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Abstract It is known that one of the impacts of com-

bined higher-order effects, namely the intrapulse Raman

scattering, third-order dispersion, and self-steepening, on

the plain-pulsating, erupting, and creeping soliton solu-

tions of the complex Ginzburg–Landau equation is the

change of its periodic behavior and its transformation into

fixed-shape solutions. In this work, we numerically find

the regions in the parameters space in which these solu-

tions exist. We also characterize their velocities, shapes,

and chirp.

1 Introduction

The cubic complex Ginzburg–Landau equation describes a

vast variety of phenomena from nonlinear waves to sec-

ond-order phase transitions, from superconductivity,

superfluidity, and Bose–Einstein condensation to liquid

crystals and strings in field theory [1]. In optics, this

equation describes a diversity of systems, namely laser

systems, soliton transmission lines, nonlinear cavities with

external pump, and parametric oscillators [2]. Some spe-

cial solutions of this model, such as the pulsating, erupt-

ing, and creeping solitons, were found some years ago in

numerical simulations [3, 4]. The erupting soliton was also

found experimentally, in passively mode-locked solid state

laser, where the higher-order effects might have some

influence [5]. In particular, it has been observed that third-

order dispersion can cause an asymmetry of the pulse

explosions [5], in spite of the fact that such asymmetry

can also occur in absence of higher-order effects [5, 6].

The interaction among the higher-order effects becomes

particularly important for stable femtosecond pulse gen-

eration by passively mode-locked lasers [7]. Taking into

account such higher-order effects is also useful for

understanding several nonlinear phenomena affecting the

transmission of femtosecond pulses in an optical trans-

mission line [8].

The influence of higher-order effects on pulsating,

erupting, and creeping solitons has been investigated

recently [9–16]. Tian et al. [9] observed that the effect of

the nonlinear gradient terms, i.e., the cumulated effect of

the self-steepening (SST) and intrapulse Raman scattering

(IRS), can dramatically change the periodic behavior of

such pulses. The effect of the third-order dispersion (TOD)

on the same pulses has also been analyzed in Ref. [10]. In

particular, it was found that for some values of the TOD

parameter, both the pulsating and creeping solitons can

achieve a fixed-shape. On the other hand, in Ref. [11], it

has been shown that under the influence of IRS and TOD,

the plain-pulsating and creeping solitons can lose their

pulsating behavior and be transformed in fixed-shape sol-

itons. In order to achieve this objective, the negative TOD

is more convenient for plain-pulsating solitons, whereas the

positive TOD is more adequate for creeping solitons.

Moreover, if the three higher-order effects act together, the

explosions of an erupting soliton can be drastically reduced

and even eliminated, also yielding a fixed-shape pulse [11–

16]. In this paper, we have studied numerically some

characteristics of the fixed-shape pulses that emerge from
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the pulsating, erupting, and creeping solutions of the

quintic CGLE under the influence of intrapulse IRS, SST,

and TOD.

In Sect. 2, we present the governing equation, corre-

sponding to a generalized version of the cubic-quintic

complex Ginzburg–Landau equation. The regions, in the

parameter space, where the fixed-shape solutions emerge

from the pulsating, erupting, and creeping are numerically

obtained in Sects. 3, 4, and 5, respectively. There, we also

characterize their velocities, shapes, and chirp. Finally, the

main conclusions are summarized in Sect. 6.

2 The governing equation

In this work, we will consider a generalized form of the

CGLE in order to include some higher-order effects,

namely the intrapulse IRS, the SST, and the TOD:
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The optical envelope u in Eq. (1) is a complex function

of two real variables, i.e., u ¼ uðT ; ZÞ, where T is the

retarded time in the frame moving with the pulse, and Z is

the normalized propagation distance or the cavity round-

trip number in passively mode-locked lasers. Concerning

the other parameters in Eq. (1), D is the group velocity

dispersion (GVD) coefficient, with D = ±1, depending on

whether the GVD is anomalous or normal, respectively; b
stands for spectral filtering (b[ 0); d is the linear gain or

loss coefficient; e accounts for nonlinear gain-absorption

processes; l if negative represents the saturation of the

nonlinear gain; and m if negative corresponds to the

saturation of the nonlinear refractive index. The three terms

in Eq. (2) describe the higher-order effects, where b3

accounts for the TOD, s accounts for SST, and sR is the

coefficient related to intrapulse IRS.

