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Abstract We describe a new method for creating spin-

dependent long-range interactions between atomic ultra-cold

neutral bosons—specifically 87Rb—in an optical lattice.

In this proposal, the bosonic system is immersed in a

spin-polarized degenerate Fermi gas (almost perfectly non-

interacting), here 6Li. We first show that the bosons acquire a

long-range interaction analogous to Ruderman–Kittel–

Kasuya–Yosida interaction in solids. The resulting fermion-

mediated Bose–Bose interaction, which can depend on the

bosons’ spin state, is tunable using inter-species Feshbach

resonance. When the bosons are subject to a suitable optical

lattice, 3-body loss processes are greatly suppressed. We

conclude by showing that these interactions can lead to a

supersolid phase for single-spin Bose system, and also to a

fully tunable transverse field Ising model for a two-compo-

nent Bose system.

1 Introduction

Ultra-cold mixtures of bosonic and fermionic atoms can

realize numerous many-body Hamiltonians which may lead

to better understanding of material systems. In analogy with

the Cooper pairing mechanism [1] in solids, phonons in a

Bose–Einstein condensate (BEC) can mediate interactions

between fermions, which might help to answer open

questions in Bardeen–Cooper–Schrieffer (BCS) supercon-

ductivity [2–5]. Earlier in gas mixtures of liquid Helium, the

spatial dependence of the interaction between 3He atoms

due to exchange of 4He phonons was observed [6]. Beyond

the existing material systems, p-wave superfluidity of spin-

polarized fermions may be induced by boson-mediated

effective attractive interactions [8, 7]. The composite fer-

mions made by pairing of fermions with bosons could

generate Fermi liquid, density wave, superfluid or an insu-

lator in an optical lattice [9]. A BEC with impurity fermions

in a double-well potential has been proposed to study

Josephson junction of bosons [10]. In reverse, impurity

bosons embedded in a Fermi gas [11] could model

interesting many-body phenomena such as the dynamics of

high-Tc cuprate superconductors [12]. Going beyond

material analogies, for sufficiently attractive inter-species

interactions, the associated energy can overcome the Fermi

pressure, leading to instabilities in degenerate Fermi gases

[13]. At the unitary limit, degenerate gases could lead to

understanding of stabilization processes in white dwarf and

neutron stars in a well-controlled environment [14]. More

practically, large Bose gases are frequently used to sym-

pathetically cool spin-polarized Fermi gases which are

otherwise non-interacting. To date, such Fermi–Bose gas

mixtures include 6Li–7Li [15], 40K–87Rb [16], 6Li–23Na

[17], 6Li–87Rb [18], 3HeH � 4HeH [19] and 171Yb -174Yb

[20]. Beyond such practical applications, ultra-cold mix-

tures constitute a new class of many-body systems: Bosons

stored in an optical lattice could exhibit exciting quantum

phases such as supersolidity [21] and quantum magnetism

[22] due to their long-range interactions as demonstrated

here in the presence of a free spin-polarized Fermi gas.

Adding long-range interactions to cold atomic quantum

gases could enable the realization of novel quantum phases
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and phase transitions [23–26]; for example, supersolids

[21, 27–30] or quantum magnets [22, 31–33] in optical

lattices may exist in the presence of (spin dependent)

nearest neighbor interactions. Several techniques have been

proposed to create such interactions: exchange interactions

in lattices; electric and dipolar interactions; and the inter-

actions between Rydberg atoms. The native exchange

interaction in optical lattices [31, 32] is relevant only at the

lowest temperatures. In contrast, dipole–dipole interactions

can lead to strong long-range interactions, for example,

with the native magnetic dipole interaction between atoms

with large angular momentum [34, 35], induced electric

dipoles in Rydberg atoms or polar molecules. Heteronu-

clear molecules such as 6Li 133Cs and 6Li 87Rb are par-

ticularly interesting due to their large 5.48 and 4.1 D (1 D

^ 3.3 9 10-30 C-m) electric dipole moments [36]. With

those polar molecules, nearest neighbor interactions would

be few hundred times stronger than typical for on-site

interactions in ultra-cold atomic systems [37]. On the other

hand, paramagnetic atoms, e.g., 52Cr with its 6 lB magnetic

moment generates a magnetic dipole moment induced

long-range interaction, which for typical densities is about

six times weaker than their s-wave contact interactions

[38]. Finally, Rydberg atoms have strong interaction over a

very long-range due to their large electric dipole moments

[39]. Each of these approaches for creating long-range

interactions is possible in principle but is technically

challenging.

In this article, we describe coupling between bosons

mediated by the exchange of a fermion-hole pair as

depicted in Fig. 1. In Sect. 2, we derive an analytic form

of this interaction at 2nd order, both directly in pertur-

bation theory and also using the random phase approxi-

mation (RPA) [40]. In Sect. 3, we show that 3-body loss

process is suppressed as the bosons enter at the Mott-like

normal phase. In Sect. 4, we estimate the interaction

strength and the loss taking alkaline bosonic and fermi-

onic mixtures as examples. Finally in Sect. 5, we dem-

onstrate that our system leads to a flexible implementation

of long-range interactions capable of creating both su-

persolids or the transverse Ising model in the bosonic

system.

