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Abstract We investigate radiation of the solitary waves

in the first band gap of the waveguide array with a defo-

cusing nonlinearities of different types (Kerr nonlinearity

and saturating nonlinearity). We confirm recent findings

that gap solitons (GSs) are unstable for their eigenfre-

quencies around the middle of the band gap for Kerr

nonlinearity. The instability is mediated by four-wave

mixing process and appears in the form of radiation of

solitons into mode continua of the upper and lower bands.

We find that this soliton radiation is reduced (and even

suppressed completely) in case of a saturating nonlinearity,

resulting in substantial stabilization of the GSs.

1 Introduction

Nonlinear Schrödinger equation (NLSE) is a widespread

model describing propagation of optical radiation in non-

linear media. Although being relatively simple, it describes

such diverse phenomena as optical soliton formation [1],

multi-soliton oscillations [2], femtosecond filaments [3],

supercontinuum generation [4–6], etc. Since the discovery

of the crucial role of the higher order dispersion terms

resulting in radiation emitted by NLSE solitons [7–9],

many subsequent studies have been devoted to the forma-

tion and tailoring processes of the supercontinuum gener-

ation in photonic crystal fibers (see e.g. [10, 11]). The

primary cause of the soliton radiation is due to the presence

of the resonant, with respect to the soliton frequency,

modes of the continua (Cherenkov radiation). Much less

attention was paid to the radiation of solitons, which reside

in photonic band gaps (BGs), i.e., in the frequency ranges

where the propagation of linear dispersive waves is for-

bidden, due to the modification of the linear dispersion by

the periodically modulated refractive index. Gap solitons

(GSs) were predicted and experimentally demonstrated in

Bragg gratings [12–15] as the localized bounded states of

the forward and backward propagating waves mutually

coupled via the longitudinally modulated refraction index

on the half-wavelength scale. Similar kind of the spatial GS

exists in media with refractive index modulation in the

transverse, say x, direction, and the light (soliton) propa-

gates along the longitudinal, say z, direction [16, 17]. In the

latter case, the spatial counterpart of the fiber grating is

realized by means of the von Laue diffraction-grating

scheme [18]. It is notable that the field configuration con-

stituting the temporal GS is analogous to that in the

waveguide array geometry of discrete solitons, which can

be understood by a formal mapping between the 1D?time

system (e.g., fiber grating) and the 2D system of the

waveguide arrays.

Contrary to the classical solitons generated in a semi-

infinite half-plane, GS is bounded by the maximum and

minimum frequency values due to the finite width of the

gap. This specifics can affect the stability of GS: as

recently demonstrated [19], radiation into continuum

modes is a possible physical reason for the instability of the
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GS behavior close to the middle of the BG. Such an

instability was mentioned in the number of the studies [12,

20–22]. Our proposal is that the instability of GS close to

the middle of the BG originates by the radiation from GS

due to the four-wave mixing (FWM) process. Indeed, as far

as the soliton frequency approaches the middle of the BG,

conservation laws for the FWM between solitonic field and

Bloch modes are satisfied, and a certain amount of the GS

energy is radiated simultaneously into continua of linear

waves of the upper and lower Bloch bands. Note that the

FWM mechanism discussed here could be perceived as

similar (from the viewpoint of parametric wave generation)

to that proposed for intrinsic modes in [23].

The quasi 1D photonic lattices can be fabricated in bulk

samples of photorefractive lithium niobate (LiNbO3)

crystal possessing a defocusing nonlinearity of the satu-

rating type [24]. Transparent LiNbO3 crystals with

imprinted refractive index lattices are a convenient media

for the studies of nonlinear photonics of periodic systems.

Hence, it makes sense to explore how the saturation of the

nonlinearity will affect the stability of GS behavior.