In order to solve numerically the generalized CGLE

given by Eqs. (1) and (2), a split-step Fourier method [17]

has been used. The numerical simulations were carried out

using a step size of 0.004 along the Z direction, and a step

size of 0.01, with 8,192 points, along the T direction.

Absorbing boundary conditions were used, as described in

Ref. [18]. The criterion for the existence of fixed-shape

pulses was constant energy along the propagation distance

or damped energy oscillations whose amplitude was just

5 % of the average value.

3 Pulsating solitons

Figure 1a represents the amplitude evolution of a CGLE

soliton, in the absence of higher-order effects

(b3 = sR = s = 0), for the following set of parameters

values: d = -0.1, b = 0.08, e = 0.66, l = -0.1, and

m = -0.1. The initial condition is an unitary amplitude

sech(T) pulse. As the pulse propagates, its shape evolves

periodically, with a period of Z & 14, and with zero

velocity. This periodic solution corresponds to the pulsat-

ing soliton found in [3].

Figure 1b illustrates the evolution of a fixed-shape (FS)

pulse, emerging from the pulsating soliton in the presence

of three higher-order effects, namely the TOD (b3 =

-0.05), the intrapulse IRS (sR = 0.01), and the SST

(s = 0.005). This solution has nonzero velocity.

In our previous work [11], we studied the impact of

TOD on pulsating solitons in the presence of the gradient

effects, (IRS and SST). Hence, if positive TOD was added,

the oscillations of amplitude are reduced. On the other

hand, if negative TOD was considered, the oscillations of

amplitude could be drastically reduced and the emerging

pulse could achieve a fixed-shape.

Figure 2a shows the region in the (b3, sR) plane in which

FS pulses, emerging from pulsating solitons, were found

numerically. In order to better complement our work, we

assumed a constant value for the SST parameter,

s = 0.005, as in our previous work [11]. For b3 and sR in

the region below the curve, the numerical solutions do not

converge to FS pulses. Our results show that FS solutions

exist for both positive and negative TOD. However, the

majority of the region area corresponds to negative TOD.

For some parameters inside the FS region, we have also

confirmed that the same fixed-shape solutions are obtained

with different initial pulse shapes and energies; however,

we noted that the convergence rate may depend on these

initial conditions.

The three circles show the locations of the three par-

ticular solutions represented in Fig. 3.

Figure 2b shows the pulse velocities, v � DT
DZ

� �
; versus

sR, (upper graph), and versus b3, (lower graph), for three

different values of b3 and sR, respectively, in the region of

existence. The upper graph shows that the pulse velocities

grow approximately linearly with sR and that they are

independent of the value of b3, (b3 = -0.1, -0.05, 0.01),

since the curves are superposed, with the same slope. In

this case, the velocity is positive, and all the pulses move

rightward, similarly to what happen to the pulse repre-

sented in Fig. 1b. The lower graph also shows that the

pulse velocities do not depend on the value of b3, i.e., it is

approximately constant for each sR value. The velocities

are higher for higher sR, (sR = 0.01, v & 0.2), (sR = 0.02,
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Fig. 1 Amplitude evolution for

a pulsating soliton, a in the

absence of higher-order effects,

(b3 = sR = s = 0), and b in the

presence of higher-order effects,

(b3 = -0.05, sR = 0.01,

s = 0.005), for the following set

of parameters values: d = -0.1,

b = 0.08, e = 0.66, l = -0.1,

and m = -0.1

Fig. 2 a Region in the parameter plane (sR, b3) in which fixed-shape

pulses, emerging from the pulsating soliton (Fig. 1a), exist (dark

region). The parameter value of the SST effect is constant

(s = 0.005). The three circles show the locations of the solutions

represented in Fig. 3. b Pulse velocities versus sR, (upper graphic),

and versus b3, (lower graphic), for three different values of b3 and sR,

respectively. (The other parameter values are as follows: d = -0.1,

b = 0.08, e = 0.66, l = -0.1, and m = -0.1)

Fig. 3 a Amplitude profile, and b frequency chirp, for s = 0.005,

b3 = -0.03 and sR = 0.01 (solid curves), b3 = -0.08 and

sR = 0.025 (dashed curves), and for b3 = 0.03 and sR = 0.02

(dashed-dotted curves). (The other parameters values are as follows:

d = -0.1, b = 0.08, e = 0.66, l = -0.1, and m = -0.1)
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v & 0.5), (sR = 0.03, v & 0.8), as should be expected

from the results shown in the upper graph.