2 Theory

Here, we consider a system of two bosons interacting in the

presence of a large non-interacting spin-polarized T = 0

Fermi gas with NF particles and density nF, as shown in

Fig. 1a. For simplicity, we assume the fermion density is

uniform in the vicinity of bosons. jWB k1; k2ð Þi is the wave

function of bosons with momenta k1 and k2, and jWDFGi is

the wave function of the ground state of degenerate Fermi

gas (DFG). For uniform systems, the unperturbed ground

state energy of the of the gas mixture is

Eg ¼
�h2ðk2

1 þ k2
2Þ

2mB

þ 3

5
NFeF ; ð1Þ

where jgi ¼ jWB k1; k2ð ÞibjWDFGi: The Fermi energy

eF ¼ �h2k2
F=2mF for fermions of mass mF, Fermi wave

vector kF and Plank’s constant �h: The first-order

corrections to Eg arise from interactions between

particles. While the bosons can interact with themselves,

Pauli blocking does not allow s-wave interaction among

spin-polarized fermions, however, that does not prevent s-

wave interactions between bosons and fermions. Thus, a

boson and a fermion with initial momenta k1 and ki could

scatter off each other into final momenta k01 and kf. Over

the course of time, the initially scattered fermion-hole pair

(with fermion momentum kf) can interact with the second

boson with momentum k2 and scatter it into k02: The

fermion simultaneously recombines with the hole,

returning to its initial momentum ki, leaving the Fermi

sea unchanged, as depicted in Fig. 1b. This process gives

rise to an effective potential between bosons. Any higher-

order interactions might lead to a quantitative correction of

the Fermi-induced Bose–Bose interactions which is beyond

the scope of this article. The Hamiltonians describing the

intra- and inter-species interactions can be written in

second-quantized notation as

ĤBB ¼
gBB

2

Z
d3rŵyðrÞŵyðrÞŵðrÞŵðrÞ

ĤBF ¼ gBF

Z
d3rŵyðrÞûyðrÞŵðrÞûðrÞ;

ð2Þ

where ŵðrÞ and ûðrÞ are field operators describing the

annihilation of bosons and fermions, respectively. gBB ¼
4p�h2aBB=mB; gBF ¼ 2p�h2aBFð1=mB þ 1=mFÞ are the intra-

and inter-species coupling constants [41, 42]. aBF and aBB

(A) (B)

Fig. 1 Essential mechanism for effective Fermi-mediated Bose–Bose

interaction. a Density distributions of bosons (red) and fermions

(blue) in a harmonic trap of trapping frequency 100 Hz where bosons

are embedded in spin-polarized Fermi gas. b Schematic of the

propagation of fermion-mediated interactions between two long

distant bosons. Bosons and fermions are represented by solid and

dashed lines, respectively
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are Bose–Fermi and Bose–Bose s-wave scattering lengths

and mB and mF are their masses.

2.1 Perturbation method

Due to the exchange of a fermion-hole pair (a second order

process), two bosons separated by a distance R will interact

[43]. The effective Hamiltonian [44] for the bosonic system

describing this fermion-mediated interaction is

Ĥ0 ¼ P̂gĤBF

X
jei

jeihej
Ee � Eg

� � ĤBFP̂g

¼
X
fk1;k2g

jgi
X
jei

hgjĤBFjeihejĤBFjgi
Ee � Eg

� �
2
4

3
5hgj;

ð3Þ

where the projection operator, P̂g ¼
P
fk1;k2g jgihgj;

consists of the sum over all states where the Fermi gas is

in its ground state jWDFGi: The sum in Eq. (3) includes all

states jei of the joint Bose–Fermi system where the

fermionic system is not described by jWDFGi: The

denominator in Eq. (3) is the unperturbed energy

difference of the Bose–Fermi system between states jgi
and jei: Using the Fourier transform form of HBF as given

in Eq. (2), the required matrix element (considering the

projection in the fermionic sector) in Eq. (3) is

hejĤBFjgi ¼ gBF

Z
d3fk1; k

0
1; ki;kf g

ð2pÞ9
ŵyðk01Þŵðk1Þ

� dð3Þðk1 � k01 þ ki � kf Þhejûyðkf ÞûðkiÞjgi;
ð4Þ

where d(3)(k) is the Dirac delta function arising from

conservation of momentum. Throughout this manuscript,

the integration variables are contained between { }-

brackets. The combined fermionic part from both of the

matrix elements is further reduced to

hejûyðkf ÞûðkiÞjgihgjûyðkiÞûðkf Þjei
¼ HðjkF � kijÞHðjkf � kFjÞ;

ð5Þ

where HðkÞ represents Heaviside step function. The H-

function arises from hejûyðkf ÞûðkiÞjgi assuming that jgi
describes a T = 0 non-interacting Fermi gas. This results

from the fact that the first scattering event transfers the

fermion from below the Fermi sea to the above and is

transferred back in the second scattering.

