, for z = 0 the linear gradient B1 van-

ishes as the geometry factor G1(z = 0) vanishes.

The residual magnetic bottle strength B2 at the position

z along the central axis is given by the second derivative of

B with respect to z

B2ðzÞ ¼
o2B

oz2
ðzÞ ¼ � l0M0

2
G2ðzÞ ð25Þ

where G2(z) is given by

G2ðzÞ ¼ �
3r2

1ðaþ zÞ

r2
1 þ ðaþ zÞ2

� �5=2
� 3r2

1ða� zÞ

r2
1 þ ða� zÞ2

� �5=2

þ 3r2
2ða� zÞ

r2
2 þ ða� zÞ2

� �5=2
þ 3r2

2ðaþ zÞ

r2
2 þ ðaþ zÞ2

� �5=2
: ð26Þ

For z = 0, we obtain the expression at the ring centre as

given earlier by Eq. (9). Higher-order contributions can be

obtained from further application of Eq. (22) for n = 3, 4

and so forth, these, however, are not of present interest.

The residual magnetic bottle strength B2(z = 0) at a

position along the axis is generally not negligible and is

commonly regarded as a disadvantage, since it introduces

an additional dependence of the field on the radial coor-

dinate, as can be seen in Eq. (2).

For example, in experiments for microwave spectros-

copy of electrons bound in hydrogen-like ions, a ferro-

magnetic bottle of strength B2 = 10 mT/mm2 based on a

nickel ring has been used. An initial measurement of the

magnetic moment of the electron bound in hydrogen-like

carbon 12C5? [38] was limited due to the permanent pre-

sence of a magnetic bottle to a relative accuracy of

1� 10�6. To avoid this, successor experiments have

located this part of the measurement away from the mag-

netic bottle (‘double-trap technique’) which helped to shift

the relative accuracy to 10-9 and better [39–44]. In this

case, a switchable magnetic bottle may have been desir-

able, as it would have avoided the influence of the per-

manent magnetic bottle, which has created a residual field

gradient of B1 = 60 lT/mm, a residual B2 = 4 lT/mm2

and a fourth-order contribution of B4 = 11 nT/mm4 at the

position of the precision frequency measurement,

z = 28 mm away from the ring centre along the axis.

Superconducting magnetic bottles are restricted to fields

B0 \ Bc about one order of magnitude smaller than the

ones used here; however, similar magnetic bottle strengths

B2 are possible. Ion transport between traps becomes

unnecessary and the related efforts and uncertainties [40]

are avoided. Penning-trap experiments in low magnetic

fields are mainly subject to two technical issues:

• Low magnetic fields lead to low ion oscillation

frequencies such that electronic noise, particularly 1/f-

noise, may be significant.

• Low magnetic fields require small electrostatic trapping

potentials U0 which may become subjected to surface

effects (patch effects) when voltages approach the level

of few Volts.

Hence, electronic detection of the ion motions tends to

become more difficult in low fields. This can be an issue

for experiments like the ones of Stern-Gerlach type [38–

44], but not necessarily for optical experiments like the

ones discussed in [45, 46, 68, 69].

4.2 How to measure magnetic field gradients

The value of a linear magnetic field gradient B1 and of a

magnetic bottle strength B2 (and higher orders) can be

determined by a position-dependent measurement of the

effective magnetic field strength. This can, for example, be

achieved in a measurement of the ion cyclotron frequency

xc = qB/m as a function of the axial (and/or radial) ion

position, where q is the ion charge and m is its mass.

Alternatively, the field distortion can be derived from a

position-dependent measurement of the Zeeman splitting in

a known ion or any other property that depends on the

absolute value of the magnetic field in a predictable way.

In a Penning trap, the cyclotron frequency is perturbed

by the presence of the axial trapping potential U0 which

aside from the perturbed cyclotron oscillation at x? evokes

an axial oscillation at xz and a drift motion in the

E 9 B field at x- [1, 3–5]. The common way to determine

xc is via the ‘invariance theorem’ xc
2 = x?

