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Abstract The possibility is studied to develop a

straightforward analytical approach to the determination of

the optical properties of liquid turbid media having for-

ward-peaked scattering indicatrices. The approach is based

on investigating the in-depth behavior of the radius and the

axial intensity of a laser radiation beam propagating

through the turbid medium. Based on the small-angle

approximation, the detected forward-propagating light

power spatial distribution, at relatively small or large

optical depths along the beam axis, is obtained asymptot-

ically in analytical form allowing one to derive relatively

simple expressions of the extinction, reduced-scattering

and absorption coefficients and the anisotropy factor of the

medium through the characteristics of the propagating light

beam. Preliminary experiments have also been performed,

using Intralipid dilutions of different relatively low con-

centrations and measuring the cross-sectional radial dis-

tribution of the detected light power at different depths

along the beam axis. The corresponding on-axis detected

light power profiles have been measured independently as

well. The experimental results are consistent with the

analytical expressions obtained that allow one to estimate

the optical coefficients and the anisotropy factor of the

investigated media on the basis of the measured beam

characteristics. The values obtained are near those pre-

dicted by other researchers.

1 Introduction

Optical tomography is a hopeful contemporary investiga-

tion area that is expected to provide effective noninvasive

and ionizing-radiation-free methods and instruments for

early diagnosis of serious human tissue diseases. The

investigations on numerous variants of optical tomography

being developed at present (e.g., [1–6] and references

therein) require the knowledge of the optical properties of

tissues and tissue-like phantoms and the laws governing the

radiative transfer within the investigated biological and

mimic objects. The main optical characteristics specifying

the normal and abnormal tissues and conditioning the

radiative transfer are the integral scattering as and reduced

scattering ars = as(1 - g) coefficients, the absorption

coefficient aa, the total extinction coefficient at = as ? aa,

the scattering indicatrix, and the anisotropy factor g, also

called the g-factor [7, 8]. The coefficients as, aa, and at of a

medium of interest describe, respectively, the scattered,

absorbed, and scattered plus absorbed light powers per unit

volume of the medium, per unit incident light irradiance.

They characterize as well the attenuation, due to scattering,

absorption or both, respectively, of a light beam of unit

power, per unit length along the direction of its propagation

[8]. The scattering indicatrix iðs~; s~0Þ describes the proba-

bility that a photon propagating in direction s~0 is scattered

at angle h, within unit solid angle around the direction s~; s~0

and s~ are dimensionless directional unit vectors, and

h ¼ arccosðs~� s~0Þ. The scattering anisotropy factor g is

defined as the average cosine of the scattering angle h,

obtained by using the indicatrix of the medium (see below).

The mean free path (MFP) of a photon in a scattering and

absorbing medium, before undergoing scattering or

absorption, is MFP = at
-1. For optical radiation with
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wavelength k from 400 to 1,100 nm, the biological tissues

are turbid media characterized by strong scattering and

considerably weaker absorption. That is, at & as � aa.

Then, the mean free path of a photon in tissue will be

determined in practice by as, i.e., MFP = at
-1 & as

-1. The

value of the MFP in this case is usually less than 1 mm,

which means that the multiple scattering effects will be

essential and the radiative transfer equation should be used

for quantitative analysis.

The experimental investigation in vivo of the optical

properties of tissues may involve tedious and complicated

procedures. Therefore, tissue-simulating phantoms are fre-

quently used for the development, testing, and calibration of

novel diagnostic methods and instruments. Certainly, the

optical and structural properties of the mimic objects should

be like those of tissues. There exist various methods for

measuring the optical characteristics of turbid media [9, 10,

and references therein]. However, despite the efforts of

achieving high measurement accuracy, certain dispersion

exists of the results obtained [9, 10]. Therefore, it is expe-

dient to develop various approaches to investigating the

radiative transfer in turbid media and mutually validating

the experimental results about their optical properties.

A purpose of the present study is to obtain and develop

general analytical expressions and procedures for the

determination of the optical parameters of a turbid medium

through the characteristics of a forward-propagating laser

radiation beam. The information characteristics of interest

in this case are the on-axis detected power of the forward-

propagating light and the beam radius at different depths

along the beam axis. So, one would be able to estimate in a

straightforward way the optical properties of the medium on

the basis of experimental data about the spatial distribution

of the detected forward-propagating light power. We sup-

pose that such an aim is attainable by using the potential of

the so-called small-angle approach to solving the radiative

transfer equation [7, 11–18]. In this case, comparatively

simple approximate analytical description can be achieved,

for relatively large or small ‘‘optical depths,’’ of the trans-

verse radial distribution and the axial in-depth profile of the

detected power of the laser radiation beam. The asymptotic

approaches, developed and analyzed in detail here, to

deriving analytical expressions of the transversal radial

distribution and the axial in-depth profile of the detected

light power have first been briefly reported in Refs. [19–21].

Initial formulae have also been obtained and used there for

estimation of the optical constants of turbid media.

The small-angle approximation should be valid to deter-

minate depths along the beam axis, depending on the tur-

bidity of the medium under investigation and the

‘‘sharpness’’ of its scattering indicatrix. Therefore, the esti-

mation of the in-depth range of validity of this approximation

is also an important problem to be considered in the work.

Another important aim of the work is to study experi-

mentally the propagation of laser beams through homoge-

neous liquid tissue-like media and to determine the cross-

sectional radial distribution of the detected forward-prop-

agating light power at different depths along the beam axis

as well as the on-axis detected light power profile. In this

way, the optical characteristics of the investigated media

and the ranges of validity of the small-angle approximation

could be estimated experimentally. The early experiments

of this type, performed using a progressively upgraded

experimental arrangement, are described in [19–21]. It is

shown there, in particular, that the total extinction coeffi-

cient of relatively low-turbidity media increases linearly

with the concentration of scatterers in the medium. Similar

in a sense, thorough and precise experiments have been

conducted in works [22, 23], where the experimental

results are interpreted on the basis of results obtained by

Monte Carlo simulations and few scattering and diffusion

theoretical approaches.

In the following Sect. 2, analytical expressions are

derived in small-angle approximation of the spatial distri-

bution of the detected forward-propagating laser light

power for Gaussian and Henyey–Greenstein scattering in-

dicatrices. It is shown as well that the expressions obtained

allow one in principle to readily estimate at, aa, as, ars, and

g, through experimentally measurable quantities, the on-

axis detected light power, and the e-1 radius of the for-

ward-propagating light beam at different depths along the

beam axis. The experimental setup and procedures are

described in Sect. 3. The analysis of the experimental data,

from point of view of the analytical results obtained in

Sect. 2, is conducted in Sect. 4. In this section, estimation is

also performed of the medium characteristics at, ars, and

g for both the indicatrices of concern here. A comparison is

conducted and discussed as well of the results obtained

here with results obtained by other researchers. At last, in

Sect. 5, the main conclusions are summarized following

from the results obtained in the work. Mathematical details

concerning the case of Henyey–Greenstein indicatrix and

the validity limits of the small-angle approach are given in

Appendices 1 and 2, respectively. Also, an analytical

expression of the forward-propagating light radiance is

derived and discussed for completeness in Appendix 3.