In this manuscript, we focus on a system of light fer-

mions where mF� mB. In particular, a momentum change

q ¼ jki � kf j ¼ jk01 � k1j would have a larger energy cost,

M�F ; in light fermions compared to M�B in heavy bosons.

For a relatively small momentum exchange, q B 2kF, the

ratio of the energy shifts is M�F=M�B ¼ ð2kF=qÞmB=mF �

1: With this assumption, the denominator of Eq. (3) redu-

ces to �h2ðk2
f � k2

i Þ=2mF: With these, Eq. (3) becomes

Ĥ0 ¼ 1

2

Z
d3fk1; k

0
1; k2;k

0
2g

ð2pÞ12
ŵyðk01Þŵðk1Þŵyðk02Þŵðk2Þ

dð3Þðk1 � k01 þ k02 � k2Þ G� Fðjk01 � k1jÞ
� �

;

ð6Þ

where FðqÞ is the integrated fermionic part described

below, which depends on momentum exchange. The

associated pre-factor G ¼ 4mFg2
BF=�h2 has dimensions of

Energy � Length4:

Using both H-functions and the d-function, the fermi-

onic contribution simplifies to

FðqÞ ¼ ð2pÞ4

q

Z
dki

Z
dðcos hÞ k2

i

qþ 2kicosh
; ð7Þ

where h is the angle between ki and q. The limits of the h-

integration depend on q: For q B kF, backscattering of

fermions at kF is impossible and ki will have a lower bound

of (kF - q); in an intermediate range, kF B q B 2kF,

fermions up to (q - kF) can be backscattered and the rest

will be restricted to scatter within a range of angle h‘
described below and lastly when q C kF the integration is

unrestricted. The Heaviside step function Hðjkf � kF jÞ �
Hðjqþ ki � kF jÞ implies the maximum scattering angle

cos h‘ ¼ ðk2
F � k2

i � q2Þ=2qki: For any q, Eq. (7) integrates

to

FðqÞ ¼ ð2pÞ4

16q
2kFqþ ð4k2

F � q2Þ tan h�1 2kF

q

����
����

� �
: ð8Þ

Since the magnitude of FðqÞ drops monotonically with

q as shown in Fig. 2, the effective Bose–Bose interactions

favor small momentum exchange.

Fig. 2 Distribution of FðqÞ as a function of momentum exchange

q at three different domains i.e., |q| B |kF| (blue), |kF| B |q| B 2|kF|

(green), |q| C 2|kF| (red)
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The spatial dependence of H0 can be obtained from the

Fourier transform of Eq. (6). The inverse Fourier trans-

formation of the bosonic field operators reduces Eq. (6) to

H0 ¼ 1

ð2pÞ5
Z

d3fr1; r2g
jr1 � r2j

ŵyðr1Þŵðr1Þŵyðr2Þŵðr2Þ
h

G

Z 1
0

dq qFðqÞ sin qjr1 � r2j
�
;

ð9Þ

where |r1 - r2| = R denotes the separation between

bosons. The remaining integral over q can be evaluated

[45], giving

H0 ¼ 1

2

Z
d3fr1; r2gŵyðr1Þŵyðr2ÞV 0ðr1 � r2Þŵðr2Þŵðr1Þ;

ð10Þ

with an effective potential

V 0ðRÞ ¼ �Gk4
F

2

sin 2kFR� 2kFR � cos 2kFR

ð2kFRÞ4
: ð11Þ

This potential, an ultra-cold atom analog of the RKKY

potential, has nonzero range, and is modulated on a char-

acteristic length scale ‘ = p/kF.

The spatial dependence of V 0ðRÞ is shown in Fig. 3. The

inter-boson separation R is given in units of ‘ derived from

the Fermi wave vector. The amplitude of the Friedel-type

oscillations decays at longer separation of bosons [46, 47].

The effective potential V 0ðRÞ is identical to the RKKY

interaction in solids, where two nuclear spins interact by

exchanging a conduction electron-hole pair [48–50]. RKKY

interactions are important in many systems, for example, in

ferromagnetic layers isolated by non-magnetic metal layer

[51, 52] and possibly in iron-based superconductors [53].

2.2 Random phase approximation

A second approach to this problem is to identify a response

or screening function in the system. In our case, each boson

locally alters the fermion density leading to a long-range

density modulations described by response function v [21].