2 ? xz
2 ? x-

2 ,

which is robust against typical small experimental imper-

fections like tilts and ellipticities of the electrostatic fields

with respect to the magnetic field [70, 71]. In the presence

of a magnetic bottle, the invariance theorem does not

strictly hold, but there is a second-order effect of the

shifted individual frequencies which, measured by the shift

Dxþ of the perturbed cyclotron frequency, is given by

Dxc

xc

� 1þ 1

2

xþ � x�
xz

� �2
 !

Dxþ
xþ

� �2

; ð27Þ

where the shift Dxþ resulting from finite motional energies

E± and Ez in the magnetic bottle is given by

Dxþ ¼
xþ

mx2
z

B2

B0

Ez �
x2

z

x2
þ

Eþ þ 2E�

� �
: ð28Þ
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This results in Dxc=xc � 10�13 for experimental condi-

tions as typically present, e.g. in [38–42] and may hence be

ignored in these cases. It may, however, become relevant

for stronger magnetic bottles and increased experimental

accuracies which can be obtained by use of novel mea-

surement techniques [72].

To position the ion(s), the trap can be made electrically

asymmetric by an additional small voltage Ua symmetri-

cally across the trap endcaps. In a cylindrical Penning trap,

this adds a small uniform axial electric field Ez = c1Ua/2z0

close to the trap centre and shifts the centre position of the

axial oscillation by an amount Dz given by [73]

Dz ¼ d2

2z0

c1

C2

Ua

U0

; ð29Þ

where c1 and C2 are dimensionless geometry coefficients of

order unity [4, 5, 73] and d2 = z0
2/2 ? q0

2/4 is the effective

trap size resulting from its inner diameter q0 and axial size

z0. Note that a non-zero value of c1 shifts the axial

frequency xz = (qU0/md2)1/2 by an amount

Dxz

xz

¼ � 3

4

d4

z4
0

c1c3

Ua

U0

� �2

; ð30Þ

where c3 is a dimensionless geometry coefficient which for

common trap geometries obeys the relation c1 ? c3 & 1

[4, 73]. This shift may need to be considered when the

magnetic field strength is deduced from the measured

oscillation frequencies, depending on the desired accuracy.

The range of possible centre shifts Dz is mainly limited by

the potential asymmetry Ua giving rise to additional

anharmonicities. The leading contribution is given as a

change of the C4-coefficient [5, 73]

C4 ! C4 �
5

4
c2

3

Ua

U0

� �2

: ð31Þ

The general recipe for the calculation of such potential

influences is given in [4]. A corresponding measurement of

the magnetic bottle strength B2 for the trap in [38–42] has

been performed with single ions [40] and yielded results

for the actual B2 in good agreement with the prediction by

Eq. (9). The method can similarly be applied with different

trap geometries like planar traps [66, 67] depending on the

possibility of ion positioning.

Due to the finite motional amplitude of the ion, the result

of a field measurement is always a time-averaged value.

This is identical to the effective field at the centre of the

motion as long as only non-zero B0 and B1-terms are

present. For a non-zero term B2, the time-averaged field

will be higher if B2 [ 0 and lower if B2 \ 0 due to the

quadratic behaviour in Eq. (1). It is then necessary to cool

the ion to oscillation amplitudes much smaller than the

range of the shift. This is particularly easy with highly

charged ions due to the strong binding in the trapping

potential which allows axial amplitudes of the order of

1 lm and smaller even at liquid helium temperatures. For

optical spectroscopy, this also means that the Lamb-Dicke

regime can be reached without sophisticated cooling

methods simply by resistive cooling around liquid helium

temperature [46]. Similar measurements are possible also

with coherent ensembles of ions as long as the space charge

effect [74, 75] is negligible.