2 Expressions of the detected forward-propagating

laser light power in small-angle approximation

2.1 Stationary radiative transfer equation and detected

forward-propagating light power

For a stationary monochromatic radiation field inside a

homogeneous and isotropic turbid medium without internal
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light sources, the radiative transfer equation has the form

[7]:

s~� gradIðr~; s~Þ ¼ �atIðr~; s~Þ þ as

Z

4p

iðs~; s~0ÞIðr~; s~0Þdx0; ð1Þ

where Iðr~; s~Þ (W m-2 sr-1) is the radiance depending in

general on the vector coordinate r~¼ fx; y; zg and the

directional unit vector s ¼ fsx; sy; szgðs2
x þ s2

y þ s2
z ¼ 1Þ;

iðs~; s~0Þ is the scattering indicatrix from a direction s~0 to the

direction s~,
R

4p iðs~; s~0Þdx0 ¼ 1, and dx0 is a differential

element of solid angle; and at = aa ? as (m-1) is the total

extinction (linear attenuation) coefficient in the medium,

consisting of two components, the integral scattering

coefficient as and the absorption coefficient aa.

The turbid medium of interest is assumed to occupy the

semi-infinite space z [ 0; the axis 0z of the coordinate

frame is chosen to coincide with that of the incident laser

beam, and the plane z = 0 is identified with the internal

entry wall of the experimental plexiglass container filled

with liquid turbid medium (Fig. 1). The task to be solved

here based on Eq. (1) is first to determine analytically the

radiance Iðr~; s~Þ of the forward-propagating laser light (for

sz [ 0) inside the medium. Then, an analytical expression

should be obtained of the light power

Jðq~; zÞ ¼
Z

A

dq~0
Z

2pþ

dxRðq~� q~0; s~ÞIðq~0; z; s~Þ ð2Þ

detected by a circular optical receiver oriented antiparallel

to the beam axis; q~¼ fx; yg, q~0 ¼ fx0; y0g, Rðq~; s~Þ is the

receiver directional and aperture-transmittance diagram,

A is the receiver aperture area, and 2p? denotes integration

over the positive unit hemisphere. A way of analyzing the

radiation transport Eq. (1), concerning the propagation of

optical beams in turbid tissue-like media with sharply

forward-directed indicatrices [24–26], is the so-called

small-angle approximation or approximation of large par-

ticles [7, 11–18]. It allows one, under some reasonable

assumptions, to obtain analytical results for Iðr~; s~Þ and

finally Jðq~; zÞ ensuring relatively simple determination of

the optical properties of a medium of interest.

2.2 Scattering indicatrices

We shall suppose here that the indicatrices of the investi-

gated turbid media have one of the following Gaussian or

Henyey–Greenstein [7, 27] forms:

iGðs~; s~0Þ ffi iG js~? � s~0?j
� �

¼ ½2pð1� gÞ��1
exp½� s~? � s~0?

� �2
=2ð1� gÞ�; ð3Þ

iHGðs~; s~0Þ ¼ iHGðlÞ ¼ ½ð1� g2Þ=4p�ð1þ g2 � 2glÞ�3=2;

ð4Þ

where s~? ¼ fsx; syg; s~0? ¼ fs0x; s0yg; |�| denotes module,

l ¼ s~� s~0 ¼ cos h, h ffi js~� s~0j ffi js~? � s~0?j\1 is scatter-

ing angle, and the anisotropy factor g ¼ gHG ¼R
4p l iHGðlÞdx0 in the latter case, and g ¼ gG ffiR1
0
½1� s2

?=2� iGðs~?Þds~? in the former case; s? ¼ js~?j; and

ds~? ¼ dsxdsy:

2.3 Incident laser beam

The incident laser beam is considered as a collimated

Gaussian beam with field amplitude distribution

uðq~; z ¼ 0Þ ¼ u0 expð�q2=2w2Þ; ð5Þ

where w is the initial beam radius, and u0 = u(q = 0) is

the initial on-axis field amplitude. The corresponding

radiance distribution I0ðq~; s~?Þ ¼ Iðq~; z ¼ 0; s~?Þ is then

given by [7]

I0ðq~; s~?Þ ¼ ðk2w2I0=pÞ exp �q2=w2 � k2w2s2
?

� �
; ð6Þ

where k = 2p/k, I0 = |u0|2, q ¼ jq~j, and Pt = pw2I0 is the

total beam power. The radial cross-sectional intensity dis-

tribution of the laser beam used in the experiments has a

Gaussian shape on the average [20].

Fig. 1 Block-scheme of the

experimental setup
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2.4 Directional and aperture-transmittance diagram

of the receiver

It is expedient to assume that the receiving optical system

has a Gaussian aperture-transmittance and directional dia-

gram with characteristic aperture radius E and angle of

view c, such that

Rðq~; s~?Þ ¼ T exp �q2=E2 � s2
?=c

2
� �

; ð7Þ

where T \ 1 is the central normal-incidence aperture

transmittance, at q = 0 and s? ¼ 0. As it is shown in [20],

the experimentally determined directional diagram of the

optical fiber employed in the measurements is well

approximated by a Gaussian curve.

2.5 General expression of Jðq~; zÞ in small-angle

approximation

The small-angle approach to solve Eq. (1) is described in

detail in [7]. It is based on the possibility of simplifying the

radiative transfer equation and using Fourier-transforma-

tion technique to obtain the following general result for

Iðr~; s~Þ:

Iðr~; s~Þ ¼ Iðq~; z; s~?Þ

¼ ð2pÞ�4

Zþ1

�1

Z
dj~dq~expð�jj~ � q~� js~? � q~Þ~I0ðj~; q~þ j~zÞKðz; j~; q~Þ;

ð8Þ

where

~I0ðj~; q~Þ ¼
Zþ1

�1

Z
dq~ds~?I0ðq~; s~?Þ expðjj~ � q~þ js~? � q~Þ;

ð8aÞ

Kðz; j~; q~Þ ¼ expf�at

Zz

0

dz0½1�W0
~iðq~þ j~z0Þ�g; ð8bÞ

~iðq~Þ ¼
Zþ1

�1

ds~?iðs~?Þ expðjs~? � q~Þ; ð8cÞ

W0 ¼ as=at may be considered as ‘‘unity volume albedo’’

of the turbid medium, j is imaginary unity, j~¼
fjx; jyg; q~¼ fqx; qyg; dj~¼ djxdjy; and dq~¼ dqxdqy.

The analytical expression of Iðr~; s~Þ for Gaussian indicatrix

and developed scattering (asz� 1), derived using Eqs. (3),

(6), and (8–8c), is given and briefly discussed for com-

pleteness in Appendix 3.

