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Abstract We present an optical system that performs

polarimetric spectral imaging with a detector with no

spatial resolution. This fact is possible by applying the

theory of compressive sampling to the data acquired by a

sensor composed of an analyzer followed by a commercial

fiber spectrometer. The key element in the measurement

process is a digital micromirror device, which sequentially

generates a set of intensity light patterns to sample the

object image. For different configurations of the analyzer,

we obtain polarimetric images that provide information

about the spatial distribution of light polarization at several

spectral channels. Experimental results for colorful objects

are presented in a spectral range that covers the visible

spectrum and a part of the NIR range. The performance of

the proposed technique is discussed in detail, and further

improvements are suggested.

1 Introduction

Multispectral imaging (MI) is a useful optical technique that

provides two-dimensional images of an object for a set of

specific wavelengths within a selected spectral range.

Dispersive elements (as prisms or gratings), filter wheels or

tunable band-pass filters are typical components used in MI

systems to acquire image spectral content [1]. In certain

applications, MI can be improved by adding spatially

resolved information about the light polarization. Multi-

spectral polarimetric imaging facilitates the analysis and

identification of soils [2], plants [3] and surfaces contami-

nated with chemical agents [4]. In the field of biomedical

optics, multispectral polarimetric imaging has been applied

to the characterization of human colon cancer [5] or the

pathological analysis of skin [6]. In many cases, polari-

metric analysis can be performed by just including a linear

polarizer in an imaging system to record images for various

selected orientations of its transmission axis [6, 7]. A simple

configuration that includes two orthogonal polarizers inte-

grated in a spectral system has been used for noninvasively

imaging of the microcirculation through mucus membranes

and on the surface of solid organs [7]. An illustrative

example of a spectral camera with polarimetric capability is

a system that combines an acousto-optic tunable filter with a

liquid–crystal-based polarization analyzer [8].

In an apparently different context, compressive sam-

pling (CS) has emerged in recent years as a novel sensing

theory that goes beyond the Shannon–Nyquist limit [9]. In

the field of imaging, CS states that an N-pixel image of an

object can be reconstructed from M \ N linear measure-

ments. This sub-Nyquist condition is achieved by exploit-

ing the ‘‘sparsity’’ of natural images. According to this

property, when images are expressed in a proper function

basis, most terms are negligible or zero-valued. CS theory

ensures that it is possible to reconstruct the object images

from a relatively small collection of well-chosen mea-

surements, typically by an iterative acquisition process.

The object reconstruction is obtained from experimental

data by solving a convex optimization program.
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One of the most outstanding applications of CS is the

design of a single-pixel camera [10, 11], which offers

promising benefits at spectral regions where image sensors

are impractical or inexistent [12]. In contrast to conven-

tional image sensors, which typically perform intensity

measurements, single-pixel detectors can provide infor-

mation about other properties of an incoming light field, as

its spectrum or its polarization. The substitution of the

photodiode of a CS single-pixel camera by a spectrometer

without spatial resolution permits to perform hyperspectral

imaging [13, 14]. In the same way, single-pixel polari-

metric imaging has been demonstrated with a CS camera

that includes a commercial beam polarimeter [15]. CS has

also been applied to biological fluorescence microscopy

[16]. In this case, the CS fluorescence microscope includes

a photomultiplier tube as a point detector, since biological

samples often have low fluorescence.

In this work, we present a CS imaging system able to

provide spatially resolved information about the spectrum

and the polarization of the light reflected by an object. As a

detector, we use a polarization analyzer followed by a fiber

spectrometer with no spatial resolution. The key element of

our system is a digital micromirror device (DMD), which

makes possible the CS acquisition process. To this end, a

set of binary intensity patterns is sequentially generated by

the DMD to sample the image of an object of interest. The

experimental data are subsequently processed to obtain a

set of multispectral data cubes, one for each selected

configuration of the analyzer. For a given spectral channel,

the corresponding polarimetric images can be linearly

combined to derive the spatial distribution of the Stokes

parameters of light [8, 15]. In this sense, the single pixel

described in this paper is a first step toward the realization

of an imaging Stokes polarimeter like in Ref. [15], but with

the ability of performing polarization analysis for a large

variety of wavelengths.

2 Outline of compressive sampling

The basis of single-pixel imaging by CS can be briefly

presented as follows. Let us consider a sample object,

whose N-pixel image is arranged in an N 9 1 column x.