4.3 Optical transition rate measurements

An artificial electric asymmetry Ua of a trap as presented in

the previous section can be combined with a magnetic

bottle to allow a measurement of optical transition rates,

using a purely electronic measurement, i.e. without optical

detection [45]. This can find application in spectroscopy

experiments like the ones discussed in [45, 46], in [68, 69],

and in [76] and would be an interesting addition to the

Stern-Gerlach experiments of the kind [38–44] when an ion

with a suitable optical transition is considered. We assume

an ion in the centre of a magnetic bottle which is laser-

cooled along the trap axis. The light pressure shifts the ion

along the axis out of the trap centre, which in the presence

of a magnetic bottle, results in a shift of the radial oscil-

lation frequencies, and can be measured non-destructively.

An axially asymmetric trapping potential is used to restore

the ion position which is seen as a vanishing shift of the

radial oscillation frequency. This potential asymmetry

directly determines the desired value of the optical transi-

tion rate C. To see this, the shift Dz of the axial ion position

is obtained from balancing the force Fl of the laser (for

simplicity driving the transition in saturation) with the

restoring force Fe due to the electrostatic trapping poten-

tial, i.e. Fl = Fe which reads

�hDxC
2c

¼ qC2U0Dz

d2
ð32Þ

and results in

Dz ¼ �hDxCd2

2cqC2U0

; ð33Þ

where Dx is the laser detuning. This shift of the axial

position (and thus the shift of the measured radial

frequencies) can be restored if the electrostatic trapping

potential is made asymmetric by an additional voltage UA

across the endcaps which shifts the axial position by an

amount given by Eq. (29). Now we balance the two shifts

Dz from Eqs. (33) and (29) and solve for the desired optical

transition rate to get

C ¼ cqc1

�hDxz0

Ua: ð34Þ
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Comfortably, on the right-hand side, we find only constants

and well-controllable parameters. Also, Eq. (34) is inde-

pendent of the electric trapping potential U0 such that we

are free to choose the axial oscillation frequency to take a

convenient value. The obtainable precision depends mainly

on the knowledge of the trap parameters c1 and z0 and on

the knowledge and temporal stability of the voltage

asymmetry Ua. Typical relative precisions of trap geometry

parameters are on the 10-3 to 10-4 scale. By gauging with

a known ion, this can be exceeded to the extent the ion and

laser parameters allow for. Finally, a technical limit is set

by the voltage Ua which normally cannot be controlled and

known better than to some 10-6. Nonetheless, this scheme

may prove valuable, as in many situations appropriate

lasers exist but light collection and optical detection is

tedious or impossible, e.g. in the XUV and infrared

regimes. This problem is circumvented here since the

scheme is independent from optical detection.

4.4 Magnetic field control

For a number of applications, the absolute value of the

magnetic field needs to be set with high accuracy. For

applications like microwave spectroscopy of Zeeman

transitions (see for example [68, 69]), one additionally

desires the possibility to scan over a certain range of the

field strength in a fast, reproducible and uncomplicated

way. Coarse tuning of the magnetic field strength is pos-

sible with the current of the main magnet solenoids, which

typically can be done with an accuracy of much better than

one per cent. At a field strength of some Tesla, this leaves a

region of order 10 mT for fine-tuning.

Such fine-tuning may be achieved, for example, by a

small independent solenoid around the region of interest.