On the basis of Eqs. (2) and (6–8b), we obtain the fol-

lowing expression of Jðq~; zÞ:

Jðq~; zÞ ¼ 16p2
� ��1

TPt c
2E2

Zþ1

�1

Z
dj~ dq~

� exp

(
�jj~ � q~� j2

4
w2 þ E2 þ z2

k2w2

� �

� q2

4

1

k2w2
þ c2

� �
� q~ � j~z

2k2 w2

�at

Zz

0

dz0½1�W0
~iðq~þ j~z0Þ�

)
;

ð9Þ

j2 ¼ jj~j2 ¼ j2
x þ j2

y ; and q2 ¼ jq~j2 ¼ q2
x þ q2

y :

2.6 Expressions of Jðq~; zÞ and estimation of the optical

parameters for Gaussian indicatrix

According to Eqs. (3) and (8c), for Gaussian indicatrix

~iðq~þ j~z0Þ ¼ exp½�ð1� gÞðq~þ j~z0Þ2=2�: ð10aÞ

With this expression of ~i, the integrals in Eq. (9) can be

estimated analytically for large and small optical depths

asz, when asz � 1 (region of developed scattering) and

asz is of the order of unity or smaller (region of low scat-

tering), respectively. The depths z within the developed-

scattering region exceed essentially the mean free path of

the photon, MFP & as
-1, between two successive acts of

scattering, in practice. That is, z � as
-1. Consequently, the

light undergone multiple scattering is prevailing in this

region. At the same time, the depths z within the low-

scattering region are less or of the order of as
-1. Therefore,

in this region, the forward-propagating light consists

mainly of two components, unscattered and single-scat-

tered light.

In the region of developed scattering (asz � 1), the

integrand contributes to the integral only within a narrow

domain of values of q~ and j~z0, where jq~þ j~z0j � 1. Out of

this domain, the integrand function sharply tends to zero

with the increase of q and/or j~z0. Then, the indicatrix

spectrum ~iðq~þ j~z0Þ in Eq. (9) may be expanded in expo-

nential series, retaining only the first two terms, that is,

~iðq~þ j~z0Þ ¼ 1� ð1� gÞðq~þ j~z0Þ2=2: ð10bÞ

Using this asymptotic representation of ~i in Eq. (9), after

straightforward but cumbersome integration, we obtain that

Jðq~; zÞ ¼ PtTE2c2Q�1ðvz; z; cÞ expf�q2=w2ðzÞ � aazg;
ð11Þ

where v = ars,

wðzÞ ¼ ½Qðvz; z; cÞ=Pðvz; z; cÞ�1=2 ð12Þ

is the e-1 half-width of the beam at a distance z,
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Qðvz; z; cÞ ¼ ðw2 þ E2Þðk�2w�2 þ c2 þ 2vzÞ þ z2c2k�2w�2

þ ð2=3Þvz3ðk�2w�2 þ c2Þ þ ð1=3Þv2z4

ffi ð1=3Þvz3ð2c2 þ vzÞ;
ð13Þ

and

Pðvz; z; cÞ ¼ ½Qðvz; z; cÞ þ v2z4�=ðw2 þ E2 þ 2vz3=3Þ
ffi c2 þ 2vz:

ð14Þ

The approximate expressions of Q and P are obtained,

taking into account that k�2w�2 � 1; and ðz=kwÞ �
w;E � z: When the angle of view of the receiver is small

enough, such that c2 � vz, from Eqs. (11)–(14), we obtain

Jðq~; zÞ ¼ 3PtTE2c2=v2
� �

z�4 exp �q2=w2ðzÞ � aaz
� �

;

ð15Þ

and

w2ðzÞ ffi vz3=6: ð16Þ

In the opposite case c2 � vzð Þ;

Jðq~; zÞ ¼ ð3PtTE2=2vÞz�3 expð�q2=w2ðzÞ � aazÞ; ð17Þ

and

w2ðzÞ ffi ð2=3Þvz3: ð18Þ

Expressions (17) and (18) are in accordance with the

corresponding results obtained, e.g., in Ref. [14], using

other, small-angle diffusion approach and other definition

of w2ðzÞ, and implying a maximum angle of acceptance

c ¼ p=2. From Eqs. (16) and (18), for the reduced-

scattering coefficient ars = v, we obtain, respectively,

ars ¼ v ¼ 6w2ðzÞ=z3; ð19Þ

in the former case, and

ars ¼ 3w2ðzÞ=ð2z3Þ; ð20Þ

in the latter case. Further, on the basis of Eqs. (15) and

(17), we can deduce that the value of the absorption

coefficient aa is obtainable, respectively, by exponential or

log-linear fit of the dependences

y1ðzÞ ¼ Jð0~; zÞz4; ð21Þ

in the first case, and

y2ðzÞ ¼ Jð0~; zÞz3; ð22Þ

in the second case, where Jð0~; zÞ is the on-axis detected

light power. Thus, the values of the characteristic optical

parameters ars and aa could be estimated in principle by

measuring the on-axis and the transversal radial

distributions of the detected light power. Then, provided

that the extinction coefficient at is known, the values of the

scattering coefficient and the anisotropy factor are

obtainable, respectively, as

as ¼ at � aa; g ¼ 1� ars=as: ð23Þ

The value of at is determinable by measuring and

investigating the behavior of Jð0~; zÞ in the low-scattering

region.

In the region of low scattering, where asz is less or of

the order of unity, in Eq. (9), the exponential factor con-

taining integral of ~iðq~þ j~z0Þ may be expanded in expo-

nential series, retaining only the first two terms. Then,

having Eq. (10a) in mind, for the detected power Jð0~; zÞ,
we obtain

Jð0~; zÞ ¼ Jbð0~; zÞ expð�atzÞ½1þ dðz; as;w; c; gÞ�; ð24Þ

where

Jbð0~; zÞ ¼ PtTc2E2=½ðw2 þ E2Þðk�2w�2 þ c2Þ
þ z2c2k�2w�2�

	 Jb ¼ PtTE2=ðw2 þ E2Þ ð24aÞ

is the on-axis detected power of the laser beam unperturbed

by absorption and scattering, and

is the single-scattering contribution (e.g., [28]) to

Jð0~; zÞ normalized to Jbð0~; zÞ. In Eq. (24b), as in Eq.

(24a), the terms (� k-2 w-2) describing the diffraction

divergence effects can be neglected. Then, after

dðz; as;w; c; gÞ ¼ ½16p2Jbð 0
!
; zÞ��1

TPtc
2E2as

Zz

0

dz0
Zþ1

�1

Z
d j!d q! exp � j2

4
w2 þ E2 þ z2k�2w�2 þ 2ð1� gÞz02
� 	


� q2

4
k�2w�2 þ c2 þ 2ð1� gÞ
� 	

� ð q!� j!=2Þ zk�2w�2 þ 2ð1� gÞz0
� 	�

ð24bÞ
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performing the integration and taking into account

Eq. (24a), we obtain

dðz; as; w; c; gÞ ¼ as c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw 2þE 2 Þ

2ð1� gÞ½c 2þ 2ð1� gÞ�

s

� arctg c z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� gÞ

½c 2þ 2 ð1� gÞ� ðw 2þE 2Þ

s( )
:

