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Abstract The oscillation coupling and different nonlinear

effects are observed in a single trapped 40Ca? ion confined

in our home-built surface-electrode trap (SET). The cou-

pling and the nonlinearity are originated from the high-

order multipole potentials, such as hexapole and octopole

potentials, due to different layouts and the fabrication

asymmetry of the SET. We solve a complicated Duffing

equation with coupled oscillation terms by the multiple-

scale method, which fits the experimental values very well.

Our investigation in the SET helps for exploring multi-

dimensional nonlinearity using currently available tech-

niques and for suppressing instability of qubits in quantum

information processing with trapped ions.

1 Introduction

The Duffing oscillator is generally used to describe non-

linear dynamics in oscillating systems [1–4]. The corre-

sponding Duffing equation models a damping and driven

oscillator with more complicated behavior than simple

harmonic motion, which can be used to exhibit chaos in

dynamics and hysteresis in resonance [5–10].

On the other hand, the motion of trapped ions is highly

controllable and can be employed to transfer quantum

information when cooled down to ground state [11]. Since

it is effectively approximated to be harmonic, the ion

motion in a quadruple electromagnetic trap [12] can be

regarded as a good mechanical oscillator, which may

exhibit nonlinearity when driven to the nonlinear field. For

example, Duffing nonlinear dynamics have been investi-

gated in a single ion confined in the linear ion trap [13].

The trap nonlinearity introduces instability in the motion of

the ion, which should be avoided in most times, but can

also be used in resonance rejection and parameter detection

in mass spectrometry [14, 15]. Recent research also showed

the feasibility of phonon lasers based on the nonlinearity of

a single trapped ion under laser irradiation [16, 17].

We focus in this work on the nonlinearity and coupled

motion in a home-built surface-electrode trap (SET). The

SET, with capability to localize and transport trapped ions

in different potential wells, is a promising setup for large-

scale quantum information processing [18]. In comparison

with conventional linear Paul traps, however, the reduced

size and asymmetry in SET lead to stronger hexapole and

octopole potentials [19–21], which affect the stability of

the ion trapping. To solve the problem, we have to

understand the source and the strength of the nonlinearity

in multi-dimensional cases. Due to complexity resulted

from the hexapole and octopole potentials, the ion’s

oscillation in the SET cannot be simply described by the

Duffing oscillator as in the linear trap, but can be described

by an inhomogeneous-coupled Duffing oscillator involving

quadratic and cubic nonlinearities in the restoring force.

We observed the nonlinearity in our SET, and derived by

the method of multiple scales an inhomogeneous-coupled

Duffing oscillator to fit the experimental values, which

shows that both the nonlinearity and axial–radial coupling
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exist in the case of the frequency resonance (i.e., around

the regime of zero driving detuning or/and meeting the

frequency commensurate relation). Moreover, we show in

the noncoupling case different nonlinear effects in different

dimensions, which is due to different asymmetry in fabri-

cation of the SET.

2 Experimental setup and images of ion motion

Our home-built SET is a 500 lm-scaled planar trap with

five electrodes for radial confinement and fabricated by

printed circuit board technology [22]. As shown in Fig. 1,

the five electrodes consist of a central electrode, two radio-

frequency (RF) electrodes and two outer segmented dc

electrodes, where the RF electrodes, the central electrode

and the gaps in between are of the same width of 500 lm.

Each outer segmented electrode consists of five component

electrodes, i.e., a middle electrode, two control electrodes

and two end electrodes. The widths of the control electrodes

and end electrodes in the segment are 1.5 mm, and the

middle electrode is 1 mm wide. The gap in the segmented

electrode is of 500 lm width. The electrodes are made of

copper on a vacuum-compatible printed circuit board sub-

strate. The radial confinement potential is produced by the

RF voltage with the amplitude U *400 V (0-Peak), and RF

X ¼ 2p� 15 MHz applied on the RF electrodes. The axi-

ally confining potential is produced by an end-cap (EC)

voltage Vec = 40 V applied on the EC electrodes, with zero

voltage on other electrodes. When the SET works, the

trapped 40Ca? ion stands above the electrodes by 0.8 mm,

and the pseudopotential trapping depth is below 1 eV.

