
Fast wavefront sensing using a hardware parallel classifier chip

Alexander Pichler • Pierre Raymond •

Marc Eichhorn

Received: 1 July 2013 / Accepted: 7 August 2013 / Published online: 23 August 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract In most applications of laser technology and

optics the beam quality, the ability to focus a laser beam

and the achievement of a good optical resolution play an

important role. The compensation of distortions using

adaptive optics requires fast wavefront measurement.

Classical wavefront analysis schemes use matrix opera-

tions, which show a nonlinear computation time depen-

dence with matrix size, making it difficult to achieve high-

speed control loops at a high resolution. A novel wavefront

sensor system is presented using a massively parallel

k-nearest neighbor classifier chip in an embedded hardware

setup. Our miniaturized sensor is able to detect one optical

distortion within about 80 ls allowing its use for high-

speed adaptive optics applications.

1 Introduction

In most applications of laser technology and optics, the

beam quality, the ability to focus a laser beam and the

achievement of a good optical resolution play an important

role. Unfortunately, these properties are often limited by

distortions of the wavefront of the light beam. For the

compensation of these distortions, adaptive optics may be

used. It allows to compensate a phase distortion by use of a

deformable mirror. Therefore, it is necessary to measure

the phase front of the incoming or emitted radiation. This

may be done by a Shack–Hartmann sensor (SHS) which

uses a lens array creating a spot grid in the focal plane [2],

as shown in Fig. 1.

The shift of the measured spots, compared to their ref-

erence position, is then a measured for the local phase front

slope [2]. By integration, the real phase front may be

determined except for an absolute offset.

Especially for applications such as atmospheric recon-

naissance or laser beam correction, a very fast measurement

method is required to allow a correction in close real time.

For example, the correction of the aberrations induced by

the atmosphere requires a measurement frequency of sev-

eral kHz, to still allow compensation of fast fluctuations. Of

course, the adaptive mirror needs to be driven as well with

those frequencies. Currently, the image from the Shack–

Hartmann lens array is captured by a camera and transferred

to a computer, which treats this image sequentially, i.e., it

determines the spot shifts, then the phase gradients, and

finally by integrating the phase. This process is running

quite slowly compared to the frame rates of the fast cameras

available today. The reasons for this are as follows:

• The high amount of data which needs to be transferred

from the camera to the computer that performs the

processing. On common personal computers (PC), the

image processing often takes more time than the

acquisition interval between two consecutive images.

This prevents the use of the highest measurement

frequency of the camera; high-speed applications need

to temporarily buffer the images and to process them

after the measurement.

• Sequential data processing, i.e., centroid extraction,

calculation of the spot shifts, phase front slopes

integration.

Hence, a fast measurement method and its affiliated

setup, which allow real-time wave front measurement at

high frequencies, require large computational resources,

and in consequence a high-performance computer.

A. Pichler (&) � P. Raymond � M. Eichhorn

French-German Research Institute of Saint-Louis (ISL),

Saint-Louis, France

e-mail: alexander.pichler@isl.eu

123

Appl. Phys. B (2014) 115:325–334

DOI 10.1007/s00340-013-5607-y

Field programmable gate array (FPGA) or application-

specific integrated circuit (ASIC) devices allow to remove

the ‘‘von Neumann’’ bottleneck, the memory access, lim-

iting the performance of classical computers. They feature

massively parallel data processing at low system frequen-

cies, resulting in an increase in performance while lowering

the power consumption. Many existing hardware wave-

front measurement solutions [3, 4, 5] concentrate on fast

centroid extraction, i.e., transforming the Shack–Hartmann

sensor spot pattern in a spot displacement matrix as fast as

possible and with low latency. But for the centroid analy-

sis, i.e., obtaining the optical distortions in form of Zernike

polynomials or driving a deformable mirror in an adaptive

optics setup, still a PC computer will be required.

To cope with this, at ISL, we developed a novel proto-

type of a completely PC-less wavefront sensing system for

industrial applications as a mobile, autonomous wavefront

sensor or for use in integrated adaptive optics systems. It

analyses 11 9 11 lens array cells at a camera resolution of

640 9 480 pixels. The most important optical distortions

(Zernike polynomials up to order 4) are determined in about

1.2 ms after termination of the centroid detection process.