ð25aÞ

The condition of neglecting the single-scattering

contribution is obviously

dðz; as;w; c; gÞ � 1: ð25bÞ

This condition outlines a range of values of z, where the

detected on-axis beam power decays exponentially due to

absorption and scattering, that is [see also Eq. (24a)],

Jð0~; zÞ ¼ Jb expð�atzÞ: ð26Þ

As it is seen from relations (25a) and (25b), the extent of

this range along axis 0z should decrease with increasing the

medium turbidity (*as). It is seen as well that, using

Eq. (26), the value of the extinction coefficient at can be

determined by exponential or log-linear fit of the data for

Jð0~; zÞ. Near the entrance of the laser beam into the turbid

medium, in the limit z ? 0 or in practice when

z\ðw2 þ E2Þ1=2
, from Eq. (25a), we obtain

lim
z!0

dðz; as;w; c; gÞ ¼ aszc
2=½c2 þ 2ð1� gÞ�: ð27Þ

At narrow angle of view of the optical detector, when

c2 � 2ð1� gÞ, according to Eq. (27), we have

lim
z!0

dðz; as;w; c; gÞ ffi aszc
2=½2ð1� gÞ� � asz: ð27aÞ

In this case, Eq. (26) is in power down to the boundary

z = 0 of the turbid medium. In the opposite case, when

c2 � 2ð1� gÞ, Eq. (27) is reduced to the form:

lim
z!0

dðz; as;w; c; gÞ ffi asz: ð27bÞ

Then, instead of Eq. (24), we obtain:

Jð0~; zÞ ¼ Jb expð�atzÞð1þ aszÞ 	 Jb exp½�ðat � asÞz�
¼ Jb expð�aazÞ:

ð28Þ

In this case, near the boundary the scattered light is entirely

captured by the detector, and the decay with z of the

detected light power is due to absorption alone. Similar

slow-decay effect along with the exponential fall-off with

decay constant at [Eq. (26)], at a maximum angle of

acceptance c ¼ p=2, has also been found analytically and

numerically, using different small-angle approaches [12,

14], and by simulations [22]. In the present work, the

small-angle approximation allowed us to obtain analyti-

cally the true exponential fall-off laws Jð0~; zÞ obeys, Eqs.

(26) and (28), the corresponding decay constants, at and aa,

and the corresponding conditions and ranges of validity,

that is, the relations (25a, 25b), and c2 � 2ð1� gÞ, in the

former case, and c2 � 2ð1� gÞ and z\ðw2 þ E2Þ1=2
, in

the latter case.

2.7 Expressions of Jðq~; zÞ and estimation of the optical

parameters for Henyey–Greenstein indicatrix

The Henyey–Greenstein indicatrix is a more realistic

characteristic of a scattering medium, taking into account

the backscattering in the medium. The details about the

derivation of the expressions of Jðq~; zÞ in this case are

given in Appendix 1. The result obtained for the region of

developed scattering (asz � 1) is similar to that for

Gaussian indicatrix [Eq. (11)]. The difference is that here

v ¼ arsð1þ gÞ=3 ¼ asð1� g2Þ=3 ð29Þ

and consequently

g ¼ ð1� 3v=asÞ1=2; ð30Þ
ars ¼ asð1� gÞ; ð31Þ

and

as ¼ at � aa: ð32Þ

As in the case of Gaussian indicatrix, the values of aa

and at are determined by exponential or log-linear least-

square fitting based on Eqs. (21) and (26), respectively.

2.8 Validity limits of the small-angle approach

The depths of validity zV of the small-angle approach,

along the laser-beam axis in the investigated medium, are

estimated (in Appendix 2) to equal about several transport

lengths, at strongly prevailing forward-peaked scattering.

That is, zV * Mars
-1 where M is a number exceeding but of

the order of unity. It is supposed as well there that when the

deal of the backward scattering is noticeable, the depth of

validity should be larger.

3 Experimental setup and procedures

The experimental arrangement for measuring the spatial

distribution of the forward-propagating light power is

represented in Fig. 1. A laser diode is used as near-infrared

(NIR) light source emitting a nearly collimated continuous-

wave optical beam of about 1 mm radius and wavelength

k = 850 nm. The total emitted light power can be varied

from 20 to 50 mW. The turbid media investigated
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experimentally are prepared by dilution of different

amounts (from 17.5 to 433 ml) of Intralipid (IL)-20 %

(Fresenius Kabi AB, Sweden) in 14 l distilled water placed

in a plexiglass cubical container with 25 cm long sides.

Correspondingly, the IL concentration varies from 0.0284

to 0.6822 %. We consider as IL concentration the volume

fraction of soybean oil and egg lecithin forming the scat-

tering submicron capsules in the dilution [29]. The volume

fraction of these substances is 22.74 %, in stock Intralipid-

20 %, and 11.952 %, in stock Intralipid-10 %.

The axis of the incident laser beam is perpendicular to

the ‘‘frontal’’ wall of the container. It may be considered as

oriented forward, in the direction of incidence of the beam,

so coinciding with the axis 0z of the coordinate frame. As

was mentioned above, the plane z = 0 is identified with the

internal entry wall of the container filled with liquid turbid

medium (see Fig. 1). The spatial distribution of the for-

ward-propagating light power inside the container is mea-

sured by using a scanning optical fiber of 0.1 mm core

diameter. The fiber is oriented antiparallel to the beam axis

and is connected with an optical radiometer Rk-5100

(Laser precision corp., USA) with a RqP-546 silicon probe

in external locking regime, 14 bits ADC, and a computer

for appropriate data processing. The noise equivalent

power (NEP) of the radiometer is 2 9 10-12 W. Its aver-

aging (low-pass filtering) time constant sa may be set to

0.1, 1, or 10 s. To effectively damp down the signal fluc-

tuations, the value of sa is chosen to be 1 s. By a transversal

radial scan of the fiber at each stepwise-varied depth of

interest and 400–800 averaged measurements per point, a

set of data is obtained (the distribution of the received light

power that is proportional to the light intensity) for any of

the prepared turbid media. The corresponding on-axis

detected power distributions are measured once more

independently as well, by a longitudinal scan of the fiber

along the beam axis. The scanning procedure in three

mutually perpendicular (x, y, and z) directions is imple-

mented by using three long travel stages Thorlabs LTS

300/M ensuring a minimum sampling step of 4 lm. The

cross-sectional intensity distribution of the laser beam and

the receiver directional diagram of the fiber in air have also

been measured and shown to have approximately Gaussian

shape [20]. The angle of view of the fiber in air is estimated

to be c *12�, i.e., 0.21 rad. Then, its numerical aperture

NA ¼ sin c
 0:21. If the diluted Intralipid emulsion is

considered as watery medium with refractive index

n * 1.34, the angle of view of the fiber in these media will

be c ¼ arcsinðNA=nÞ
 9�, i.e., 0.16 rad. Thus, a spatial

gating of the detected light power is realized within a solid

angle of acceptance X = pc2 = 0.08 sr and aperture area

A = pE2 = 7.85 9 10-9 m2, where E = 0.05 mm.