Linear response theory can be used, provided the fermion

density is only slightly changed. This approximation

method leads the fermion-mediated boson–boson interac-

tion energy to

H0 ¼
Z

d3rg2
BFvðr1 � r2Þŵyðr1Þŵðr1Þŵyðr2Þŵðr2Þ; ð12Þ

where v(r1 - r2) is the Lindhard response function [54]. In

this expression, we used the static response function, which

implies that the light fermions redistribute their density on

time scale rapid compared to the dynamical time scale of

the bosonic subsystem. Now considering the momentum of

the fermion below Fermi level is ki = k - q/2 and above

kf = k ? q/2 (Fig. 1), the response function in terms of

fermion’s momentum is

vðqÞ ¼
Z

d3k

ð2pÞ3
f ½�ðk� q=2Þ� � f ½�ðkþ q=2Þ�
�ðk� q=2Þ � �ðkþ q=2Þ þ ig

; ð13Þ

where f ð�Þ is the probability distribution function of

Fermions at any energy, �; and g is the retardation

parameter. For non-interacting Fermi gas the distribution

function is

f ð�Þ ¼ Hð�F � �Þ: ð14Þ

This implies f �ðk� q=2Þð Þ � f �ðkþ q=2Þð Þ ¼ H �ðkFÞ�ð
�ðkÞÞ; so Eq. (13) reduces to

vðqÞ ¼ � 2mF

ð2p�hÞ2
1

q

ZkF

0

dk k log
2k � q

2k þ q

����
����

0
@

1
A: ð15Þ

The integrand in the above equation is identical to that

in Eq. (7) following integration over h, showing that both

approaches give the same result.

2.3 Discussion

This fermion-mediated effective boson–boson interaction

can be compared with the bare bosonic interaction. Con-

sider a sufficiently dilute Bose gas, where V 0ðRÞ can itself

be replaced with a contact potential. The corresponding

contact interaction potential is of the form of Vðr1 � r2Þ ¼
g0 � dðr1 � r2Þ: In the Born approximation, i.e., q! 0; the

effective boson–boson coupling constant is g0 ¼R
d3RV 0ðRÞ; which becomes

g0 ¼ � 4p�h2

mB

1

32kF

� mB

mF

gBFk3
F

�F

	 
2
" #

: ð16Þ

Here, the effective scattering length, defined by

Fig. 3 The spatial dependence of the fermion-mediated Bose–Bose

interaction V 0 is shown in an arbitrary unit (a.u.)
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aeff ¼
9p4mB

8kFmF

gBFnF

�F

	 
2

; ð17Þ

is tuned either by Feshbach resonance or by changing the

fermion density, since kF = (6p2nF)1/3. Because g0_g2
BF;

the effective contact interaction is always attractive. This

need not be the case for interactions between bosons in

different hyperfine states. We use notations, : and ;, to

represent bosons in two different spin states. The new

coupling constant, g0"#_g"F � g#F; can be either attractive or

repulsive depending on the signs of g:F and g;F. Addi-

tionally g0"# can be tuned using a Feshbach resonance that

changes just one of g:F or g;F. As an example, coupling

constants g0; g0"# and gBB are compared in Sect. 4 for Bose–

Fermi mixtures of j87Rb; 1; 1i ¼"; j87Rb; 1; 0i ¼# and 6Li.

Given that the effective potential can be comparable in

strength to the boson contact interaction, we now focus on

the important fact that V 0ðRÞ has a non-negligible range

_p=kF (see inset to Fig. 3). The spatial dependence at any

short range is quite unlike to the dipole–dipole interaction

potential which varies VdipoleðRÞ_1=R3; instead the short-

range interaction V 0ðRÞ_1=R: Remarkable work on creat-

ing ultra-cold molecules [55] and Rydberg atoms [56] with

large electric dipole moments or producing condensates of

atoms with large magnetic moments [57] ia a step forward

to study many-body dynamics associated with long-range

forces. In comparison to the dipole-dipole interaction, the

new V 0 is isotropic in space. (Although a spatial depen-

dence of fermion density nF(R) will lead to anisotropic

position-dependent interaction.) In addition, both the

magnitude and sign of V 0 is tunable with the help of

Feshbach resonances, a freedom that is unavailable for

dipole–dipole interactions. Thus, these mediated interac-

tions can access a different class of many-body systems

than dipolar gases can.

3 Suppression of three body recombination

Three-body (3N) recombination—a common loss mecha-

nism in ultra-cold atom systems—is a process where three

incoming atoms collide, and two form a bound state; this

dimer and the remaining atom carry out the binding energy,

simultaneously conserving momentum. The 3N-loss rate is

dn=dt_ n3; and this loss generally dominates for atomic

densities nJ1015 cm�3 [58]. Near Feshbach resonances,

the scattering length a changes rapidly and the rate constant

is enhanced. For recombination of three identical bosons,

the 3N-loss rate is proportional to a4 [59, 60]; in contrast,

for two bosons and a third atom of different species that

rate is instead proportional to a2 [61] for a Bose–Bose

scattering length a.