This can be a Helmholtz-type arrangement as depicted in

Fig. 4 with the currents applied in the same sense of

rotation. With a typical current of a few Amperes, the range

of several tens of mT can be covered with a resolution of

0.1% or better, limited by the accuracy of the current

source. Hence, the total magnetic field strength can be set

with an accuracy of the order of 10 lT. For further fine-

tuning of this value and a scan across a certain region of

field strengths, one can employ the position dependence of

the effective field strength in the presence of non-zero field

gradients B1 and/or B2 in the same sense as discussed in

Sect. 4.3 For the example of a Penning trap, the resulting

axial shift Dz is typically of the order of 1 mm/V. Com-

bining this with Eq. (2) and neglecting the minor contri-

bution from terms higher than B1 results in a voltage-

dependent magnetic field strength contribution given by

DB ¼ �B1

z0d2C1

C2U0

Ua ð35Þ

which can cover several hundreds of lT. The sign of DB

can be chosen by the sign of Ua. Assuming a typical

commercially available accuracy of 10-5 for the voltage

Ua, the corresponding accuracy of DB is of order 1 nT,

which represents a relative accuracy on the ppb level. This

is comparable to the short-term field fluctuations of a

typical superconducting magnet, to the accuracy to which

ion oscillation frequencies can be measured electronically,

and also to the natural fluctuation of the Earth’s magnetic

field within a time of about one hour [77].

Calibration of the solenoid current and electrode voltage

settings to the absolute value of the obtained magnetic field

strength can be achieved by an electronic measurement of

the cyclotron frequency of a well-known test ion like, e.g.
12C5? in that field.

Apart from applications in double-resonance [68, 69]

and radio-frequency spectroscopy [40, 45, 46], such mag-

netic field control may also be used for level-crossing

spectroscopy, which has extensively been used to investi-

gate properties of neutral atoms and singly charged ions

(including molecular ions) even before the invention of

lasers. An overview of applied techniques and performed

measurements can be found in [23, 24]. Typically, particles

are confined in gas cells or traps and a variable homoge-

neous magnetic (or electric) field is applied, see for

example [25–28]. Laser light is used to excite an electronic

transition and the corresponding fluorescence is observed

as a function of the external magnetic field strength. When

a level crossing of the observed levels with other field-

dependent levels occurs, e.g. Zeeman sublevels of the fine

or hyperfine structure, the fluorescence is increased and

thereby the corresponding value of the magnetic field is

determined. For atoms and singly charged ions, this value

is typically of order mT and can thus be readily produced

by electromagnets. Level-crossing spectroscopy allows

access to the polarisability of states and to the magnetic

dipole and electric quadrupole interaction constants as well

as to the electronic Landé-factor gJ [23, 78]. When highly

charged ions are considered, level crossings may occur for

values of the magnetic field outside of the domain of non-

superconducting magnets. It is then necessary to control

magnetic fields of order Tesla with accuracies beyond the

ppm regime and to readily perform well-defined scans over

a certain region of the field strength, as should be possible

with the methods discussed in this section.

5 Discussion

We have seen that magnetic field gradients find numerous

applications with confined particles, which is particularly

obvious for linear gradients and magnetic bottles. It

appears feasible to implement switchable magnetic bottles
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in cryogenic experiments by choice of superconductor

materials. Switching is possible on time scales much

shorter than typical confinement times, since the amount of

energy needed can be made arbitrarily small by appropriate

choice of the temperature and/or magnetic field strength.

This is even more the case when superconducting struc-

tures with small heat capacities are considered, like in

planar traps or miniature optical dipole traps. Both in the

‘on’ and ‘off’ states, the magnetic field configuration is

well-defined and the strength of the bottle does not change

other than between zero and its given value. The critical

field strengths of presently available superconductors are

small, which limits the application to low magnetic fields

of the order of hundred mT. In radio-frequency, magnetic,

or optical traps, however, this is not a limitation for particle

confinement and a switchable magnetic bottle can be

superimposed to the confining configuration. Exploiting the

specific properties of superconductors in external fields, we

have seen that it is possible to create magnetic bottles in

otherwise field-free regions by magnetic flux trapping,

allowing, e.g. complex arrangements of magnetic micro-

bottles. It has been shown that well-defined magnetic field

gradients can be produced, measured, and used for various

experimental techniques in spectroscopy such as laser-

microwave double-resonance spectroscopy [68, 69], level-

crossing spectroscopy [25–28], and microwave and radio-

frequency spectroscopy using the continuous Stern-Gerlach

effect [1, 2, 39–41]. Apart from this, they are the central

prerequisite of several trap-specific spectroscopy schemes

as have been discussed in detail in [45, 46].
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