The errors in the determination of the optical properties

of turbid media, using the approach under consideration,

may be conditioned by different factors. The experiments

are conducted in dark laboratory at practically entirely

removed influence of stray light. NEP of the radiometer is

negligible as compared to the least measured power values

of practical interest for the experiment. Then, the signal

fluctuations should be due mainly to the signal-conditioned

shot noise [30], to digitizing noise, to laser power fluctu-

ations, and to fluctuations of the detected light power

caused by the random walk of the particles within the

scattering volume. The random motion of the scatterers

leads to spatio-temporal fluctuations of their density and

size distribution and so to fluctuations of the optical coef-

ficients and the scattered power itself [see, e.g., Eq. (9)].

The analytical estimation of the intensity of the detected

power fluctuations would require a separate profound

investigation. In the experiments, using low-pass filtering

with 1 s time constant and 400 measurements per point, the

relative root-mean-square (rms) signal fluctuations are

reduced to levels of 2–3 %, in the low-scattering zone, and

0.6–0.7 %, in the developed-scattering zone.

4 Analysis of the experimental results

and determination of the optical properties

of Intralipid dilutions

In-depth profiles of the on-axis measured forward-propa-

gating light power at different IL concentrations are given

in Fig. 2. As it is seen in the figure, each of these profiles

exhibits a well-distinguishable initial exponential fall-off

region, where JðzÞ=Jðzþ DzÞ ¼ expðatDzÞ ¼ const; Dz is

the sampling step. This is in fact the region of prevailing

single-scattering, where the attenuation of the on-axis

detected signal (proportional to the on-axis beam intensity)

obeys the law of Bouguer–Lambert–Beer (BLB) [8, 30],
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Fig. 2 In-depth profiles of the on-axis detected forward-propagating

light power for different Intralipid concentrations
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with decay constant at [see Eq. (26)]. The extent of this

region decreases with the increase of the IL concentration

[see also Eq. (25a) and inequality (25b)]. The exponential

decay of the on-axis detected light power allows one to

determine the extinction coefficient at by using loglinear

least-squares fit. The estimated values of at, depending on

the IL concentration, are given in Table 1 and represented

graphically in Fig. 3. The relative error in the determina-

tion of at varies (increases) from 0.26 %, at IL concen-

tration of 0.08, to 1.2 % at 0.68 % IL concentration. At

0.28 % IL concentration, the error is 0.4 %. The polyno-

mial fit of the points given in this figure reveals a quadratic

dependence of at on the IL concentration C defined in %.

The fitting curve obtained without fixing its intercept (that

is, at at zero IL concentration) has an intercept equal to

0.022 cm-1 with twice larger standard error. The published

data for the absorption coefficient of pure water at

k = 850 nm (e.g., [31, 32]) vary from 0.041 to

0.043 cm-1. The fitting curve shown in Fig. 3 is obtained

at a fixed intercept of 0.043 cm-1. For relatively low IL

concentrations, including and below 0.2 %, the dependence

of at on C is linear, which is in agreement with the results

obtained formerly by us and other researchers [19–23].

There are no direct data in the literature about the extinc-

tion and scattering coefficients at and as of IL dilutions at

k = 850 nm. Nevertheless, by using different available

empirical formulae and plots of at and as as functions of k
for some low-concentration dilutions of IL-10 % or IL-

20 %, one may evaluate them at k = 850 nm. Then, it is

not difficult by linear extrapolation to estimate at or as of

different-percentage Intralipid dilutions. For instance, the

extinction coefficient of *0.6–0.7 % IL dilution is esti-

mated on the basis of results from different works [26, 29,

33, 34] to be from 9 to 14 cm-1. The result we have

obtained here for 0.682 % IL dilution from IL-20 % is

at = 11.6 cm-1. As a more concrete example, according to

an empiric (substantiated by Mie-theory calculations) for-

mula of van Staveren et al. [29] concerning the scattering

coefficient of dilutions of Intralipid-10 %, as(k)

(mL-1Lmm-1) = 0.016 k-2.4 (lm) for 400 nm \ k\

1,000 nm, the value of as of 0.01195 % IL dilution at

k = 850 nm is 0.0236 mm-1. Then, for 0.6 % IL con-

centration, we obtain as = 1.185 mm-1 or 11.85 cm-1.

The results calculated in the same way for all the con-

centrations we have considered are given for comparison in

Table 1 and Fig. 3. They are nearly below our results for at

at lower concentrations.

The nonlinear behavior of at, seen in Fig. 3, is not

unknown, at all. Similar dependence has been observed in

[23], where the turbid media under investigation are low-

concentration dilutions of milk. It is possibly the initial

phase of the nonlinear dependence of as on C at higher IL

concentrations (up to 25 %) observed by Zaccanti et al.

[35] and analyzed and described theoretically by Giusto

et al. [36]. Obviously, some more theoretical and experi-

mental efforts are necessary here to understand entirely this

problem. One should take into account the fact that above a

characteristic concentration of the scattering substance, the

distance between the neighboring effective scatterers
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Fig. 3 Experimentally estimated values of the extinction coefficient

at (circles) and values of as according to van Staveren et al. [29]

(squares) versus Intralipid concentration. The solid curve represents a

polynomial fit of the at data, with fixed intercept at(0) = 0.043 cm-1,

revealing a quadratic dependence

Table 1 Experimentally

estimated values of the

extinction coefficient for

different Intralipid

concentrations compared with

the values of as according to van

Staveren et al. [29]

Intralipid (%) at (cm-1) as [29] (cm-1) Intralipid (%) at (cm-1) as [29] (cm-1)

0.028 0.690 0.561 0.284 5.890 5.613

0.057 1.250 1.122 0.313 6.470 6.174

0.085 1.935 1.684 0.341 6.860 6.735

0.114 2.500 2.245 0.398 7.730 7.858

0.142 3.150 2.863 0.455 8.651 8.980

0.171 3.728 3.368 0.512 9.350 10.103

0.199 4.350 3.929 0.568 10.240 11.225

0.227 4.920 4.490 0.682 11.600 13.470

0.256 5.410 5.051
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becomes comparable with their sizes and smaller than the

wavelength k of the laser radiation. For instance, as it is

estimated in [29], at k = 1,100 nm, the most effective

Intralipid-10 % scatterers weighted in water (of 250 nm

diameter) have less than 3–4 particle-diameter (and one

wavelength) spacing for IL-10 % concentrations above

4 %. In our notation here, this is a concentration

C = 0.48 %. Then, the different scatterers would not act

independently, but collectively, as packs of particles. The

collective scattering effects should lead to violation of both

the linearity of as (C) and the constancy of the g-factor (see

also in [8, 35–40]).

As it is shown in Fig. 4, the transversal radial dis-

tributions of the detected power within the exponential

fall-off (BLB) region (see also Fig. 2) consist of two

components, the decaying unscattered light beam seen as

a central peak and a pedestal of scattered light. A similar

picture has been observed in [22]. The experimentally

determined ratio h(z) = J(0,z)/J(0,z ? Dz) is shown in

Fig. 5 as a function of z compared with the z-dependent

quantities h1(z) = [(z ? Dz)/z]3 and h2(z) = [(z ?