In mixtures of s-wave interacting bosons and spin-

polarized fermions, the formation of Fermi–Fermi bound

states is greatly suppressed. Thus, in such mixtures, 3N-

recombination is dominated by the formation of Bose–

Bose dimers, B2 and Bose–Fermi dimers BF. Generally,

sufficiently near inter-species Feshbach resonances, the

3N-recombination is dominated by the formation of BF-

dimers; this process can become the limiting factor in

experiment by reducing the lifetime of the atomic ensemble

by orders of magnitude [70]. We propose to use bosons in a

Mott-like normal state with single occupation per lattice

site while the fermions still form a free Fermi gas, absent of

any significant lattice potential. This combination can

greatly reduce the 3N-recombination rate. The rate equa-

tion for the average loss of bosons hNi from lattice is

modified to

d

dt
hNi ¼ �K3

Z
d3rhn3i; ð18Þ

where K3 is the rate coefficient for 3N-recombination. In

our gas mixtures, the quantity hn3i is derived from

hbnBðbnB � 1ÞðbnB � 2Þi and hbnBðbnB � 1ÞihnFi for the 3N-

formation of dimer-atom pairs B2 ? B, B2 ? F and

BF ? B, respectively. The BF ? B channel generally

dominates near inter-species Feshbach resonances. Here,

we assume that fermions are distributed over a larger

spatial region than the lattice bosons (Fig. 1a); hence, nF is

taken to be homogeneous. In this section, we estimate 3N-

recombination rate of bosons confined in a three-dimen-

sional optical lattice, by obtaining hndi ¼ h
Qd�1

n0¼0ðnB � n0Þi
(integer d) from the finite temperature Bose–Hubbard

model.

The Bose–Hubbard Hamiltonian, including fermion-

mediated nearest neighbor interactions, is extended to

ĤBH ¼ �t
X

j

ðb̂yj b̂jþ1 þ h:c:Þ þ U

2

X
j

n̂B;jðn̂B;j � 1Þ

� l
X

j

n̂B;j þ V
X

j

n̂B;jn̂B;jþ1;

ð19Þ

where b̂
y
j ðb̂j) are the creation (annihilation) operators at the

j-th lattice site; n̂B;j ¼ b̂
y
j b̂j is the boson density; t is the

amplitude for hopping from one site to the next; U and

V represent the on-site and fermion-mediated nearest

neighbor interactions between bosons; and l is the bosonic

chemical potential. The first order effect of the fermions, as

given in Eq. (10), is to shift the chemical potential to l ¼
el þ gBF � hnFi; where hnFi is the local fermion density.

Fermion-mediated interactions beyond the nearest neighbor

are in principle present (Fig. 6b), and important depending

on hnFi; however, we choose to focus on a Fermi system
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for which the nearest neighbor interaction dominates. The

effective V can be obtained by expressing the continuum

bosonic field operators in terms of Wannier functions

x(r) as ŵj ¼ b̂jxðrÞ [similarly ŵyj ¼ b̂
y
j x	ðrÞ].

To estimate the rate of 3N-recombination, we performed

a mean field calculation of the Bose–Hubbard Hamiltonian

using the decoupling approximation [62, 63]. In this

approximation, we can compute the desired local correla-

tion functions as well as the superfluid order parameter

hb̂ii: The phase diagrams for equilibrium bosons at kB

T = 0 and 0.05U are shown in Fig. 4. With this knowledge

of Mott-like normal (normal) and superfluid (SF) phases at

any values of t and U, we compute the expectation values

relevant to the 3N-recombination in individual lattice sites

Yd�1

n0¼0

ðnB � n0Þ
* +

¼
Z1

0

d3rjxðrÞj2
Yd�1

n0¼0

ðnB;j � n0Þ; ð20Þ

where d = 2 and 3 for their integer numbers. In the fol-

lowing section we compute the 3N-loss rate in the 87Rb–6Li

system.

4 Alkali Bose–Fermi mixtures

Alkali-metal atoms are widely used in ultra-cold atom

experiments due to their well-understood properties and

relatively straightforward laboratory implementation.

Among them, the non-radioactive bosonic species are
7Li, 23Na, 39K, 41K, 85Rb, 87Rb, 133Cs, and the fermionic

species are 6Li, 40K. Figure 5 shows the strength of fer-

mion-mediated effective Bose–Bose scattering g0; as given

in Eq. (16), is estimated for various possible alkaline Bose–

Fermi gas mixtures. In this section, we identify the optimal

alkali Bose–Fermi mixtures (87Rb–6Li or 133Cs–6Li,

although the scattering properties of the later are

unknown), where bosons are deeply bound in an optical

lattice in the presence of nominally free fermions. Further,

we investigate the loss rate of atoms due to 3N-recombi-

nation and compare different interactions present in a

Bose–Fermi mixture as described in Sect 2.

The periodicity of a three-dimensional optical lattice

potential, VðrÞ ¼ V0

P
u¼x;y;z sin2ðkruÞ; depends on the

kr = 2p/k wave vector of the lattice laser, i.e., at a wave-

length k. The depth of the potential V0 ¼ �IaðkÞ=2e0c is a

function of wavelength-dependent polarizability a(k), and

optical intensity I. Here e0 is free space permittivity, c is

velocity if light. We use k = 1,064 nm throughout this

article. Values of a(k) and the photon recoil energy

Er(k) = h2/2mk2 for the alkaline elements are listed in

Table 1.