As only numerical solitary wave solutions of the NLSE

in periodic potentials are known, it is difficult to predict

how the saturation affects the radiation from BG soliton

mediated by FWM. Therefore, the primary objective of this

paper is to perform numerical analysis of the generalized

NLSE with the periodically modulated refractive index and

the saturating nonlinearity. We start from the dispersion

calculation for two cases of periodic potentials and intro-

duce a convenient method of the numerical analysis of

solitons in the generalized NLS equation in Sect. 2. Fur-

ther, in Sect. 3, we present our main numerical results,

providing comparison of BG soliton propagation in one-

dimensional optical lattice of harmonic and rectangular

forms of the refractive index modulation and saturated

defocusing nonlinearity.

2 GS in 1D modulated media

We consider a (microscopic) model for the complex field

A(x, z) propagating in a bulk transparent media with the

periodically modulated transverse coordinate. Our model-

ing is based on the numerical solution of the generalized

NLSE. It is instructive to start this study from the linear

analysis, i.e., to consider propagation of linear waves in

specific periodic potentials.

2.1 The band structure: linear case

The propagation of linear optical waves in media with

the periodically modulated refractive index is most

straightforwardly described calculating eigenstates and

corresponding eigenenergies of the linear part of the NLSE

operator. Here, we restrict our analysis to one-dimensional

harmonic UðxÞ ¼ cosðxÞ and the periodic nearly rectan-

gular shape potential, which was considered as follows:

UðxÞ ¼
XN

n¼�N

exp½�ðx� 2pnÞ10�: ð1Þ

Both potentials are shown in Fig. 1.

Further throughout the paper, non-dimensional variables

are used; therefore, the period of modulation was set to 2p.

Accordingly, the reciprocal-lattice vector (kB = 2p/d, with

d being the period of the lattice) becomes unity.

In order to calculate the band structure (eigenenergies

and eigenvectors) of the operator:

i
oA

oz
þ o2Aðx; zÞ

o2x
� 2mUðxÞAðx; zÞ; ð2Þ

we apply the Bloch’s theorem and use the form

expðikxÞaðxÞ for the z independent part of the optical field.

Here, a(x) = a(x ? 2lp) is the periodic function with

integer l ¼ �N;�N þ 1; . . .;N � 1;N, where 2N ? 1 is

the number of modulation periods considered.

Function U(x) in Eq. (2) stands for the transverse profile

of the periodically modulated refractive index. Note that

(2) has only one free parameter—the modulation depth m,

as the both space coordinates x and z are normalized to

make the diffraction coefficient and the modulation wave

number unity.

By expanding functions a(x) and U(x) into Fourier

series:

aðxÞ ¼
X1

n¼�1
an exp½iðk � nÞxÞ;UðxÞ ¼

X1

n¼�1
un expðinxÞ;

ð3Þ

Fig. 1 Harmonic a and nearly rectangular b periodic potentials used

in modeling
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the band structure of the linear waves, expressed as a

function x(k), can be calculated by numerically solving

the eigenvalue problem of the operator (2):

2m
X1

j¼�1
ujanþj þ ðk � nÞ2an ¼ xðkÞan; ð4Þ

By truncating the series (3) to the finite number of

harmonic components M = 10, we arrive to the

determinant of the size 21 9 21, giving the dispersion

curves x(k) shown in Fig. 2.

The dashed lines in Fig. 2 indicate the dispersion of the

uncoupled harmonic components of the propagating field

in the case m = 0, whereas the solid lines indicate the

dispersion of the (Bloch) modes, formed due to the

refractive index modulation. Filled areas show the regions

forbidden for the propagation of linear waves, where BG

solitons reside. (Note, that both first and second gaps are

deeper for the case of the rectangular potential, as com-

pared to harmonic one with the same modulation amplitude

m). Further, we restrict our analysis to the BG solitons in

the first gap, fixing the reference frequency (x = 0) into

the middle of the gap and normalizing in such a way that

gap edges appear at x = ±0.5.

2.2 Calculation procedure: radiation from the BG

soliton

For modeling of the solitary waves propagating in the 1D

modulated structure with saturation effects, we use the

following form of the NLSE:

i
oA

oz
¼ o2A

o2x
þ jAj2A

1þ csatjAj2
� 2mUðxÞAþ iaA: ð5Þ

The coefficient csat in Eq. (5) characterizes the saturation

which limits the magnitude of the maximum amplitude of the

soliton. This, in turn, leads to such well known effects as

preventing collapse in self-focusing of optical beams (see

e.g. [25]). Further (in Sect. 3), it is shown that saturation

affects the FWM process, and eventually the radiation from

BG soliton, which is the main result of the present paper.