Dz)/z]4. It is seen that at each IL concentration, there

exists an initial interval of depths where the function

h(z) fluctuates around a constant level *exp(atDz). The

extent of this interval decreases with increasing the IL

concentration and outlines the BLB region. For con-

centrations of 0.08, 0.28, and 0.57 %, the BLB-zone

depths DBLB are seen to be *5 cm = 3.45 MFP,

0.7 cm = 4.12 MFP, and 0.3 cm = 3.08 MFP, respec-

tively. The mean free paths of the photon MFP = at
-1

and the quantities exp(atDz) are evaluated by using the

data for at given in Table 1. As a whole, the results

illustrated in Fig. 5 are in accordance with those illus-

trated in Figs. 2 and 4.

With increasing the depths in the dilutions, after passing

a transient zone from low to developed scattering, a region

of developed scattering is attained, where asz � 1, the

light beam consists of practically entirely scattered light,

and the on-axis detected light power falls as z-4 rather than

z-3. Such developed-scattering regions are seen in Fig. 5,

where, beginning from a depth Dds depending on the IL

concentration, the curve h(z) becomes nearly coincident

with h2(z). It is only slightly shifted above because in

fact J 0; zð Þ=J 0; zþ Dzð Þ ffi zþ Dzð Þ=z½ �4exp aaDzð Þ [see

Eq. (15)]. According to Fig. 5, for IL concentrations of

0.08, 0.28, and 0.57 %, the developed-scattering zones

begin, respectively, at depths Dds of *9, 3.5, and 3 cm.

The corresponding optical depths atz (&asz), evaluated by

using the data for at given in Table 1, are *12, 20, and 30.

The transverse radial distributions of the detected power

have already bell-shaped, like Gaussian forms (seen in

Figs. 4, 6, and also in [22]) whose e-1 half-width

w(z) increases with z nearly as z3/2 [Eq. (16)]. The exper-

imental determination of w(z) based on Gaussian fitting of

the transversal distribution allows one to determine the

parameter v, using the relation (16). The relative errors in
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the determination of w(z) are below 1 %. The corre-

sponding v(z) determination errors are twice larger. To

reduce the influence of additional implicit fluctuation fac-

tors, the final estimates of v are obtained as the arithmetic

mean of the results from 3 to 4 successive depths with

spacing of 0.5 or 0.4 cm within the region of developed

scattering. The rms deviations of these estimates are also

evaluated. Then, on the basis of Eqs. (19), (21), (23), (30),

and (31), at known at and negligible aa, the values of ars

and g are estimated for both Gaussian and Henyey–

Greenstein indicatrices. In practice, to obtain the estimates

of ars and g given in Table 2, instead of as, the values of at

given in Table 1 have been used. The uncertainties in the

determination of ars and g (Table 2) are evaluated by linear

error transfer. The depths z employed for estimation of ars

and g have been chosen to be consistent with the conditions

asz� 1, z [ Dds, and arsz\M [according to relation 42].

Those results for w(z) have been used as well which closely

satisfy the criterion ½wðz1Þ=wðz2Þ�2 ¼ ðz1=z2Þ3 following

from Eq. (19). The maximum-used-depth values of

arsz have been a posteriori established (at already estimated

ars) to be about 2–3 and 3–5, respectively, for Gaussian and

Henyey–Greenstein indicatrices. So, one may conditionally

assume that the corresponding depths of validity,

zV * Mars
-1, of the small-angle approximation for both the

indicatrices are determined by the values of M = 3 and 5.

Then, e.g., at IL concentrations C = 0.085 and 0.284 %,

using the data given in Table 2, we obtain that zV *15 and

5 cm, respectively. The corresponding intervals of depths

of interest, z [ [Dds,zV], are from 9 to 15 cm, at

C = 0.085 %, and from 3.5 to 5 cm, at C = 0.284 %. The

above example illustrates the tendency to narrowing and

shifting left the intervals [Dds,zV] with increasing the
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concentration C. Note as well that the estimated values of

zV *3 ars
-1 and 5ars

-1 are nearly around the lower limit, zld

*4ars
-1, of the diffusive regime of light propagation as it is

defined in Ref. [8] on the basis of comparison between

results of analytical diffusion-approach-based investiga-

tions and Monte Carlo simulations. Results for w(z) and v
and respectively for ars and g are obtainable at relatively

low IL concentration of 0.0853, 0.1137, 0.1421, and

0.2842 % (Table 2). The values obtained of the g-factor for

Gaussian and Henyey–Greenstein indicatrices are respec-

tively *0.89 and 0.82. These values differ significantly

from that, g = 0.607 for k = 850 nm, predicted by another

empiric formula of van Staveren et al. [29] for Intralipid-

10 %, g(k) = 1.1–0.58 k (lm). At the same time, the

anisotropy factor obtained here for Henyey–Greenstein

indicatrix is very near the one, g *0.79 at k = 850 nm, we

have deduced from Ref. [33], where a graphical depen-

dence of g(k) is obtained by processing data for at 	 as and

as of stock Intralipid-10 % measured, respectively, using

the approaches of narrow beam attenuation and diffuse

reflectance from a semi-infinite medium. The same result,

g = 0.79 at k = 850 nm, is obtained by using the formula

g(k) = 2.25 k-0.155 (lm) [41] approximating analytically

the above-mentioned graphical dependence of g on k.

Although the value of g *0.79 is out of the error intervals

around our results (see Table 2), the difference of 3.7 %

indicates a close proximity between both the results.

At last, we have also estimated the values of aa for IL

concentrations of 0.085 and 0.114 %, using log-linear fit of

each of the rectilinear regions, shown in Fig. 7, of the

dependence y1ðzÞ ¼ ln½Jð0~; zÞz4� [see Eqs. (15) and (21)].

At lower concentrations, the rectilinear regions are at

depths exceeding the range of the data obtained. Then, to

observe these regions, one should use more powerful laser

sources. At higher concentrations, the rectilinear regions

are too narrow and not clearly identifiable. The values we

have obtained at both the concentrations of concern are

(0.067 ± 0.001) and (0.083 ± 0.002) cm-1, respectively,

with *2 % relative error. The corresponding values,

(0.024 ± 0.001) and (0.040 ± 0.002) cm-1, corrected for

the absorption of water at k = 850 nm, are of the order of

that, 0.054 cm-1, obtained in Ref. [42] at k = 1,064 nm

and C = 0.1195 % by processing data from diffuse

reflectance and transmission measurements and collimated

transmission measurements. Using the obtained values of

aa and the corresponding quantities of at and ars given,

respectively, in Tables 1, 2, according to Eqs. (23), and

(32), and (30) (with v ¼ arsG), we obtain again that gG

*0.89 and gHG *0.82 at C = 0.085 or 0.114 %.