The experimental setup is plotted in Fig. 2, where the

ultraviolet radiation at 397 nm excites 4s2S1/2 - 4p2P1/2

transition by a grating-stabilized laser diode with power up

to 30 mW and linewidth less than 2 MHz. Another grating-

stabilized laser diode at 866 nm with power up to 100 mW

and linewidth less than 5 MHz excites the 3d2D3/2 -

4p2P1/2 transition. The frequencies of both the laser diodes

have been calibrated to the wavelength meter (HighFiness,

WS-7). Typical laser powers at the trap center are 50 lW

for 397 nm in red detuning (-80 MHz in most imple-

mentations of our experiment, see explanation later) and

500 lW for 866 nm in carrier transition. In our experi-

ment, the laser beams are directed in parallel with the trap

surface (i.e., xz plane) with an angle of 5 degrees with

respect to the trap axis. The single 40Ca? ion is laser cooled

and stably confined in the SET, which is monitored by

photon scattering collected by an electron-multiplying

charge-coupled-device (EMCCD) camera and a photo-

multiplier tube (PMT). Outside the vacuum chamber, the

electrical connections immediately encounter a ‘‘filter

box,’’ which provides low-pass filtering of the voltages

applied to the electrodes. An additional drive force is

electrically connected to one of the middle electrodes

behind the filter box, which provides an excitation to drive

the ion away from equilibrium. Due to the design of our

SET system, the motion of the ion is detected only in the xz

plane by the EMCCD. As a result, what we study

throughout the work is the oscillation only along the axial

direction (z axis) and the radial direction (x axis), whose

harmonic frequencies are, respectively, x0z/2p =

191.7 kHz and x0x/2p = 425 kHz in the linear regime of

the trap. Moreover, since the harmonic frequency in y axis

is x0y/2p = 925 kHz, much bigger than in other axes, the

ion can be regarded as a very tight confinement in

y direction. We have suppressed the micro-motion by the

RF-photon cross-correlation compensation [23], which

yields cooling of the ion down to the temperature below

10 mK.

Fig. 1 The layout of our home-built SET with the top-right inset for

the relevant energy levels of the trapped 40Ca? ion. The 40Ca? ion is

cooled by the laser beam at 397 nm on the 4s2S1/2 - 4p2P1/2

transition, helped by another laser light at 866 nm as repumping.

Here, the trapped ion is above the electrodes by 0.8 mm (See the

bottom-right inset)

Fig. 2 Schematic of our experimental setup. The main components

are explained in the text

82 H.-Y. Wu et al.

123



To study the nonlinear mechanical response, we drive

the ion to the nonlinear regime by a small oscillating

voltage, i.e., V = 7 V, applied on one of the middle elec-

trodes. We slowly increase the driving frequency with the

scan step 0.1 kHz, from 189.0 to 433.0 kHz (the positive

scan), and the ion oscillates first along the z axis and then

turns to the x axis for oscillation. The particularly inter-

esting observation is the simultaneous responses, i.e., a

rectangle trajectory, in both x and z axes when the sweep is

close to the harmonic resonator frequency in either of the

axes. Similar behavior is also found in the negative scan.

We measure the ion oscillation by taking time-averaged

images from the EMCCD. In Fig. 3, seventeen such images

for different drive frequencies are presented for positive

and negative scans, respectively. For the ion originally

oscillating in the z axis, we slowly scan the drive frequency

xz across the harmonic resonance at x0z. When the de-

tuning r approaches zero, the rectangle trajectory appears,

implying a coupled motion between x and z axes due to

axial–radial coupling (explained later). For a more clarified

observation, we scan with smaller steps around the regime

r = 0, as shown in Fig. 4 which gives us an accurate range

from the appearance of the rectangle to the disappearance.