The role of the last term (amplification/attenuation

characterized by the coefficient a) on the right hand side of

Eq. 5 has to be discussed separately. Note that in order to

inspect how the saturation affects the GS, it is convenient

to tune the frequency x of this solution throughout the gap.

Unfortunately, such a solution is not available analytically

for the NLSE with a periodic potential. Therefore, we have

realized our idea numerically using the following method:

firstly, a stable soliton wave has been found numerically in

the area near the gap edge where its energy and frequency

(x) remain stable. After that, small amplification was

turned on and the soliton field was amplified adiabatically.

Proceeding with this amplification, we were able to tune

the soliton frequency x smoothly throughout the gap. The

solitons amplified adiabatically using the above described

procedure are shown in Fig. 3.

In our recent study using the same approach, we have

found that the GS in defocusing Kerr nonlinear media (with

the harmonic form of the potential) exists and is stable near

the upper band edge (x ^ 0.5) only and becomes unstable

for their eigenfrequencies around the middle (x ^ 0) of

the band gap, due to radiation into the mode continua of the

upper and lower bands. We demonstrate here such behavior

of the BG solitons for the periodic harmonic and near-

rectangular shape potentials in Fig. 4. Recall that the

propagation (longitudinal) coordinate z in Eq. (5) is nor-

malized to diffraction length, and the adiabatic amplifica-

tion rate is a = 10-5. Such a weak amplification ensures

adiabatic tuning of the numerical solution for the BG sol-

iton through the gap. Nonzero radiation, generated by

soliton and propagating toward the boundaries of integra-

tion region, depicted in Fig. 3a, b should be noted. As the

dissipative boundaries are considered in numerical inte-

gration, they do not affect the soliton propagation (being

sufficiently remote from it), but absorb the outgoing radi-

ation. As a consequence of this radiation, BG soliton loses

the energy, and its frequency increases from the middle

of the gap if the amplification (coefficient a in Eq. 5) is

turned off.

3 BG soliton in case of saturated nonlinearity

Here we explore the radiation (if any) from the GS for two

different forms of the potential U(x), by numerical inte-

gration of the generalized NLSE (5). The strength of the

saturation of nonlinearity is characterized here by the

coefficient csat. The profiles of the BG solitons in the

Fig. 2 Band structure (dispersion curves x(k)) obtained by numer-

ically solving the eigenvalue problem of the linear operator (2) for

harmonic a and rectangular b potentials (m = 0.1). In both cases, the

dispersion of uncoupled waves (m = 0) is represented by the dashed

lines. The corresponding Bloch states (forming band continua) are

depicted by solid lines. Shadings visualize a semi-infinite gap above

the 1-st Bloch band and two finite gaps in the dispersion of the

periodic structures
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middle of the gap (for the cases of the Kerr nonlinearity)

are shown above in Fig. 3. We supplement this case by

additional plots (see Fig. 5) providing comparison for the

evolution of frequency x(z) of the amplified GS in the 1D

photonic crystal with the pure Kerr nonlinearity for har-

monic (a) and nearly rectangular (b) potentials. Frequency

x(z) was evaluated numerically as:

xðzÞ ¼ o arg½Aðx; zÞ�
oz

� �

x

;

where h. . .ix means averaging over the transverse coordi-

nate x.

The only difference is a slightly prolonged distance of

propagation for the case of the rectangular potential (shown

in Fig. 5a, b, respectively) before the radiation from the BG

soliton becomes observable. This feature is due to the fact

that the rectangular potential possesses a broader BG as

compared to the case of the harmonic potential (see Fig. 2).

Having examined the stability of the 1D BG soliton in

the Kerr media with defocusing nonlinearity, we clarify

Fig. 3 Modulus of the BG soliton amplitude near the middle of the

gap, obtained by numerical analysis of Eq. (5) with the Kerr

nonlinearity (csat = 0) for harmonic and nearly rectangular potentials.