The resulting measurement frequency up to 830 Hz (limited

by the chosen Shack–Hartmann sensor camera) makes our

sensor suitable for high-speed adaptive optics applications.

By associating a FPGA device to an ASIC hardware clas-

sifier chip [6], a significant gain in performance could be

achieved compared to existing FPGA-only solutions [7].

An alternate approach for achieving maximum measure-

ment speeds without the need of a computer is the use of

electro-optic parallel processors as described in [8]. Never-

theless, the complex optical setup of the presented modal

wavefront sensor makes it very expensive and less flexible, i.e.,

changing the type of distortions to be detected by the sensor

requires building of custom optical masks. Furthermore, the

optical design makes it difficult to distinguish between more

than about 20 different types of optical distortions.

2 The used hardware classifier chip

Efficient data processing, for embedded wavefront analy-

sis, requires recognition and sorting tasks which are highly

nonlinear and time-consuming, even with a powerful

computer. Almost all computers (PC, DSP, CISC, RISC)

are using a central processing unit (CPU) and separate

instruction and data memories. Current improvements in

computer architecture rely on multi-core processors in

order to execute several instructions in parallel. However,

the data transfer between core and memory still remains the

bottleneck. New performances are expected only through a

new massively parallel structure, processing multiple

instructions on multiple data simultaneously. In this way,

we have investigated a new architecture of natively parallel

processors. It implements 1,024 identical parallel proces-

sors on the same ASIC component (CogniMem [9])

addressed and working in parallel and having the capability

to learn and to recognize patterns in real time (10 ls).

CogniMem is a neural processor implementing two oper-

ating mode: radial basis function (RBF [10]) and k-nearest

neighbors (kNN [11]). It performs parallel real-time pattern

recognitions according to the L1 norm-distance d(x) evalu-

ation between an incoming vector V of dimension 256 (256

words of 8 bits) and a set of reference vectors Vr of the

same length (Eq. 1):

djðxÞ ¼
X256

i¼1

Vji � Vri

�� ��; j ¼ 1 : 1; 024 ð1Þ

Because of the native parallel processing, the response

time remains constant. Therefore, the classification time

does not depend on the number of committed processors.

Each prototype vector Vn is locally stored by one of the

1,024 available cells. In the RBF mode, the key point of

this technology is that the developer does not have to worry

about the network topology nor about the connection

weighting process. These time-consuming tasks are now

automatically performed at the electronic level. The second

mode of the ASIC CogniMem, used in our classification

application, is the k-nearest neighbor (kNN). The kNN

search still remains a problem in research, e.g., in industrial

domains requiring content retrieval, classification,

matching estimation. The exhaustive kNN search

algorithm specificities are as follows:

• It computes the distances between the query point

V (red cross Fig. 2) and each of the reference points Vn

(blue points Fig. 2),

• The k-nearest neighbors are trivially determined using a

sorting algorithm.

Microlens
 array

 CMOS
Camera

Incoming
wavefront

CMOS image
 pattern

Fig. 1 Setup of a SHS and the resulting spot distribution on the

detector chip

326 A. Pichler et al.

123

The kNN algorithm issues an ordered list of distances

with the corresponding class number. In spite of searching

and sorting algorithm improvements and new PC powerful

computational resources (GPU with CUDA [11]), the

memory access and the computation time remain the main

drawbacks of this classifier on a PC computer. Now, a

breakthrough technology (CogniMem) brings an efficient

solution to overcome this time-consuming approach. We

will demonstrate that it is possible to use this very fast and

PC-free classifier for the development of an embedded

Shack–Hartmann wavefront analyzer.

3 Description of the algorithm

3.1 Feature extraction

In order to use the classifier chip for wavefront recognition

tasks, the first step is to define a feature extraction method,

which transforms the physically measured wavefront, the

Shack–Hartmann sensor (SHS) image, to an input vector

compatible with the used classifier chip.