Figure 3a shows the amplitude profiles, and Fig. 3b the

frequency chirp (minus the time derivative of the phase,

-qu/qT), for three different pulses (circles in Fig. 2a). The

three pulse amplitude profiles and their frequency chirp are

quite similar, no matter the signal and magnitude of TOD,

and of IRS. The pulse amplitude profiles resemble that of a

slightly asymmetric flattop soliton. The frequency chirp is

negative at the leading edge, attaining its minimum value

before it starts to grow linearly over the pulse central

region. After reaching its positive maximum, it decreases

to zero, at the trailing edge.

4 Erupting solitons

Figure 4a shows the amplitude evolution of a CGLE soli-

ton, in the absence of higher-order effects

(b3 = sR = s = 0), for the following set of parameter

values: d = -0.1, b = 0.125, e = 1.0, l = -0.1, and

m = -0.6, for an initial sech(T) pulse. This solution cor-

responds to the erupting soliton found in [3].

As the pulse propagates, it becomes covered with small

ripples which seem to move downward along the two

slopes of the soliton, in such a way that after a short dis-

tance, the pulse is covered with this seemingly chaotic

structure. When the ripples increase in size, the soliton

cracks into pieces, after which the pulse evolves in order to

restore its shape. This process repeats along the propaga-

tion distance, but never exactly in equal periods, and the

explosions can even become slightly asymmetric, i.e., do

not occur simultaneously on both slopes, as is illustrated in

the figure.

A different scenario can occur if the pulse propagates

under the simultaneous presence of, for example, the three

higher-order effects [11], as illustrated in Fig. 4b. In this

case, the propagation of the pulse (Fig. 4a) in the presence of

IRS (sR = 0.275), positive TOD (b3 = 0.1), and SST

(s = 0.005) does not show any explosion. The emerging

pulse is a FS solution that moves rightward with nonzero

velocity. The pulse is asymmetric, with a short and slightly

steeper leading edge, if compared with the long trailing edge.

Figure 5a shows the region, in the (b3, sR) plane in

which FS pulses, emerging from the erupting soliton, were

found numerically. We kept the SST parameter value

constant, s = 0.005, the same value assumed in [11]. The

three circles show the locations of the three particular

solutions represented in Fig. 6.

For b3 and sR in the region below the curve, the

numerical solutions do not converge to FS solutions. In this

part of the work, only positive TOD was considered.

However, FS pulses that emerge from erupting solitons can

exist for both signs of TOD [11, 12]. Also, in the case of

erupting solitons, other tests were done with different ini-

tial pulse profiles and energies and the same FS pulses were

obtained.

Figure 5a also shows that for small values of TOD

parameter (0 B b3 B 0.05), the required value of sR for FS

pulses to exist tends to increase as b3 decreases. In order to

transform an erupting pulse into FS, the required values of

sR are at least one order of magnitude higher than for the

case of the pulsating soliton.

Figure 5b shows the pulse velocities versus sR, (upper

graph), and versus b3, (lower graph), for three different

values of b3 and sR, respectively, all in the region of

existence of FS.

In the upper graph, the pulse velocities decrease

approximately linearly with sR. This behavior should be

expected, since in the presence of IRS, the erupting pulse

tends to move leftward [11, 12]. The absolute value of the

curve slope is smaller for the smaller value of b3

(b3 = 0.05) and is higher for the higher values of b3

(b3 = 0.15, 0.3), with the higher values of velocity

occurring for b3 = 0.3. These results for velocity versus sR

are in good agreement with the study made in Ref. [16].

Fig. 4 Amplitude evolution for

an erupting soliton, a in the

absence of higher-order effects,

(b3 = sR = s = 0), and b in the

presence of higher-order effects,

(b3 = 0.1, sR = 0.275,

s = 0.005), for the following set

of parameter values: d = -0.1,

b = 0.125, e = 1.0, l = -0.1,

and m = -0.6

282 S. C. V. Latas et al.

123



The lower graph illustrates the velocity dependence on

the b3 parameter, for three different values of sR. This

dependency is not linear, but quite similar, in all the con-

sidered ranges of b3. The higher values of velocity occur

for the smaller value of sR. For b3. 0:12; the velocity

grows slowly, as should be expected since in the presence

of TOD, the pulse moves rightward. For 0:12. b3. 0:18;

an unexpected decrease occurs, since the values of SST and

IRS are constant. This unexpected behavior could be, for

instance, due to some pulse complexity. In fact, a previous

work [14] has shown that on the stationary regime, the

erupting soliton can exhibit a dual-pulse spectrum. For

b3J0:18; the pulse velocities grow approximately linearly

with b3, for the three different values of sR, almost at the

same rate, since the curves slopes are similar. However, the

velocities are more negative for the higher values of sR.