5 Summary

The results obtained in this work show that in general, the

small-angle approximation could adequately describe the

propagation of laser radiation through turbid media. The

depth of validity of this approximation, zV, is shown to be

of the order of the transport mean free path of the photon in

the medium of interest. That is, zV * Mars
-1 where M is a

number exceeding but of the order of unity. The values of

M for IL dilutions of relatively low concentrations

C B 0.3 %, having Gaussian or Henyey–Greenstein indi-

catrices, are estimated experimentally to be *3 or 5,

respectively. The corresponding depths zV *3ars
-1 or 5ars

-1

are of the order of the lower limit, zld * 4ars
-1, of the

region of diffusive propagation of light [8]. It is also shown

theoretically that at optical depths asz of the order of unity

or smaller, in the region of low scattering, where the
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Table 2 Experimentally estimated values of the reduced-scattering coefficient and the anisotropy factor for different Intralipid concentrations

Intralipid (%) 0.085 0.114 0.142 0.284

ars Gauss (cm-1) 0.200 ± 0.004 0.264 ± 0.009 0.338 ± 0.028 0.640 ± 0.009

ars H–G (cm-1) 0.327 ± 0.007 0.435 ± 0.015 0.558 ± 0.050 1.054 ± 0.017

g Gauss 0.897 ± 0.002 0.894 ± 0.003 0.893 ± 0.009 0.891 ± 0.002

g H–G 0.831 ± 0.004 0.826 ± 0.006 0.823 ± 0.016 0.821 ± 0.003
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forward light flow consists of mainly unscattered and sin-

gle-scattered components, the on-axis detected forward-

propagating light power behaves in two ways. When the

receiver angle of view c is less than the characteristic angle

of scattering 
 ½2ð1� gÞ�1=2
, the detected power Jð0~; zÞ

decreases with z exponentially, with decay constant at. In

the opposite case, one more exponential fall-off region

exists near the entry wall of the container, for

z\ðw2 þ E2Þ1=2
. The decay constant in this case is aa. For

large optical depths (asz � 1), in the region of developed

scattering, where the multiple-scattered light is prevailing

and the relation Dds \ z \ zV holds, it is obtained that

Jð0~; zÞ / z�3 or z�4 when c2 � vz or c2 � vz, respectively

(Sect. 2). The theoretical analysis of the transverse radial

distribution of the detected forward-propagating light

power in this region shows that it should have Gaussian

shape with e-1 half-width wðzÞ / z3=2. As a whole, the

obtained theoretical results are in agreement with results

obtained by other researchers experimentally [22, 23], by

simulations [22], or using other theoretical approaches [12,

14, 15, 18]. The analytical expressions obtained in the work

about the spatial distribution of the detected light power

allow one in principle to estimate, on the basis of the

experimental data, the values of at, aa, ars, and g for both

the indicatrices under consideration.

The experimental results confirm in general the theo-

retical predictions. The exponential fall-off regions with

decay constant at [here c2\2ð1� gÞ] are clearly identified

(Fig. 2) and used for determination of the values of at at

different IL concentrations C (Fig. 3). The dependence

at(C) is shown to be nonlinear (quadratic) in general, but at

low concentrations (C \ 0.3 %), it is practically linear and

closely describes the data obtained by linear extrapolation

of results of van Staveren et al. [29] concerning dilutions of

Intralipid-10 % at k = 850 nm. The near coincidence

between the experimentally estimated values of at and the

extrapolated values of as at low IL concentrations is indi-

rect confirmation of the validity of the formula of van

Staveren et al. [29] (see above) about the dependence of as

on k of dilutions of Intralipid-10 %. At large optical

depths, within the interval Dds \ z \ zV, the on-axis

detected light power Jð0~; zÞ turns out to behave as nearly

z-4 rather than z-3 (Fig. 5). The transverse radial distri-

bution of the forward-propagating light intensity has

Gaussian-like shape (Fig. 6) with e-1 half-width w(z). We

have used the value of w(z) to estimate the reduced-scat-

tering coefficient ars and the anisotropy factor g of dilutions

of low (*0.085–0.284 %) IL concentrations. It is found,

in particular, that the g-factor is *0.89 for Gaussian in-

dicatrix and *0.82 for Henyey–Greenstein indicatrix.

The result obtained for Henyey–Greenstein indicatrix

is near that, g = 0.79 at k = 850 nm, evaluated using a

dependence of g on k obtained empirically by Flock et al.

[33] and Jacques [41]. The values of the absorption coef-

ficient of the IL component in dilutions of low concentra-

tions (0.085 and 0.114 %), obtained by using log-linear

least-squares fit of the dependence Jð0~; zÞz4 in its rectilin-

ear zone as well as correction for the absorption of water,

are of the order of that obtained in [42] at k = 1,064 nm.

The investigations performed in the work are important

for the development of methods for measuring the optical

characteristics of turbid media such as tissues and experi-

mental tissue-like phantoms. They would also be useful in

the process of establishing the laws governing the radiative

transfer inside the optically investigated biological objects.

The further work on the subject will be directed to

increasing the experimental accuracy and refining the

theoretical models as well as to experimenting with In-

tralipid-10 % and using shorter and longer-wavelength

laser radiation.
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Appendix 1: Estimation of Jðq~; zÞ for Henyey–

Greenstein indicatrix

Using Eqs. (4) and (8c), for Henyey–Greenstein indicatrix,

we obtain

~iðq~þ j~z0Þ ffi ½ð1� g2Þ=4p�
Z

4p

ldx exp½js~? � ðq~þ j~z0Þ�

ð1þ g2 � 2glÞ�3=2

ffi ½ð1� g2Þ=2�
Z1

�1

dlJ0½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
Qðz0Þ�

ð1þ g2 � 2glÞ�3=2;

ð33Þ

where J0 is Bessel function of the first kind, zero order, and

Qðz0Þ ¼ jq~þ j~z0j. When deriving the relations (33), we

assumed that the indicatrix is sharply forward peaked, the

scattered light is mainly forward directed, and
Rþ1
�1 ds~? ¼R

4p ldx 	
R

4p dx [13]. When asz � 1, as in the case of

Gaussian indicatrix, the integrand contribution to the

integral in Eq. (9) is essential for values of ~i near unity,

that is, for jq~þ j~z0j � 1. Then, the function J0 is

expressible asymptotically as J0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
Qðz0Þ

h i
ffi 1

�ð1=4Þð1� l2ÞQ2ðz0Þ. This approximation of J0 permits

one to perform integration over l in (33). The result is
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~iðq~þ j~z0Þ ffi 1� ½ð1� gÞðq~þ j~z0Þ2=2�ð1þ gÞ=3: ð34Þ

Using this expression of ~i in Eq. (9), we obtain for

Jðq~; zÞ the expression of Eq. (11) with v given by Eq. (29).