A micro-lens array transforms the wavefront inclination

to luminous spots displacements measured by a CMOS

camera sensor. Knowing the optical characteristics of the

CMOS sensor, the used lens array and the mounting

properties, a specific square region of pixels in the SHS

image corresponding to each lens array may be assigned.

Figure 3 shows an example: 9 lens array analysis zones

have been defined. The SHS is calibrated in the way that an

incoming plane wavefront will generate a local light spot

maximum in the center of the assigned pixel region of each

lens array cell. If the wavefront is distorted, the light spot

maxima will be displaced from the center. Provided that

Neuron
(Ni,Ci)

Feature N2

Feature N1

Distance di

Fig. 2 kNN search in R2 with k = 3 (i.e., list limited to 3 over 1,024

for this example) using the Euclidean distance

C1 C2 C3

C4 C5 C6

C7 C8 C9

Fig. 3 SHS image and selection of lens array cell analysis zones

C1 C2 C3 C4 C5 C6 C7 C8 C9

0 -2 -2 -22 3 1 2 3 1 2 3-1 -1 -1 0 0 0

X Y X Y X Y X Y X Y X Y X Y X Y X Y

V = {0, -2, 2, -2, 3, -2, 1, -1, 2, -1, 3, -1, 1, 0, 2, 0, 3, 0}

Serialialization of 2D grid data

Vector representation

2D grid with discretized spot displacements

C2: X:2, Y:-2 C3: X:3, Y:-2

C4: X:1, Y:-1 C5: X:2, Y:-1 C6: X:3, Y:-1

C7: X:1, Y:0 C8: X:2, Y:0 C9: X:3,Y:0

C1: X:0, Y:-2

0

-4

4

0

-4

4

0

-4

4

0-4 4 0-4 4 0-4 4

Measured spot displacement in SHS image

SHS lens array cell center position

X

Y

Fig. 4 Representation of SHS spot displacements within each lens

array cell by a 2D grid, serialization of the data to a vector

Hardware parallel classifier chip 327

123

incoming distorted wavefronts are optically limited in their

inclination angle, a way that a light spot generated by a

specific lens array cell will never appear in the pixel area of

an adjacent lens array cell. The spot displacements may be

defined as relative displacements from the center position

of each lens array cell. Figure 4 shows an example SHS

spot displacement pattern discretized to a grid of relative

spot displacements in the range of [-4 … 4] for each axis.

For simplicity reasons, a very small lens array grid of 3 9 3

lenses has been chosen at a very large discretization to

explain the concept. The classifier itself is able to process

lens array grids of up to 11 9 11 lenses with a relative spot

displacement resolution of 256.

The spot position within each lens array cell Cx is

described by its relative X and Y coordinates, e.g., X = 0,

Y = -2 for lens array cell C1. As the classifier chip needs a

vector as input pattern for the classification process, the

relative pixel coordinates of each light spot in each cell will

be serialized to a vector in the next step. Equation 2 shows

the vector corresponding to the example in Fig. 4.

V ¼ f0;�2; 2;�2; 3;�2; 1;�1; 2;�1; 3;�1; 1; 0; 2; 0; 3; 0g
ð2Þ

3.2 Learning phase

For use of the classifier chip for recognition of optical

distortions, it needs to be trained first in order to recognize

basic patterns of optical distortions. Such basic patterns

might be for example the optical distortions described by

the Zernike polynomials (e.g., Tilt, Focus, Koma, etc.), see

Fig. 5. Our smart wavefront sensor application uses one

classifier chip. It has been taught to detect the optical

distortions corresponding to the first 15 orders of Zernike

polynomials at a resolution of 0.05 k and sampling data

from 11 9 11 micro-lenses (see Fig. 6). For easier

description of the developed recognition algorithm, a

simplified case will be used in the following sections. Only

4 patterns will be learned to the classifier, restricted to 3 9

3 micro-lenses. Figure 7 shows the learned patterns. Pat-

tern P0 is the reference pattern, indicating that a plain

wavefront has been detected (Zernike polynomial Z0
0).

Pattern P1 is a simplified focus distortion (Zernike poly-

nomial Z0
2), and patterns P2 and P3 are tilt distortions

(Zernike polynomials Z1
1 and Z-1

1).