Moreover, from the ninth image in Fig. 4, the amplitude in

x axis turns to be larger than in the z axis, which is beyond

the energy (i.e., phonon) transferred from the z axis. The

energy excluding that from the coupled motion is due to

heating of the laser, which is relevant to the detuning of the

laser irradiation. For our purpose, we only focus our

attention on the production and transfer of the phonons by

driving. So we fix the laser detuning in our experimental

implementation, which gives a weak constant heating on

the ion and can be treated effectively as a constant factor.

In addition, no feedback of the vibrational effect is

observed from the x axis to the z axis during the period of

motion coupling.

3 Theoretical model

To understand the observation above, we have to consider

the multipole potential in the SET, which is given by [24]

/i x; y; zð Þ ¼
X1

j¼1

gijMjYj x; y; zð Þ; ð1Þ

where the subscript i labels different electrodes and the

subscript j is for the spherical harmonics Yj x; y; zð Þ: Both

Yj x; y; zð Þ and the related parameters Mj are defined in [24].

gij is the weight factor for different electrodes. In this

treatment, the initial equilibrium position of the single

trapped ion is defined as the origin of the coordinates. The

five-wire SET generally consists of quadrupole and

hexapole potentials [21]. Considering the asymmetry in

our SET, we also involve octopole potential in our

treatment. Following the definition in [24], we have the

subscripts j ¼ 5; . . .; 25 where j from 5 to 9, from 10 to 16

and from 17 to 25 correspond, respectively, to the

quadrupole, hexapole and octopole potentials. For

different potentials Wi ¼ Vi þ Ui cosðXtÞ applied,

respectively, to N electrodes, where Vi is the dc voltage

on the electrode i and Ui cosðXtÞ represents the RF voltage

Ui on the electrode i driven at frequency X; we rewrite

Eq. (1) for the dc potential Udc and the RF potential URF as

Udc x; y; zð Þ ¼
X25

j¼5

V�j MjYj x; y; zð Þ;

URF x; y; zð Þ ¼
X25

j¼5

U�j cosðXtÞMjYj x; y; zð Þ;
ð2Þ

where we have used U�j ¼
PN

i¼1 Uigij and V�j ¼
PN

i¼1 Vigij.

Moreover, we have the 1D motional equation for the

trapped ion [25],

Fig. 3 Time-averaged images of a single trapped ion taken at

different drive frequencies, with (a) the positive scan and (b) the

negative scan. The prime oscillation is along the axial direction, and

the scan step is 0.1 kHz. The rectangles appear in the images at

resonance frequency due to axial–radial coupling

Fig. 4 The coupled oscillation in the time-averaged images for the

positive scan. Comparing to Fig. 3, the scan with smaller step

(0.01 kHz) presents clearer pictures for the rectangle trajectories

from appearance to disappearance, where 16 images are selected here

in series with the frequency step 0.05 kHz
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d2n
dt2
þ 2l

dn
dt
þ e

m

oUdc

on
þ e2

2m2

o

on

Z
oURF

on
dt

����

����
2

* + !

¼ kn cosðxntÞ;
ð3Þ

with n = x, y and z. Combining Eq. (2) with Eq. (3), we

obtain the equation of motion in the z direction,

d2z

dt2
þ 2l

dz

dt
þ x2

0zzþ a2z2 þ a3z3 þ a21z2yþ a22z2x

þ a4zy2 þ a5zx2 þ a6zxyþ a7zyþ a8zx ¼ kz cosðxztÞ;
ð4Þ

where x, y and z represent, respectively, the displacement

of the ion from the equilibrium position in the three

dimensions, l is the linear damping parameter originated

from the recoil due to photon absorption, kz is the driving

amplitude. The detailed expressions of the nonlinear

coefficients ai (i = 2, 21, 22, 3, 4, 5, 6, 7, 8) can be found

in ‘‘Appendix 1.’’ Compared to the Duffing oscillator in

[13], Eq. (4) is a complicated Duffing oscillator, containing

additional coupled motion terms.