The lattice depth for the alkali atoms are also compared

in Fig. 6a. Physically one can also understand Fig. 6 that a

heavy boson would be more localized in an optical lattice

due to its small Er where as light fermions would hardly

experience the lattice.
87Rb and 6Li have a mass ratio mB/mF = 14.5: an

excellent combination for investigating the interaction

described in this article (Fig. 6). The coupling constants g0

and g0"# for a binary j6Li; 1=2; 1=2i 
 j87Rb; 1; 1i system

and for mixtures of j6Li; 1=2; 1=2i 
 ðj87Rb; 1; 1i þ
j87Rb; 1; 0iÞ are shown in Fig. 7 near the vicinity of the

j6Li; 1=2; 1=2i 
 j87Rb; 1; 1i Feshbach resonance. The

resonance has been experimentally located at magnetic

field B0 = 106.692 mT and has a width dB = 1.062 mT

[70]. The coupling constant g0 is magnetically tunable

and scales like 1þ dB= B� B0j jð Þ2: Using the effective

Fig. 4 Mean field phase diagram of the 3D Bose–Hubbard model

showing Mott-like normal to superfluid transition at temperatures kB

T = 0, and 0.05U. The blue curve indicates the zero temperature

phase diagram and the red curve is for nonzero temperature. The

black dashed lines denote the contours of integer boson density at

T = 0

Fig. 5 Variation of effective boson–boson coupling constant g0=h at

kF = 2p/k with boson to fermion mass ratio mB/mF for possible Bose–

Fermi mixtures of non-radioactive alkali atoms. The inter-species

scattering lengths are adopted from following references 23Na–40K

[64], 7Li–6Li [65], 41K–40K [66], 87Rb–40K [67], 23Na–6Li [68],
87Rb–6Li [18]. The 133Cs–6Li scattering length is currently unknown,

we therefore do not specify g0
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interaction g0 and g0"#; the j6Li; 1=2; 1=2i 
 ðj87Rb; 1; 1i þ
j87Rb; 1; 0iÞ mixtures opens the possibility to tune the

g0"# / 1þ dB= B� B0ð Þ on either of the attractive or

repulsive sides with the same magnetic field. The Bose–

Bose interaction is constant over this magnetic field range

(Fig. 7) due to absence of any Feshbach resonances [71].

All different types of interactions become comparable

when B - B0 = dB/2 a region of particular interest for

future investigations (Sect. 5).

In a 87Rb–6Li mixture, Rb2 dimers can form from col-

lisions between 3 9 Rb or 2 9 Rb ? Li atoms; near the

Feshbach resonance, the rate of Rb Li dimer formation is

enhanced by four orders of magnitude. The rate coefficients

for all 3N-recombination channels in a 87Rb–6Li mixtures

are listed in the Table 2.

The computed 3N-loss rates for Rb2 ? Rb, Rb2 ? Li

and Rb ? Rb Li channels at both normal phase with

single occupation per site and SF phases are shown in

Fig. 8a. In the SF region, Rb2 ? Rb recombination

channel is more likely since the intra-species scattering

length aRb-Rb is five times larger than the inter-species

scattering length aRb-Li. In that region, the collision rate

of the non-localized atoms increases; thus, recombination

increases monotonically with density and hence l. In a

normal phase with less than three 87Rb atoms per site,

formation of Rb2-dimer by 3 9 Rb recombination is

prohibited. Also, the 2 9 Rb ? Li collision is blocked

with single-site occupation, of 87Rb. In the higher Mott-

lobes with increased 87Rb occupation hnBi; the loss rate is

quadratic in hnBi for 2 9 Rb ? Li collision and cubic in

hnBi for 3 9 Rb collision (Fig. 8b). Thus, a normal phase

with hnBi ¼ 1 will suppress atoms loss through all 3N-

recombination channels even at the Feshbach resonance.

This allows the practical creation of strong fermion-

mediated boson–boson interactions comparable in

strengths with on-site interaction.

5 Many-body systems

Large fermion-mediated interactions between bosons in

neighboring lattice sites and beyond opens the door for

studying a range of unexplored many-body phases. In this

section, we discuss how SS and quantum magnetic (QM)

phases can be realized in the bosonic component of
87Rb–6Li mixtures with bosons localized in the sites of an

optical lattice. The fermion-mediated interactions, as given

in Eq. (10), gives the extended Bose–Hubbard [Eq. (19)]

nearest neighbor (NN) potential

V ¼
Z1

0

d3fr1; r2gjwðr1 � rjÞj2

V 0ðjrjþ1 � rjjÞjwðr2 � rjþ1Þj2;

ð21Þ

where |rj?1 - rj| = k/2 is the lattice spacing (Fig. 6b), and

w(rj) is the Wannier function [74] describing a boson

localized in the j-th lattice site.