3.3 Recognition phase

After successful training of the classifier, the chip is ready

for wavefront recognition and decomposition of a wave-

front to the previously learned basic patterns.

The patented [6], iterative decomposition algorithm

works as follows:

1. Serialization of the initially measured spot displace-

ments pattern to a vector Vx

2. Presentation of the vector Vx to the previously trained

classifier

3. Get the recognition result Py

4. Subtract the vector Vy = V(Py) corresponding to the

recognized pattern Py from the vector that has been

presented to the classifier in step 2. The resulting

vector Vx = Vx - Vy will be the one presented to the

classifier in the next iteration step.

5. Add the identifier of pattern Py to the list of the result

parts of the decomposition result.

6. Is Py the pattern learned as zero wavefront distortion

(pattern P0 in the example)?

Fig. 5 Wave front mode orders in Zernike polynomials

Fig. 6 Classifier database containing the first 15 orders of Zernike

polynomials at a resolution of 0.05 k

328 A. Pichler et al.

123

(a) Yes: go to step 7.

(b) No: go back to step 2.

7. End of the decomposition process, and the remaining

vector VRX = Vx corresponds to the decomposition

rest, which may not be decomposed furthermore (extend

classifier database to have it recognized next time).

Figure 8 shows a typical decomposition process with an

example pattern R0 that is compatible to the previously

learned database (Fig. 7). To furthermore illustrate how the

previously described iterative algorithm works, the whole

algorithm with all iterations will be explained in detail by

means of this example.

C2: X:0, Y:0 C3: X:0, Y:0

C4: X:0, Y:0 C5: X:0, Y:0 C6: X:0, Y:0

C7: X:0, Y:0 C8: X:0, Y:0 C9: X:0,Y:0

C1: X:0, Y:0

0

-4

4

0

-4

4

0

-4

4

0-4 4 0-4 4 0-4 4

V(P0) ={0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Learned pattern P0

C2: X:0, Y:-1 C3: X:0, Y:-1

C4: X:0, Y:-1 C5: X:0, Y:-1 C6: X:0, Y:-1

C7: X:0, Y:-1 C8: X:0, Y:-1 C9: X:0,Y:-1

C1: X:0, Y:-1

0

-4

4

0

-4

4

0

-4

4

0-4 4 0-4 4 0-4 4

V(P2) = {0, -1, 0, -1, 0, -1,
 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1}

Learned pattern P2

C2: X:1, Y:0 C3: X:1, Y:0

C4: X:1, Y:0 C5: X:1, Y:0 C6: X:1, Y:0

C7: X:1, Y:0 C8: X:1, Y:0 C9: X:1,Y:0

C1: X:1, Y:0

0

-4

4

0

-4

4

0

-4

4

0-4 4 0-4 4 0-4 4

V(P3) = {1, 0, 1, 0, 1, 0,
 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0}

Learned pattern P3

C2: X:0, Y:-1 C3: X:1, Y:-1

C4: X:-1, Y:0 C5: X:0, Y:0 C6: X:1, Y:0

C7: X:-1, Y:1 C8: X:0, Y:1 C9: X:1,Y:1

C1: X:-1, Y:-1

0

-4

4

0

-4

4

0

-4

4

0-4 4 0-4 4 0-4 4

V(P1) ={-1, -1, 0, -1, 1, -1,
 -1, 0, 0, 0, 1, 0, -1, 1, 0, 1, 1, 1}

Learned pattern P1

Fig. 7 SHS spot displacements patterns learned to the classifier, corresponding to basic optical distortions (e.g., Zernike polynomials)

Hardware parallel classifier chip 329

123

We start by serializing the measured spot displacement

pattern to a vector (Step 1). Equation 3 shows this starting

vector V(R0).