The reason we concentrate on the motion in z axis lies in

our intention to study the production and transfer of the

phonons due to driving, independent from the laser heating.

For the fixed laser detuning in our implementation, the laser

heating in z axis is much less than in x axis. Moreover, in

this case, there is no feedback of the laser effect on the z axis

from the x direction during the period of the coupled

motion. As a result, we may consider the laser effect on the

motion in z axis as an effective constant. In contrast, the

laser effect on the x axis is strong and varied with time,

which makes the problem much more complicated. Also

due to this reason, when we consider the motional effect

from x and y axes to z axis due to the coupled motion, we

simply solve the equation of motion in z axis by involving

the zeroth order and first order of solutions in x and y axes,

which present negligible effects from laser heating (see Eqs.

(20)–(26) in ‘‘Appendix 2’’). Using the method of multiple

scales [26], we obtain the steady-state solution to Eq. (4) as

r ¼ 3a2

8x0z

a3 þ
�10a2

2

9x2
0z

þ�2a8a2xc2

3x2
0xa2

þ�2a7a2yb2

3x2
0ya2

 

þ 2a4b2

3a2
þ 2a5c2

3a2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

z

4x2
0za

2
� l2

s

;

ð5Þ

where the nonlinear coefficients a2x and a2y are relevant to

the coupled motion equations along x and y axes. c, b and

a are the response amplitudes, respectively, in x, y and

z directions. x0x/2p and x0y/2p represent the harmonic

frequencies in x and y axes. For more clarification, we

define a parameter atotal as

atotal ¼ a3 þ Da2 þ Da; ð6Þ

where a3 originates from the cubic nonlinearity, Da2 ¼ �10a2
2

9x2
0z

represents the nonlinear coefficient that comes from quadric

nonlinearity, and Da ¼ �2a8a2xc2

3x2
0x

a2 þ �2a7a2yb2

3x2
0y

a2 þ 2a4b2

3a2 þ 2a5c2

3a2

corresponds to the nonlinear dispersion relevant to the

coupled motion. Substituting atotal into Eq. (5), we obtain

r ¼ 3atotal

8x0z

a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
z

4x2
0za

2
� l2

s

: ð7Þ

4 Discussion about the nonlinearity and coupling

In our home-built SET, since the harmonic frequency in

y axis is much bigger than in other axes, the ion is confined

very tightly in y direction, which leads to a reasonable

assumption b/a � 1. As a result, the coupled term Da is

reduced to Da ¼ vc2=a2 with v ¼ �2a8a2x

3x2
0x

þ 2a5

3
:

Moreover, a3 and Da2 in Eq. (6) are nothing to do with

the coupled motion and their sum a3 þ Da2 can be mea-

sured experimentally by

am ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8x0zrm

3ða3 þ Da2Þ

s

; ð8Þ

with the maximal amplitude am and the maximal detuning

rm in the noncoupling case. As a result, Eq. (7) is reduced

to a steady-state solution to the amplitude of the response

a with respect to the driving detuning r for the known

driving force amplitude kz,

r ¼ 3a2

8x0z

a3 þ Da2 þ v
c2

a2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

z

4x2
0za

2
� l2

s

: ð9Þ

In our experiment, x0z is measured via ion response in the

linear regime, kz = 0.075 9 106 Hz2 m is obtained by

observing the ion displacement versus the middle electrode

voltage [20], a3 þ Da2 ¼ 0:1959� 1018 Hz2=m2 is mea-

sured using the observed dependence of am on the maximal

detuning rm. We evaluate l = 177.1 Hz using the relation

am ¼ kz= 2lx0zð Þ: The comparison in the noncoupling case

between the measured and calculated values of a and r is

made in Fig. 5a, where Eq. (9) without the coupling term

Da (the black solid curve) can fit most experimental values

for both the positive and negative scans (red stars and green

crosses, respectively). In this situation, the vibrational

amplitude c in x axis is negligible. Some experimental

values around r = 0, which are not fitted well by the solid

curve, are actually relevant to the case of the coupled

motion. To be more clarified, we scan the region around

r = 0 with smaller step than in Fig. 5a. The fitting by

considering the coupling term Da in our calculation can
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fully cover the measured data, as shown in Fig. 5b. In such

a case, we find that the vibrational amplitude c in x axis is

visible, which is excited by the energy transfer from z axis

due to motional coupling. This energy transferred from z to

x axis is nearly constant in the adiabatic operation so that

we obtain v c2

a2 � 4:5� 1018Hz2=m2:1 Figure 5b also shows

that the motional coupling stops when r approaches

0.25 kHz. We see that a goes up to the maximum with

c dropping to zero, implying that the system returns to the

noncoupling case. Therefore, the vibrational trajectories

imaged in Figs. 3 and 4 can be fully understood by the

complicated Duffing oscillator with and without the term

for the coupled motion.

The intra-dimensional coupling of motion depends on

the frequency commensurate relation between x and z axes,

which in our case of coupling, we have x00x � 2x00z with

x00x and x00z being instantaneous frequencies in x and

z axes, respectively. These instantaneous frequencies are

slightly different from the secular frequencies x0x and x0z

measured in the linear regime, due to the frequency shifts

with the variation of the oscillating amplitudes in the

nonlinear regime of the ion trap [25]. Moreover, in our

theoretical treatment, the shifts of the secular frequencies

can be effectively collected into the complex amplitudes,

such as the terms of A, B and C (defined in the ‘‘Appendix

2’’), and thereby have no affect on the final result.

Moreover, we have also checked nonlinear effects in a

different direction in our SET by applying the drive on the

x axis and repeating the experimental steps as above for

z axis. To this end, we modify the laser detuning to make

sure a weak heating on the motion along x axis. Under the

assumption that the laser heating is effectively considered

as a constant, the behavior can be described by a slight

modification of Eq. (4) by exchanging z and x, and

replacing kz and xz by kx and xx. As an example, we only

present the noncoupling case in Fig. 6, where the measured

data are fitted well by the steady solution to the compli-

cated Duffing oscillator with different nonlinear coeffi-

cients and different damping rates from in Fig. 5a. In

comparison with the shape of the curve in Fig. 5a, the

oscillation in such a case reaches the maximal amplitude

before rx = 0, i.e, the red detuning, corresponding to a3 þ
Da2\0 in Eq. (8). This implies negative coefficients of

quadratic and cubic terms in Eq. (4) originated from the

different asymmetry from in z axis.

5 Conclusion

In conclusion, we have experimentally investigated the

complicated oscillations in our home-built SET, which are
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Fig. 5 The measured and calculated amplitudes with respect to the

driving detuning, where the black dashed lines indicate the detunings

for maximal amplitudes of oscillations. a The measured values

correspond to the situation in Fig. (3). Calculation (black solid curve)

by Eq. (9) without the coupling term fits most of the measured values

with positive scan (red stars) and negative scan (green crosses). The

scan step is 0.1 kHz. b The measured values correspond to the

situation in Fig. (4). Calculation (light blue solid line) by Eq. (9) with

the coupling term fits the measured values with positive slow scan

(red stars) around zero detuning. The scan step is 0.01 kHz, and the

blue stars are for the measured values of the vibrational amplitude

c in x axis. As a comparison, the calculation without the coupling term

is plotted (the black solid curve)
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c 
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Fig. 6 The measured and calculated amplitudes in x axis with respect