For these nearest neighbor interactions to be relevant at

current experimental temperature scales, V should be

comparable to the U native on-site contact interactions

0 0.25 0.5
0Po

te
nt

ia
l, 

V
o 

[E
r]

Laser Power [W]

10

20 6Li

87Rb

Rb -
lattice

Li - 
lattice

j j+1

(A) (B)

Fig. 6 a Depth of the lattice potential of alkali atoms: Li (gray), Na

(green), K (blue), Rb (orange) and Cs (black) in an optical lattice

constructed of laser at wavelength k = 1,064 nm. b Artistic view of

long-range interactions among deeply bound 87Rb atoms in the optical

lattice, which are mediated by nearly free spin-polarized 6Li in the

same environment. The estimated next nearest neighbor interaction

for Fermi density 2 9 1013cm -3 and lattice spacing 532 nm is three

orders of magnitude weaker than the nearest neighbor interaction

Table 1 Single photon recoil energy Er and polarizabilities a(k) at

wavelength k = 1,064 nm for some common alkaline-metal atoms

[69]

6Li 23Na 40K 87Rb 133Cs

Er [910-30 J] 19.3 5.03 2.89 1.33 0.87

a [A2 s4 Kg-1] 270.8 233.6 597.5 689.9 1,162.1

Fig. 7 Dependence of g0 (red), g0"# (green) and gBB (blue) for

j87Rb; 1; 1i þ j87Rb; 1; 0ið Þ 
 6Lij1=2; 1=2i mixtures on magnetic

field. The j87Rb; 1; 1i 
 6Lij1=2; 1=2i Feshbach resonance at the

magnetic field of 106.692 mT tunes the j87Rb; 1; 1i - j6 Li; 1=2; 1=2i
interactions. Dashed and solid lines distinguish the repulsive and

attractive interactions
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U ¼ gBB

Z1

0

d3r1jwðr1Þj4: ð22Þ

For 87Rb, U is repulsive and on the order of kHz for lattice

depths in the 5Er to 20Er range and the Vex = 2t2/U nearest

neighbor exchange energy is at most at the Hz energy scale

for a unit filled MI. Figure 9 compares the strength of the

nearest neighbor interactions V to the native on-site inter-

actions U.

The thermal energy of a BEC in an optical lattice

depends on the lattice depth and is typically cooler than the

same BEC before the lattice was applied (due to adiabatic

cooling) [75]. Even with this cooling, currently achieved

temperatures are still large compared to Vex. Thus, many-

body physics due to Vex remains experimentally unre-

vealed. However, the Feshbach-tunable fermion-mediated

nearest neighbor interaction is a much larger artificial

magnetic interaction between bosons.

In many theoretical studies [21, 28–30], SS phases have

been predicted for the Hamiltonian in Eq. (19). Our model

system should realize a SS phase when the mediated NN

interaction becomes comparable to the on-site U. A

repulsive NN coupling between identical bosons can be

obtained when the lattice spacing d is comparable to the

first peak of the Friedel oscillation in V 0ðrÞ; i.e., d = 0.9 ‘

in Fig. 3. A repulsive NN interaction at this lattice spacing

can be obtained by proper choice of Fermi density nF. A

typical experiment would start with a unit occupancy MI

state (hnBi ¼ 1 and U � zV for z number of nearest

neighbors). Subsequently, tuning the NN interaction such

that (zV - U)/2 & t would yield a SS phase for average

boson densities between 1/2 and 1 per site [76, 77]. This

can be achieved by adiabatically relaxing the external

trapping potential as t and V are increased. At larger hnBi,
phase separation is expected.

Quantum magnetism is another very interesting phe-

nomena [22]. Experimentally, such phases have been real-

ized with chain of trapped ions [78] also recently with ultra-

cold atoms in an optical lattice [79, 80]. In our system, QM

phases can be created with two different hyperfine states

realizing a pseudo-spin 1/2 system, where j"i and j#i label

the two spin components j87Rb; 1; 1i and j87Rb; 1; 0i,
respectively. The Hamiltonian including the fermion-med-

iated interactions of these pseudo- spin-1/2 bosons is

Table 2 List of 3N-recombination processes in the mixture of bosonic 87Rb and fermionic 6Li gases in the lowest energy Zeeman sublevels

j87Rb; 1; 1i and j6Li; 1=2; 1=2i, respectively. For Feshbach-enhanced recombination, the magnetic fields are listed

Recombination

type

K3 [cm6/s] Magnetic

field [mT]

Scattering

channel

3 9 Rb 10-28 [72, 73] (Background) s-wave

2 9 Rb ? Li (6.7 - 44) 9 10-29 [70] (Background) s-wave

2 9 Rb ? Li (1.1 - 6.1) 9 10-26 [70] 88.202 s-wave

2 9 Rb ? Li (7.9 - 67) 9 10-26 [70] 106.692 s-wave

3 9 Li (2.4 - 20) 9 10-24 [70] 15.855 p-wave

Rb ? 2 9 Li (4.7 - 95) 9 10-26 [70] 15.855 p-wave

(B)(A)