VðR0Þ¼f0;�2;2;�2;3;�2;1;�1;2;�1;3;�1;1;0;2;0;3;0g
ð3Þ

When presenting this vector to the classifier, the chip’s

parallel architecture compares which of the previously

learned patterns P0, P1, P2 or P3 matches best the presented

vector V(R0). This is done by calculating the distance value

between the presented vector V(R0) and the vector of each

learned pattern V(P0) up to V(P3). Equation 4 shows how

the distance value d(RxPy) is calculated for a presented

vector V(Rx) and a pattern vector V(Py) with each vector

consisting of n elements.

dðRxPyÞ ¼
Xn

i¼0

VðRxÞ½i� � VðPyÞ½i�
�� �� ð4Þ

Equation 5 shows the distances to each reference pattern

Px determined by the classifier after presentation of the

vector V(R0).

dðR0P0Þ ¼ 26

dðR0P1Þ ¼ 26

dðR0P2Þ ¼ 23

dðR0P3Þ ¼ 19

ð5Þ

The vector V(P3) is the best matching pattern for the

presented vector V(R0) as it produces the smallest distance

in the comparison process. This means that the pattern P3 is

one part of the presented pattern R0. In the next step

C2: X:2, Y:-2 C3: X:3, Y:-2

C4: X:1, Y:-1 C5: X:2, Y:-1 C6: X:3, Y:-1

C7: X:1, Y:0 C8: X:2, Y:0 C9: X:3,Y:0

C1: X:0, Y:-2

0

-4

4

0

-4

4

0

-4

4

0-4 4 0-4 4 0-4 4

V(R0) ={0, -2, 2, -2, 3, -2,
 1, -1, 2, -1, 3, -1, 1, 0, 2, 0, 3, 0}

Best match: P3

Measured pattern R0 (Start)

C2: X:1, Y:-2 C3: X:2, Y:-2

C4: X:0, Y:-1 C5: X:1 Y:-1 C6: X:2, Y:-1

C7: X:0, Y:0 C8: X:1, Y:0 C9: X:2,Y:0

C1: X:-1, Y:-2

0

-4

4

0

-4

4

0

-4

4

0-4 4 0-4 4 0-4 4

V(R1) = V(R0) - V(P3)
 = {-1, -2, 1, -2, 2, -2,
 0, -1, 1, -1, 2, -1, 0, 0, 1, 0, 2, 0}

Best match: P2 or P3 --> P2 chosen

Iteration pattern R1

C2: X:1, Y:-1 C3: X:2, Y:-1

C4: X:0, Y:0 C5: X:1, Y:0 C6: X:2, Y:0

C7: X:0, Y:1 C8: X:1, Y:1 C9: X:2,Y:1

C1: X:-1, Y:-1

0

-4

4

0

-4

4

0

-4

4

0-4 4 0-4 4 0-4 4

V(R2) = V(R0) - V(P3) - V(P2)
 ={-1, -1, 1, -1, 2, -1,
 0, 0, 1, 0, 2, 0, 0, 1, 1, 1, 2, 1}

Best match: P1

Iteration pattern R2

C2: X:1, Y:0 C3: X:1, Y:0

C4: X:1, Y:0 C5: X:1 Y:0 C6: X:1, Y:0

C7: X:1, Y:0 C8: X:1, Y:0 C9: X:1,Y:0

C1: X:0, Y:0

0

-4

4

0

-4

4

0

-4

4

0-4 4 0-4 4 0-4 4

V(R3) = V(R0) - V(P3) - V(P2) - V(P1)
 = {0, 0, 1, 0, 1, 0,
 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0}

Best match: P3

Iteration pattern R3

C2: X:0, Y:0 C3: X:0, Y:0

C4: X:0, Y:0 C5: X:0, Y:0 C6: X:0, Y:0

C7: X:0, Y:0 C8: X:0, Y:0 C9: X:0,Y:0

C1: X:-1, Y:0

0

-4

4

0

-4

4

0

-4

4

0-4 4 0-4 4 0-4 4

V(R4) = V(R0) - 2 * V(P3) - V(P2) - V(P1)
 ={-1, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Best match: P0 --> End of decomposition

Iteration pattern R4 (End)

C2: X:0, Y:0 C3: X:0, Y:0

C4: X:0, Y:0 C5: X:0, Y:0 C6: X:0, Y:0

C7: X:0, Y:0 C8: X:0, Y:0 C9: X:0,Y:0

C1: X:-1, Y:0

0

-4

4

0

-4

4

0

-4

4

0-4 4 0-4 4 0-4 4

V(RX) = V(R4) - V(P0)
 ={-1, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Decomposition rest --> "Error"

Decomposition rest RX

Fig. 8 Decomposition of a SHS measurement to a linear combination of known spot displacement patterns learned to the classifier

330 A. Pichler et al.

123

(Equation 6), the recognized vector V(P3) is subtracted

from the presented vector V(R0). The resulting vector V(R1)

will be the one that will be presented to the classifier in the

next iteration step.