When asz is of the order of unity or smaller, it is difficult

to perform detailed analytical estimation of the on-axis

detected light power Jð0~; zÞ for Henyey–Greenstein indic-

atrix. In this case, a general estimation could be conducted

that is valid for any type of indicatrix. Let us first suppose

that ðw2 þ E2Þ1=2=2 [ z and c=2 [ ½2ð1� gÞ�1=2
. Then,

the value of the integral in Eq. (9) is determined by the

exponential terms in the integrand containing

j2 and q2. The contribution to the integral is essential

for j\2=ðw2 þ E2Þ1=2\1=z and q\2=c\½2ð1�
gÞ��1=2
 1; that is, jz� 1 and q� 1. For such values

of j and q; according to Eq. (8c) [see also Eqs. (10a)

and (33)], ~iðq~þ j~z0Þ 	 1. Then, from Eq. (9), we obtain

Eq. (28) for Jð0~; zÞ.
Suppose further that c=2� 1. In this case, the essential

interval of integration over q~ involves mostly values of

q� 1. For q� 1, because of strong oscillations of the

integrand in Eq. (8c), ~iðq~þ j~z0Þ � 1 [see also Eqs. (10a)

and (33)]. Thus, on the average, the integral exponential

term in Eq. (9) is expressible as

at

Zz

0

dz0½1�W0
~iðq~þ j~z0Þ� ¼ ðat � asnÞz; ð35Þ

where n ¼ z�1
R z

0
dz0~iðq~þ j~z0Þ � 1. Taking into account

the expression of Eq. (35) in Eq. (9) and neglecting the

term asn z, we obtain Eq. (26) for Jð0~; zÞ.

Appendix 2: Estimation of the depth of validity

of the small-angle approximation

At negligible backscattering that is intrinsic to a Gaussian

indicatrix, an estimate of the in-depth validity limit of the

small-angle approach can be obtained, considering a

‘‘mean photon’’ that undergoes forward-peaked scattering

in one only plane containing the beam axis. At each,

independent, m-th act of scattering the photon changes its

direction of propagation with angle cm. After N scattering

events, the resultant angle of propagation with respect to

the beam axis will be cr ¼ c1 þ c2 þ � � � cN . Then, the

mean-square angular deviation from the beam axis is

c2
r

 �
¼ Nr2

c ; ð36Þ

where

r2
c ¼ c2

1

 �
¼ c2

2

 �
¼ � � � ¼ c2

N

 �
¼ 2p

R1
0

ds?iðs?Þs3
?. At

the same time, the photon reaches an average depth (e.g.,

[8])

z ¼ a�1
s ð1� gNÞ=ð1� gÞ: ð37Þ

From Eq. (37), we obtain that

N ¼ lnð1� arszÞ= ln g: ð38Þ

When g
 1, most frequently cm � 1 and

c2
m ffi 2ð1� cos cmÞ. Correspondingly,

r2
c ¼ c2

m

 �
ffi 2 1� cos cmh ið Þ ¼ 2ð1� gÞ: ð39Þ

Taking into account relations (38) and (39) in Eq. (36),

we obtain

c2
r

 �
ffi 2ð1� gÞ lnð1� arszÞ= ln g: ð40Þ

For the small-angle approximation to be in power, one

may require that c2
r

 �1=2\p=2 or c2
r

 �
\p2=4, which leads

[see Eq. (40)] to the condition

z\a�1
rs 1� g

p2

8ð1�gÞ
h i


 a�1
rs : ð41Þ

In other words, the depth of validity z = zV should not

exceed the transport mean free path a�1
rs . Such a condition

is in agreement with the interpretation of a�1
rs , given in [8],

as ‘‘the mean distance traveled by photons along the initial

direction of propagation before they have effectively

‘forgotten’ their original direction of motion.’’ As the

obtained value of zV
 a�1
rs is conditioned by the rms value

of cr, it may be considered as a lower estimate of the depth

of validity. Then, a more realistic definition of zV would be

that

zV
Ma�1
rs ; ð42Þ

where M is a number exceeding but of the order of unity.

When the backscattering cannot be neglected as it is in

the case of Henyey–Greenstein indicatrix, the acts of for-

ward scattering will not be so frequent and the small-angle

forward propagation will continue to longer distances in

the medium. In addition, the e-1 forward angular width of

Henyey–Greenstein indicatrix is [(1 - g)/(2 g)]1/2 times

smaller than that of Gaussian indicatrix. Thus, one may

expect that in the case of indicatrix of Henyey–Greenstein,

the depth of validity of the small-angle approximation

should be larger.

Appendix 3: Expression of the radiance Iðr~; s~Þfor

Gaussian indicatrix, in the developed-scattering zone

(asz � 1)

Using in Eq. (8) the relations (3), (6), (8a–8c), and the

asymptotic representation (10b) of the Gaussian indicatrix

Fourier transform, we can perform analytical integration

and obtain the following expression of Iðr~; s~Þ valid for

asz � 1:
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Iðr~; s~Þ ¼ Iðq~; z~; s~?Þ ¼ Pt=½p2nðzÞfðzÞ�
� �

expð�aazÞ

� exp �q2=nðzÞ � ½q~arsz
2=nðzÞ � s~?�2=fðzÞ

n o
;

ð43Þ

where nðzÞ ¼ w2 þ ð2=3Þarsz
3; and fðzÞ ¼ ðkwÞ�2 þ

2w2arszþ a2
rsz

4=3
� �

=nðzÞ: Under the assumption that

ðkwÞ�2 ! 0; and w2 � arsz
3; Eq. (43) is reduced to

the form

Iðr~; s~Þ ¼ ½3Pt=ðp2a2
rsz

4Þ� expð�aazÞ
� exp �½6=ðarsz

3Þ�ðq2 � zq~ � s~þ z2s2
?=3Þ

� �
: ð44Þ

Further, we may represent ars in the form

ars ¼ asð1� gÞ ¼\h2
1 [ =ð2d0Þ, where d0 ¼ a�1

s is the

mean free path of the photon between two successive acts

of scattering, and \h2
1 [ ¼ r2

c ¼ 2ð1� gÞ [see in [18]

and Eq. 39]. Then, using in Eq. (44) the above

representation of ars and normalizing Iðr~; s~Þ by the

quantity
R

Iðr~; s~Þdq~ds~? ¼ Pt expð�aazÞ, we attain just the

small-angle approximation result given in [18] for the

probability density distribution that an energy unit (say

photon) propagating initially along axis 0z will pass a plane

z = const through a surface element dxdy around a point

(x,y), within an infinitesimal cone around a direction s~. This

result is obtained as a solution of a Fokker–Planck type

diffusion equation approximating the transfer equation.

The boundary/initial condition considered at the plane

z = 0 is as if implying a point source of unity power

emitting photons along axis 0z. A physically more realistic

picture, however, leading to the same solution, is an

incident (along 0z) collimated Gaussian laser beam whose

radius w tends to a ‘‘physical zero’’ exceeding essentially k.

That is, the relation ðkwÞ�2 � 1 remains in power. Note as

well that, according to Eq. (8c), independent of the

concrete form of iðs?Þ, the Taylor series expansion of
~iðq~Þincluding the first two terms is

~iðq~Þ ¼ 1� r2
cq2=4 ð45Þ

(see also Sect. 2.6). Then, if we use in Eq. (8) the

expression (45) of ~iðq~Þinstead of (10b), we shall obtain Eqs.

(43), and (44) in the ‘‘physical limit w! 0’’ (see above),

with ars ¼ r2
c=2d0. Eq. (44) with ars ¼ r2

c=2d0 and Pt = 1

is obtained also in Ref. [15] by using path integral tech-

nique to solve the radiative transfer equation under the

boundary condition of Ref. [16] and the assumption that
~iðq~Þ is given by Eq. (45).
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