Fig. 8 Three body decay rates far from the Feshbach resonance due

to the formation of Rb2 ? Rb (red) and Rb2 ? Li (black) pairs: a for

hnii ¼ 1 starting in the normal phase and crossing into the SF region,

b in the normal phase at T = 0.05U for hnii� 1 (commensurate

fillings). In this plot, we considered 87Rb atoms in the lowest Bloch

band of a 20Er deep optical lattice and with fermion density

nF = 2 9 1013 cm-3 (corresponding to a Fermi wave vector

kF = 2p/k, matched to the k = 1,064 nm optical wavelength)

Fig. 9 Tuning of fermion-mediated nearest neighbor interactions

with magnetic field for various combinations of 87Rb spin states that

are immersed in a 6Li bath. The coupling constants are computed for
87Rb atoms arrayed in a 532 nm period optical lattice: atoms in

j87Rb; 1; 0i interacting with strength V;; (cyan), j87Rb; 1; 1i interact-

ing with strength V (red), a mixture of both spin states interacting

with strength V:; (green) and the on-site s-wave interaction of 87Rb

atoms U (blue). Repulsive (attractive) interactions are denoted by

dashed (solid) curves. In this plot, we consider the 106.692 mT

j87Rb; 1; 1i 
 j6Li; 1=2; 1=2i Feshbach resonance
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Ĥ
"#
BH ¼ �l

X
r;j

n̂B
r;j � t

X
r;j

b̂
y
r;jb̂r;jþ1 þ h.c.

h i

þ U

2

X
r;j

n̂B
r;jðn̂B

r;j � 1Þ þ U
X

j

n̂B
";jn̂

B
#;j

þ V##
X

j

n̂B
#;j n̂

B
#;jþ1 þ V

X
j

n̂B
";j n̂

B
";jþ1

þ V"#

2

X
j

n̂B
";jn̂

B
#;jþ1;

ð23Þ

where b̂
y
r;j describes the creation of a boson in site j with

spin r 2 f"; #g and the spin-dependent NN interactions are

tunable by Feshbach resonance as shown in Fig. 9. In this

model, the hoping, on-site interaction, and effective

chemical potential are all state independent. The

Schwinger boson representation [81], i.e.,

Ŝx
j ¼

1

2
b̂
y
";jb̂#;j þ b̂

y
#;jb̂";j

� �

Ŝ
y
j ¼ �

1

2
i b̂
y
";jb̂#;j � b̂

y
#;jb̂";j

� �

Ŝz
j ¼

1

2
b̂
y
";jb̂";j � b̂

y
#;jb̂#;j

� �
¼ 1

2
n̂B
";j � n̂B

#;j

� �

n̂B
j ¼ n̂B

";j þ n̂B
#;j;

ð24Þ

represents the Hamiltonian [Eq. (23)] in terms of spin

operators. A spin model for ultra-cold atoms in an optical

lattice with only exchange induced NN interactions was

studied by Duan et al. [31], and we add the effect of

tunable true NN interactions. Neglecting the effect of the

tunneling and on-site interactions, the spin model from the

remainder of Eq. (23) is

ĤS ¼aðBÞ
X

j

n̂B
j n̂B

jþ1 þ 2bðBÞ
X

j

n̂B
j � Ŝz

jþ1

þ cðBÞ
X

j

Ŝz
j � Ŝz

jþ1;
ð25Þ

where a(B) = (V ? V;; ? 2V:;), b(B) = (V - V;;) and

c(B) = V ? V;; - 2V:; are Feshbach tunable. The first

term in ĤS gives only a net shift of the mean energy, the

second term gives interaction of atoms with the magnetic

field produced by next lattice sites and the last term gives

interaction between transverse components of the magnetic

fields produced at the consecutive sites. Together, these

form a quantum Ising pseudo-spin model with longer-range

spin correlation in neutral atoms. Although the spontaneous

magnetic ordering takes place at a temperature typically

three orders of magnitude smaller than the achievable

temperature in current experiments, the Feshbach-

enhanced NN pseudo-spin interaction can overcome the

thermal energy and various intriguing many-body phases

might be enlightened.

6 Conclusions

In this Article, we described a way of creating long-range

interactions between distant bosons mediated by the

exchange of fermions excited from a spin-polarized, non-

interacting, degenerate Fermi gas. A mixture of heavy

bosons and light fermions is ideal because a lattice will

localize bosons while the fermions can move freely. The

3N-recombination will greatly be suppressed in the unit

occupied bosonic Mott-like normal phase. This proposal

takes advantage of the Feshbach tunability of the NN

interaction that might create SS and QM phases in ultra-

cold bosons.
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