VðR1Þ ¼ VðR0Þ � VðP3Þ
¼ f�1;�2; 1;�2; 2;�2; 0;�1; 1;�1; 2;�1; 0;0;1; 0; 2; 0g

ð6Þ

Equation 7 shows the distances to each reference pattern

Px determined by the classifier after presentation of the

vector V(R1).

dðR1½P0;P1;P2;P3�Þ ¼ ½19; 17; 16; 16� ð7Þ

This time the classifier is not able to decide whether the

pattern P2 or the pattern P3 is best matching the presented

pattern R1. In this case, one of both may be chosen, and it

does not matter which. In this example, we will choose the

pattern P2. Again the difference V(R2) between the

recognized vector V(P2) and the presented vector V(R1) is

calculated (Eq. 8).

VðR2Þ ¼ VðR0Þ�VðP3Þ�VðP2Þ
¼ f�1;�1;1;�1;2;�1;0;0;1;0;2;0;0;1;1;1;2;1g

ð8Þ

The iterative process is repeated as shown in Fig. 8 until

the pattern P0, which references zero wavefront distortion,

is recognized. This is the case after presentation of the

pattern R4 to the classifier. This concludes the iterative

decomposition process. Equation 9 shows the resulting

decomposition of the original pattern R0. The vector V(RX)

is the decomposition rest (Eq. 10), i.e., a vector that may

not be decomposed using the previously learned classifier.

VðR0Þ ¼ 2� VðP3Þ þ VðP2Þ þ VðP1Þ ð9Þ
VðRXÞ ¼ f�1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0g

ð10Þ

The presented algorithm may be easily adapted to

different kinds of sampling functions.

4 Hardware demonstrator

In order to demonstrate the feasibility of our approach, the

described principle and algorithm have been applied to the

development of an autonomous hardware wavefront sensor

(Fig. 9).

The selected hardware platform implements the fol-

lowing components:

• Actel IGLOO low-power FPGA containing the devel-

oped algorithm

• CogniMem neural network chip for kNN hardware

classification

• Aptina gray-level CMOS image sensor with a resolu-

tion of 720 9 576 and a pixel size of 6 lm

• Thorlabs 150 lm micro-lens array mounted in front of

the CMOS sensor

• USB interface for system configuration

• I2C interface for connecting a compatible TFT display

module or custom electronics

The wavefront sensor may be configured by connecting

to a standard PC, but once configured it may be used fully

autonomously by connecting a compatible TFT display

module (Fig. 10). The TFT display allows real-time visu-

alization of the measurement results without a computer.

The classifier chip has been taught to recognize the best

linear combination of the first 15 Zernike polynomials

(order 4) describing the incoming wavefront. The discre-

tion interval is 0.05 k. It may be improved by increasing

the number of neurons of the classifier database, i.e., by

adding a multiple CogniMem chips. In its current devel-

opment state, our miniaturized sensor is able to detect the

most dominant optical distortion of the wavefront within

only about 80 ls.

5 Testing and validation

In order to test the accuracy of the developed sensor, a first

simplified test case has been defined: The measurement of

the distance between a laser source reduced to a point

source (spherical emitting source) and our SHS (Figs. 11 ,

12), using the sensor as focal spot detector.