Figure 6 shows three examples of pulses amplitude

profiles (a) and its frequency chirp (b) (circles in Fig. 5a).

The peaks of each of the three pulses have been centered in

T = 0, 10, 20, respectively, for convenience. As it may be

observed, the pulses profiles are asymmetric, and the peak

amplitudes have almost the same value (2.5 B ampli-

tude B 2.6). The pulse shapes have some differences

between them. In the left pulse (dashed-dotted curve,

b3 = 0.05, sR = 0.25), the leading edge is longer than the

trailing edge and exhibits a small peak structure. These

ripples grow and decay, without the occurrence of any

explosion. Both central and right pulses have similar

Fig. 5 a Region in the parameter plane (sR, b3) in which fixed-shape

pulses, emerging from the erupting soliton (Fig. 4a), exist (dark

area). The parameter value of the SST effect is constant (s = 0.005).

The three circles show the locations of the three particular solutions

represented in Fig. 6. b Pulse velocities versus sR, (upper graph), and

versus b3, (lower graph), for three different values of b3 and sR,

respectively. (The other parameters values are as follows: d = -0.1,

b = 0.125, e = 1.0, l = -0.1, and m = -0.6.)

Fig. 6 a Amplitude profile, and b frequency chirp, for s = 0.005,

b3 = 0.3 and sR = 0.8 (solid curves), b3 = 0.15 and sR = 0.4

(dashed curves), and for b3 = 0.05 and sR = 0.25 (dashed-dotted

curves). (The other parameters values are as follows: d = -0.1,

b = 0.125, e = 1.0, l = -0.1, and m = -0.6)
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profiles (dashed and solid curves, respectively). The lead-

ing edges are steeper than the trailing edges, in both cases.

However, the right pulse (solid curve) exhibits a steep

leading edge and some small humps in the pulse top. In

general, the small peaks appear in connection with high

values of b3. More details about these pulse top humps can

be found in Ref. [16].

From Fig. 6b (upper graph), it can be seen that the fre-

quency chirp is positive at the leading edge and negative at

the trailing edge, whereas it has a negative slope over the

pulse central region. The oscillations of the frequency chirp

(T \ -2) appear in combination with amplitude oscillations

on the leading edge. On the other hand, the small oscillations

of the frequency chirp (T [ 5) are connected with very

small-amplitude oscillations on the trailing edge. For central

and right pulses (dashed and solid curves, respectively), the

frequency chirp profiles are similar to the latter except for the

absence of oscillations. It may also be observed that the pulse

with a steeper leading edge (solid curve) has a more abrupt

change of chirp across the pulse central region, almost ver-

tical, possibly associated with the pulse top humps.

5 Creeping solitons

Graph in Fig. 7a represents the amplitude evolution of a

CGLE soliton, in the absence of higher-order effects

(b3 = sR = s = 0), for the following set of parameters

values: d = -0.1, b = 0.101, e = 1.3, l = -0.3, and

m = -0.101, for an initial sech(T) pulse. This solution

corresponds to the creeping soliton found in [3]. This pulse

is a rectangular pulse with two fronts and a sink (due to

energy loss) at the top. The two fronts pulsate back and

forth relative to the sink asymmetrically at the two sides

[3]. The shape of the creeping soliton resembles the shape

of a composite pulse [19, 20].

Figure 7b shows the amplitude evolution for the creep-

ing soliton in the simultaneous presence of the three

higher-order effects (b3 = 0.006, sR = 0.005, s = 0.002).

The emerging pulse is a FS pulse that moves rightward

with constant velocity, and also, the FS pulse resembles an

asymmetric composite pulse.

Figure 8a shows the region, in the (b3, sR) plane where

FS pulses, emerging from the creeping soliton, were found

numerically. We kept the SST parameter value constant,

s = 0.002, the same value assumed in [11]. The three

circles show the parameter location of the three particular

solutions represented in Fig. 9. This region (dark area) is a

small and very irregular area, if compared with the region

of existence of FS pulses emerging from pulsating and

erupting solitons. The region and its border were estimated

considering as initial condition, an unitary sech(T) pulse.