to the driving detuning, where the scan step is 1 kHz and the

measurement is made in the no-coupling case. Calculation (black

solid curve) fits most of the measured values with positive scan (red

stars) and negative scan (green crosses). rx is the driving detuning in

the x direction

1 This is a rough estimate for the measured values (i.e., the blue stars)

which are nearly constant. The blue stars higher than the red stars

mean the fact that laser heating is involved. As a result, for a careful

understanding, it needs a serious solution to the 3D euqations of

motion of the system.
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related to the hexapole and octopole potentials. Both the

coupling and noncoupling cases, as well as the driving along

different axes, are studied. Our observation can be fully

understood by the nonlinear effects and the motional cou-

pling from the solution of a complicated Duffing oscillator.

In comparison with the relevant study on a single ion

oscillating in the linear trap [13], our home-made SET owns

stronger hexapole and octopole potentials, which cause more

fruitful nonlinear effects and even the motional coupling

between different directions. Although there are also axial–

radial couplings observed in linear trap, e.g., with ion cloud

in [27], such a motional coupling is much more evident in the

SET, which, in addition to the couplings regarding zx and xz2,

is also reflected in the zx2 term in Eq. (4) with the coefficient

a5. According to our calculation, the motional coupling in

our observation is mainly influenced by the coefficients a5

and a8, which implies the combined action from the stronger

quadrupole, hexapole and octopole potentials. This might be

the reason that the rectangle trajectories have never been

observed previously in linear ion traps. Moreover, in Figs. 3,

4 and 5, the vibration in x direction is not seriously treated in

this work, because it is subject to potential nonlinearity, the

coupled motion and the strong laser heating, which is much

more complicated than in z axis. As a result, even for the

observed values in Fig 5b under adiabatic operation, we have

just made a simple fitting, instead of a full solution to 3D

equations of motion. The strong laser heating yields time-

dependent damping, varying between positive and negative

values corresponding, respectively, to the heating and

cooling. It is difficult to have analytical discussion for such a

case, but it might involve more interesting physics. The work

in this respect is under our investigation.

Furthermore, recent investigation of the phonon laser

based on the nonlinear oscillation of the trapped ion dem-

onstrated the analogy to the Fabry–Perot laser with 100 %

reflecting mirrors [16, 17]. In contrast, the SET under our

study seems an asymmetry Fabry–Perot cavity, which may

yield two split beams of the phonon laser in perpendicular

axes. Coherent transfer between the two split phonon beams

would be useful in fundamental physics and practical

application. Further work in this aspect is underway.

With the trapped ions cooled down to the motional

ground state, we may have an excellent platform to

demonstrate nonlinear behavior in a fully quantum

mechanical regime and also carry out quantum logic gate

operations. Therefore, our work presents a way to explor-

ing complicated nonlinearity using experimentally avail-

able techniques, and it is also useful for suppressing

detrimental effects from the nonlinearity in quantum

information processing using trapped ions.
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Appendix 1: The nonlinear coefficients in Eq. (4)

Our calculation is based on Eq. (4), in which the nonlinear

coefficients originate from the hexapole and octopole

potentials. By setting e and m to be the electric quantity and

the mass of a single calcium ion, we have the nonlinear

coefficients as

a3 ¼
36e2r2

0 U�13

� �2
M2

13

m2r8
0X

2

þ
140eM21 mr4

0ðV�21ÞX2 þ 8er2
0 U�21

� �
U�7
� �

M7

� 	

m2r8
0X

2
;

ð10Þ

a2 ¼
6er0M13 mr4

0ðV�13ÞX2 þ 6er2
0 U�7
� �

U�13

� �
M7

� 	

m2r8
0X

2
; ð11Þ

a21 ¼
3e 70er2

0M6M21ðU�6ÞðU�21Þ þ 42er2
0M7M20ðU�7ÞðU�20Þ

� 	

m2r8
0X

2

þ
3e 24er2

0M12M13ðU�12ÞðU�13Þ þ 7mr4
0X

2M20ðV�20Þ
� 	

m2r8
0X

2
;