Non-vanishing radiation in the wings of the field profile, as compared

to the initial BG soliton profile (shown in the insets) should be noted

Fig. 4 Evolution of the adiabatically amplified GS in the 1D

modulated media with the pure Kerr nonlinearity with harmonic

a and rectangular b potentials. Density plots show |A(x,z)|2 evolution

during adiabatic amplification (with a 9 10-5) until the middle of the

BG is reached, where the radiation from BG soliton is generated.

(x = 0 corresponds to the soliton frequency in the center of the gap.)

Fig. 5 Evolution of the BG soliton frequency in the first BG of 1D

modulated media with the pure Kerr nonlinearity with harmonic a and

nearly rectangular b potentials. Lines (from right to left both panels)

correspond to frequency evolution for different amplification coeffi-

cients a 9 105 = 1, 2, 3, 4, 5, respectively. Zero frequency x = 0

corresponds to the center of the gap)
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next whether the recently discovered [19] feature (radiation

from the GS) persists in situation with the saturating non-

linearity of the same (defocusing) sign. Following the

above analysis of the evolution of the GS in the photonic

band gap, we consider first the case of ‘‘moderate’’ satu-

ration: csat = 1. In this case, as can be concluded from the

Fig. 3, the saturation effects of the nonlinearity are negli-

gible in the upper half of the BG. Probably, this is the

reason why GS behavior pictured in Fig. 6a does not show

significant changes, comparing to the case of Kerr non-

linearity. Evolution of the soliton frequency along the

propagation distance ends at a frequency in the middle of

the BG and is identical for both forms of the potential U(x),

and therefore, only the case for the rectangular potential is

shown here. Furthermore, it has been found that the BG

soliton frequency increases from the middle of the gap,

after the amplification was turned off, like in the case

without the saturation. On the other hand, quite a different

result was obtained in the case of strong saturation, i.e., for

csat = 5. In this case, as shown in Fig. 6b for the nearly

rectangular potential U(x), no signatures of the GS radia-

tion have been seen for the frequencies around the middle

of the BG. The soliton remains stable in the middle of the

gap and, surprisingly, continues being stable even in the

lower half of the BG. Solitons are destroyed (not shown

here) only at the frequency below the lower edge of the

BG, i.e., entering into the second continuum of the Bloch

states.

In Fig. 7, we show the calculated dependence of GS

radiative loss rate (blue points) and minimum frequency

xmin which can be reached by adiabatic amplification of

the GS (red squares), as a function of saturation parameter.

Quantitative changes (gradual disappearance of radiative

instability of GS) occur at around 2 B csat B 3. It is

instructive to relate the current results with the previous

findings [26, 27], whereas GSs in the defocusing nonlinear

media have been simulated numerically and observed

experimentally. Considering the values for relevant

parameters (radiation wavelength and the lattice period)

close to those used in experiments [26, 27] (0.5 and 10 lm,

respectively), we arrive at 100 lm for the diffraction

length. Distances at which radiation destroys GS are of

order of ten diffraction lengths, as follows from calcula-

tions. Therefore, 10 mm might be realistic distance at

which stabilizing effects of the saturating nonlinearity can

show itself in experimental situations similar to [26, 27].

4 Conclusions

We have analyzed the stability of the spatial gap soliton

behavior in a transparent media with the periodically

modulated refractive index. In the framework of the gen-

eralized NLSE, with a periodic potential and saturating

nonlinearity, we have confirmed some of our earlier pre-

dictions on the radiation from the spatial GS in the middle

of the gap for the moderate saturation coefficient (when the

nonlinearity is essentially of Kerr-type). Additionally, we

have demonstrated that the radiation from BG soliton

decreases for larger coefficient of the saturating nonlin-

earity and disappears completely for the sufficiently high

saturation. The effect can be understood physically taking

into account that the saturation of nonlinearity breaks the

optimal phase relation for the energy transfer due to the

FWM process, from solitonic field to continuum modes.
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