Fig. 9 Autonomous wavefront sensor using a hardware kNN classi-

fier chip

Hardware parallel classifier chip 331

123

For this experiment, the defocus Z 0
2 Zernike polynomial

(Fig. 5) contains all the information needed to calculate the

focal distance to the emitting source. The distance

d = R needs to be estimated (see Fig. 12)

The geometrical phase ugwill be estimated by means of

the spatial phase delay h and the wavelength k (Eq. 11) as

follows:

ug ¼
2p
k

h ð11Þ

Geometrically, this is given by:

h ¼ R� R cos a ¼ Rð1� cos aÞ ð12Þ

and for a � 1, we obtain:

h � R 1� 1� 1

2
a2

� �� �
� R

a2

2
ð13Þ

As

r ¼ R sin a! r � aR ð14Þ

we finally get:

ug ¼
2p
k
� r2

2R
ð15Þ

The phase relation given by the Z 0
2 Zernike polynomial can

be written as:

uZ ¼
2p
k

a2
0 � Z2

0 ð16Þ

with

Z2
0 ¼

ffiffiffi
3
p
� 2q2 � 1
� �

ð17Þ

The distance q, in polar coordinates, may be expressed as:

q ¼ 2r

D
: ð18Þ

This results in

uZ ¼
2p
k

a2
0 �

ffiffiffi
3
p
� 8

r2

D2
� 1

� �
ð19Þ

The phase gradients of ug and uZ should be equal:

oug

or
¼ ouZ

or
ð20Þ

By solving the resulting equation

2p
k

a2
0 �

ffiffiffi
3
p
� 16

r

D2
¼ r

R
� 2p

k
ð21Þ

we obtain

Fig. 10 TFT display module for the wavefront sensor

Ruler

SHS HeNe

Spherical wavefront Lens

Rotating polarizer

Polarizer

Fig. 11 Experimental setup

Source S

h

R

r

Spherical wavefront

D
Microlens array aperture

Fig. 12 Spherical wave front displacement calculation

332 A. Pichler et al.

123

R ¼ D2

16
ffiffiffi
3
p

a2
0

a2
0 in (m) ð22Þ

R ¼ D2

16
ffiffiffi
3
p

ka2�
0

a2�
0 in k ð23Þ

Figure 13 is a comparison between classical and neural

network algorithms without sub-pixel optimization, i.e.,

only the brightest spot within each lenslet zone is taken as

the displacement spot.

These curves demonstrate that both algorithms follow

the same line for small distances. As the distance increases,

the gap between the theoretical and actual positions

increases less for the classical algorithm. This is mainly

due to the method to determine the (x, y) position of the

spot maximum values (centroids). Our work focuses on the

wavefront recognition, so the centroid detection has been

implemented using a very simple method, which looks only

for the maximum value of the pixels in each cell (each

corresponding to one lens). No sub-pixel interpolation is

performed, restricting our system to the CMOS sensor’s

native pixel resolution of 25 9 25 pixels per micro-lens

array cell.

To cope with this, several well-performing high preci-

sion centroid extraction techniques [3, 4, 5] are available.

Sub-pixel resolutions of down to 0.125 pixels are supported

by the CogniMem classifier chip in the presented optical

setup, enabling the use of our prototype in small aberration

closed-loop adaptive optics setups with few modifications.

6 Conclusion and perspectives

Classical wavefront analysis methods based on matrix

calculations need expensive and power-consuming com-

puters. The presented wavefront sensing method is an

innovative approach, particularly well suited for embedded

applications, i.e., integration in lasers for beam correction

or battery-driven hand-held devices for ophthalmology.

The performance of our demonstrator is currently lim-

ited by the frame rate of the used low-cost CMOS sensor

(only 60 frames per second). To remove this bottle-neck, a

commercial high-speed camera (e.g., CameraLink or

FireWire) needs to be interfaced to our system. Nirmaier

et al. [12] propose an interesting alternate solution to this

problem by combining the CMOS sensor and centroid

detection electronics in one custom ASIC component,

achieving bandwidths up to 300 Hz. As the previously

cited techniques [3, 4, 5], their approach currently relies on

a PC computer for the Zernike polynomials decomposition.

Applying our analysis electronics (FPGA, CogniMem) to

their novel sensor could solve this problem and contribute

toward future very compact, high-speed and low-latency

solutions for wavefront analysis and adaptive optics.

Our next step will be the integration of a high-speed

CMOS sensor to improve the bandwidth of our sensor

prototype. In our laboratory, we are also investigating

novel hardware classifier concepts contributing to further

improvements in the domain of wavefront sensing and

high-speed adaptive optics.