The convergence to a FS pulse usually occurs at least in

350 normalized distances, but in some cases, they are

observable only after 500 normalized distances. Moreover,

in some limited cases, the FS was achieved outside the

region of existence but at discrete sites, i.e., it was not

possible to find them in the surrounding area of the (b3, sR)

plane. And finally, tests carried out with other initial con-

ditions, particularly with different energies and peak

powers, showed, in some cases, a convergence to a dif-

ferent FS, with the same peak power, maybe due to the

pulse complexity. Eventually, the pulse itself could be

faced as a bound state of a plain pulse and fronts, and a

coexistence of different pulses may occur as in the CGLE

[19]. More research is necessary.

Figure 8b show the pulse velocities versus sR, (upper

graph), for b3 = 0.01 and s = 0.002, in the region of

existence of FS. The circles refer to particular simulations.

The pulse velocities grow approximately linearly with sR,

up to sR & 0.0035 (A). At that point, a velocity disconti-

nuity occurs, and the pulses move leftward, until sR reaches

0.006 (B). Between A and B, the velocity still grows

approximately linearly with sR, at the same rate as before.

For sR beyond point B, the pulse moves rightward and the

velocity still grows approximately linearly with sR, at the

same rate. This unexpected behavior may again be attrib-

uted to pulse complexity.

Fig. 7 Amplitude evolution for

a creeping soliton, a in the

absence of higher-order effects,

(b3 = sR = s = 0), and b in the

presence of higher-order effects,

(b3 = 0.006, sR = 0.005,

s = 0.002), for the following set

of parameters values: d = -0.1,

b = 0.101, e = 1.3, l = -0.3,

and m = -0.101
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Figure 9 shows three examples of pulse amplitude pro-

files (a) and their frequency chirp profiles (b) (circles in

Fig. 8a). The pulse on the right (dashed curve) was cen-

tered in T = 10, for convenience. The two pulses on the

left (solid and dashed-dotted curves) seem to be a mirror

image of the pulse on the right. The amplitude profile of

these two pulses resembles that of an asymmetric com-

posite pulse. In the leading edge, the pulses are similar to a

narrow composite pulse, whereas in the trailing edge, the

pulses are similar to a wide composite pulse [19]. For the

pulse represented in the right, the composition is reversed.

The frequency chirp of the two pulses on the left is nega-

tive at the leading edge and attains its minimum value

before it starts to grow linearly over the pulse central

region. After reaching a positive maximum, it decreases to

a local minimum, increases a little bit to a local maximum,

and after that decreases, in a nonlinear way, to zero, at the

trailing edge. Note that the irregular evolution of the chirp,

at the leading and trailing edges, is associated with

amplitude fluctuations in the same edges. The chirp profile

represented by the dashed line is a point reflection image of

the chirp profiles of the other pulses.

6 Conclusions

We have studied numerically some of the characteristics of

the fixed-shape solutions that emerge from the pulsating,

erupting, and creeping solitons whenever higher-order

effects, namely the intrapulse IRS, SST, and TOD, are

added to the quintic CGLE.

We have found regions of existence of FS solitons in the

(sR, b3) parameter space. We also studied the dependence

of velocities on the IRS parameter, for FS pulses in those

Fig. 8 a Region in the parameter plane (sR, b3) in which fixed-shape

pulses, emerging from the creeping soliton (Fig. 7a), exist. The

parameter value of the SST effect is constant (s = 0.002). The three

circles show the location of the three particular solutions represented

in Fig. 6. b Pulse velocities versus sR, for b3 = 0.01 and s = 0.002.

The circles refer to particular simulations. (The other parameters

values are: d = -0.1, b = 0.101, e = 1.3, l = -0.3, and m =

-0.101)

Fig. 9 a Amplitude profile, and b frequency chirp, for s = 0.002,

b3 = 0.0075 and sR = 0.005 (solid curves), b3 = 0.01 and sR = 0.01

(dashed curves), and for b3 = 0.02 and sR = 0 (dashed-dotted

curves). (The other parameters values are as follows: d = -0.1,

b = 0.101, e = 1.3, l = -0.3, and m = -0.101)
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regions. In general, the pulse velocity absolute values grow

linearly with the Raman parameter. On the other hand, the

dependence of the FS pulse velocities on TOD exhibits a

different behavior for pulsating or erupting solitons. The

pulse shapes and chirps were also presented. In general, in

the region of their existence, the shapes of the emerging FS

pulses do not change significantly when emerging from

pulsating solitons, whereas they can exhibit different pro-

files if emerging from erupting or creeping solitons.
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