ð12Þ

a22 ¼
3e 70er2

0M8M21ðU�8ÞðU�21Þ þ 42er2
0M7M22ðU�7ÞðU�22Þ

� 	

m2r8
0X

2

þ
3e 24er2

0M13M14ðU�13ÞðU�14Þ þ 7mr4
0X

2M22ðV�22Þ
� 	

m2r8
0X

2
;

ð13Þ

a4 ¼
e 32er2

0 U�12

� �2
M2

12 � 18er2
0 U�13

� �2
M2

13 � 6er2
0 U�13

� �
U�15

� �
M13M15 þ 21er2

0 U�6
� �

U�20

� �
M6M20

h i

m2r8
0X

2

þ
e �60mr4

0ðV�21ÞX2M21 � 14mr4
0ðV�23ÞX2M23 � 240er2

0ðU�7Þ U�21

� �
M7M21 � 56er2

0ðU�7Þ U�23

� �
M7M23

� 	

m2r8
0X

2
;

ð14Þ
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a8 ¼
e

m2r8
0X

2
8mr5

0ðV�14ÞX2M14 þ 32er3
0 U�14

� �
U�7
� �

M14M7

�

þ6er3
0M8M13ðU�8ÞðU�13Þ

	
;

ð18Þ

with x2
0z ¼ e 8er4

0 U�7
� �2

M2
7 þ 4mr6

0ðV�7 ÞX2M7

h i
=m2r8

0X
2;

and the scaling factor r0 (see definition in [24]).

Appendix 2: Details of the steady-state solution Eq. (5)

Equation (5) is obtained by the standard steps of the multiple-

scale method. Starting from Eq. (4), we assume that the

driving frequency is a perturbative expansion of harmonic

oscillator frequency [28], i.e., xz ¼ x0z þ �2r; with a small

dimensionless parameter �: Following the method in [29], we

rewrite Eq. (4) by setting z ¼ �u; x ¼ �p; y ¼ �q; the damp-

ing term as 2�3l _u and the driving term as �3kz cosðxztÞ:
Introducing a new parameter Ti ¼ �itði ¼ 0; 1; 2Þ;we rewrite

u, p, q as,

u ¼ �0u0 T0; T1; T2ð Þ þ �1u1 T0;T1; T2ð Þ þ �2u2 T0; T1; T2ð Þ;
p ¼ �0p0 T0; T1; T2ð Þ þ �1p1 T0;T1; T2ð Þ þ �2p2 T0; T1; T2ð Þ;
q ¼ �0q0 T0; T1; T2ð Þ þ �1q1 T0;T1; T2ð Þ þ �2q2 T0; T1; T2ð Þ:

ð19Þ

Then we compare the coefficients of �0; �1 and �2; which

yields,

D2
0u0 þ x2

0zu0 ¼ 0; ð20Þ

D2
0u1 þ x2

0zu1 ¼ �2D0D1u0 � a2u2
0 � a7q0u0 � a8p0u0;