References

1. B.C. Platt, R. Shack, History and principal of shack–hartmann

wavefront sensing. 2nd International Congress of Wavefront

Sensing and Aberration-free Refractive Correction. J. Refract.

Surg. 17, S573–S577 (2001)

2. W.H. Southwell, Wave-front estimation from wave-front slope

measurements. J. Opt. Soc. Am. 70, 998–1006 (1980). doi:10.

1364/JOSA.70.000998

3. K. Kepa, D. Coburn, J.C. Dainty, F. Morgan, High speed optical

wavefront sensing with low cost FPGAs. Meas. Sci. Rev. 8(4),

8793, (2008). ISSN (Online) 1335-8871, ISSN (Print). doi:10.

2478/v10048-008-0021-z

4. K. Baker, M. Moallem, Iteratively weighted centroiding for

Shack–Hartmann wave-front sensors. Opt. Express 15,

5147–5159 (2007). doi:10.1364/OE.15.005147

5. X. Yin, X. Li, L. Zhao, Z. Fang, Automatic centroid detection for

Shack–Hartmann Wavefront sensor. in Advanced Intelligent

Mechatronics 2009. AIM 2009. IEEE/ASME International Con-

ference on, pp. 1986,1991, 14–17 July 2009, doi:10.1109/AIM.

2009.5229758

6. A. Pichler, P. Raymond, M. Eichhorn, Process and device for

representation of a scanning function, Institut Franco-Allemand

de Recherches de Saint-Louis, Patent application number:

20110055129 (2011)

7. J.J. Fuensalida, Y. Martı́n, A. Alonso, H. Chulani, L.F. Rodrı́-

guez-Ramos et al., FPGA-based real time controller for high

order correction in EDIFISE. in Proc. SPIE 8447, Adaptive

Optics Systems III, 84472R (2012), doi:10.1117/12.925352

8. E. Ribak, S. Ebstein, A fast modal wave-front sensor. Opt.

Express 9, 152–157 (2001). doi:10.1364/OE.9.000152

9. CogniMem Inc., http://www.cognimem.com

10. F. Yang, M. Paindavoine, Implementation of an RBF neural

network on embedded systems: real-time face tracking and

identity verification. IEEE Trans. Neural Netw. 14(5), 1162–1175

(2008). doi:10.1109/TNN.2003.816035

Fig. 13 Comparison of the algorithm accuracies

Hardware parallel classifier chip 333

123

http://dx.doi.org/10.1364/JOSA.70.000998
http://dx.doi.org/10.1364/JOSA.70.000998
http://dx.doi.org/10.2478/v10048-008-0021-z
http://dx.doi.org/10.2478/v10048-008-0021-z
http://dx.doi.org/10.1364/OE.15.005147
http://dx.doi.org/10.1109/AIM.2009.5229758
http://dx.doi.org/10.1109/AIM.2009.5229758
http://dx.doi.org/10.1117/12.925352
http://dx.doi.org/10.1364/OE.9.000152
http://www.cognimem.com
http://dx.doi.org/10.1109/TNN.2003.816035

11. V. Garcia, E. Debreuve, M. Barlaud, Fast k nearest neighbor

search using GPU. in Proceedings of the CVPR Workshop on

Computer Vision on GPU (Anchorage, Alaska, USA, 2008).

doi:10.1109/CVPRW.2008.4563100

12. T. Nirmaier, G. Pudasaini, and J. Bille, Very fast wave-front

measurements at the human eye with a custom CMOS-based

Hartmann-Shack sensor. Opt. Express 11, 2704–2716 (2003).

doi:10.1364/OE.11.002704

334 A. Pichler et al.

123

http://dx.doi.org/10.1109/CVPRW.2008.4563100
http://dx.doi.org/10.1364/OE.11.002704

	Fast wavefront sensing using a hardware parallel classifier chip
	Abstract
	Introduction
	The used hardware classifier chip
	Description of the algorithm
	Feature extraction
	Learning phase
	Recognition phase

	Hardware demonstrator
	Testing and validation
	Conclusion and perspectives
	References