ð21Þ

D2
0u2 þ x2

0zu2 ¼ �½�kz cos x0zT0 þ rT2ð Þ
þ q2

0a4u0 þ p2
0a5u0 þ p0q0a6u0 þ 2lD0u0

þ D2
1u0 þ 2D0D2u0 þ q0a21u2

0 þ p0a22u2
0

þ a3u3
0 þ 2D0D1u1 þ a7q0u1 þ a8p0u1

þ 2a2u0u1 þ a7q1u0 þ a8p1u0	;
ð22Þ

where Di ¼ o=oTi; i ¼ 0; 1; 2ð Þ:
Hence, we may solve u0 ¼ A T2ð Þ expðix0zT0Þ þ

�A T2ð Þ expð�ix0zT0Þ and u1 ¼ a2½A2 expð2ix0zT0Þ �
6A�Aþ �A2 expð�2ix0zT0Þ	=3x2

0z from Eqs. (20) and (21) by

eliminating the secular term. Similarly, from equations of

the oscillations in x axis and y axis, which are similar to

Eq. (4) but without the driven term, we may solve the

variables p0, q0, p1 and q1 as

p0 ¼ C T2ð Þ expðix0xT0Þ þ �C T2ð Þ expð�ix0xT0Þ; ð23Þ

q0 ¼ B T2ð Þ expðix0yT0Þ þ �B T2ð Þ expð�ix0yT0Þ; ð24Þ

p1 ¼ a2x½C2 expð2ix0xT0Þ � 6C �C

þ �C2 expð�2ix0xT0Þ	=ð3x2
0xÞ; ð25Þ

q1 ¼ a2y½B2 expð2ix0yT0Þ � 6B�B

þ �B2 expð�2ix0yT0Þ	=ð3x2
0yÞ; ð26Þ

where a2x and a2y correspond to the quadric nonlinearity of

the ion motion equation in x and y directions, respectively.

x0x/2p and x0y/2p represent the harmonic frequencies in

x direction and y direction. A ¼ 1
2

a expðibÞ;B ¼ 1
2

b expði1Þ
and C ¼ 1

2
c expðigÞ; where a; b; c; b; 1 and g are real

functions of T2; b; 1 and g represent the phases of

different dimensions. �A; �B and �C are conjugate terms of

a5 ¼
e 32er2

0 U�14

� �2
M2

14 � 18er2
0 U�13

� �2
M2

13 þ 6er2
0 U�13

� �
U�15

� �
M13M15 þ 21er2

0M8M22ðU�8ÞðU�22Þ
h i

m2r8
0X

2

þ
e �60mr4

0ðV�21ÞX2M21 þ 14mr4
0ðV�23ÞX2M23 � 240er2

0ðU�7Þ U�21

� �
M7M21 þ 56er2

0ðU�7Þ U�23

� �
M7M23

� 	

m2r8
0X

2
;

ð15Þ

a6 ¼
e 6er2

0 U�13

� �
U�11

� �
M13M11 þ 14mr4

0ðV�19ÞX2M19 þ 21er2
0 U�6
� �

U�22

� �
M6M22

� 	

m2r8
0X

2

þ
e 64er2

0ðU�12Þ U�14

� �
M12M14 þ 56er2

0 U�7
� �

U�19

� �
M7M19 þ 21er2

0M8M20ðU�8ÞðU�20Þ
� 	

m2r8
0X

2
;

ð16Þ

a7 ¼
e 6er3

0 U�13

� �
U�6
� �

M13M6 þ 8mr5
0ðV�12ÞX2M12 þ 32er3

0 U�12

� �
U�7
� �

M12M7

� 	

m2r8
0X

2
; ð17Þ
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A, B and C. Substituting u0 and u1 into Eq. (22), we obtain

an equation regarding the secular term, from which, in

combination with Eqs. (23–26) with the expressions of

A, B and C, we obtain

� 1

2
kz sin cþ alx0z þ x0z

da

dT2

¼ 0; ð27Þ

1

2
kz cos c� 3a3a3

8
� 1

4
a4ab2 � 1

4
a5ac2 þ 5a2

2a3

12x2
0z

þ a8a2xac2

4x2
0x

þ a7a2yab2

4x2
0y

þ ax0z r� dc
dT2

� �

¼ 0;

ð28Þ

with c = rT2 - b. We assume the steady-state motion

corresponding to dc
dT2

¼ da

dT2

¼ 0: So we have

3a3

8
a3 � 5a2

2

12x2
0z

a3 þ a4

4
ab2 þ a5

4
ac2 � a7a2y

4x2
0y

ab2

 

� a8a2z

4x2
0x

ac2 � ax0zr

�2

þ ax0zlð Þ2¼ 1

4
k2

z :

ð29Þ

which is actually Eq. (5).
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