This image is supposed to be compressible when it is

expressed in terms of a basis of functions, W = {Wl}

(l = 1,…, N). From a mathematical point of view, x can be

written as x ¼ Ws, where W is a N 9 N matrix that has the

vectors Wlf g as columns and s is the N 9 1 vector com-

posed of the expansion coefficients. The assumed sparsity

of the image implies that only a small group of these

coefficients is nonzero. In order to determine x, we

implement an experimental system able to measure the

projections of the object image on a basis of M intensity

patterns um(m = 1, …, M) of N-pixel resolution. This

acquisition process can be written as

y ¼ U x ¼ U Wsð Þ ¼ Hs; ð1Þ

where y is the M 9 1 column formed by the measured

projections, and U is the M 9 N sensing matrix. Each row

of U is an intensity pattern um, and the product of U and W
gives the M 9 N matrix H acting on s. The underlying

mathematical formalism of CS states that there is a high

probability of reconstructing x from a random subset of

coefficients M\Nð Þ in the W domain. Equation (1)

constitutes an underdetermined matrix relation, so it must

be resolved by means of a proper reconstruction algorithm.

The best strategy to perform this step is based on the

minimization of the l1-norm of s subjected to the restriction

given by Eq. (1). As the measurements {ym} are affected by

noise, the CS recovery process is usually reformulated with

inequality constrains [9, 10]. In this case, the proposed

reconstruction x� is given by x� ¼ Ws�, where s� is the

solution of the optimization program

min s0k kl1
such that y�Hs0k kl2

\e; ð2Þ

where e is an upper bound of the noise magnitude and the

l2-norm is used to express the measurement restriction.

3 Description of the polarimetric imaging spectrometer

3.1 Optical system

The scheme of our polarimetric spectral camera is shown in

Fig. 1a. A white light source illuminates a sample object,

and a CCD camera lens images the object on a DMD,

which is a reflective spatial light modulator that selectively

redirects parts of an input light beam [17]. A DMD consists

of an array of electronically controlled micromirrors that

can rotate about a hinge, as is schematically depicted in

Fig. 1b. Every micromirror is positioned over a CMOS

memory cell. The angular position of a specific micro-

mirror admits two possible states (?12� and -12� respect

to a common direction), depending on the binary state

(logic 0 or 1) of the corresponding CMOS memory cell

contents. In this way, the light can be reflected at two

angles depending on the signal applied to the mirror. The

DMD of our system is a Texas Instrument device (DLP

Discovery 4100) with a resolution of 1,920 9 1,080 mi-

cromirrors and a panel size of 0.9500. The mirror pitch is

10.8 lm, and the fill factor is greater than 0.91. The optical

system 1 has its optical axis forming an angle respect to the

orthogonal direction to the DMD panel that approximately

corresponds to twice the tilt angle of the device mirrors

(24�). As is shown in Fig. 1c, in such a configuration, a

micromirror oriented at ?12� orthogonally reflects the light
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into the next part of the system, appearing as a bright pixel

(ON state). In their turn, micromirrors oriented at -12�
result to be dark pixels (OFF state). The light emerging

from the bright pixels of the DMD is collected by a second

lens system similar to the first one (optical system 2 in

Fig. 1a). This lens system couples the light into a silica

multimode fiber with a diameter of 1,000 lm and a spectral

range of 220–1,100 nm, which is connected to a com-

mercial concave grating spectrometer (Black Comet CXR-

SR from StellarNet). The wavelength resolution of this

spectrometer is 8 nm (with a slit of 200 lm), and the

maximum signal-to-noise ratio (SNR) is 1,000:1. Just

before the fiber, the light passes through a configurable

polarization analyzer. In our camera, this analyzer consists

of a film polarizer mounted in a rotating holder.

3.2 Operation principle

The CS single-pixel camera shown in Fig. 1a performs the

iterative acquisition process synthesized in Eq. (1). The

DMD sequentially produces the set of M irradiance pat-

terns of N-pixel resolution that composes the sensing

matrix U. The collected data consist of a succession of

spectra, one for each pattern sent to the DMD. The

M irradiances measured by the spectrometer for each

spectrum channel form the vector y of Eq. (1). As spectrum

channels have a prefixed bandwidth, the quantities {yi} that

feed the CS algorithm are actually an average of the

measured irradiances within the considered range.

For the practical implementation of the CS acquisition

process, it is essential to determine which incoherent basis

should be selected (when no prior information on the object

is accessible). A suitable choice for image basis results to

be the Hadamard–Walsh functions, which constitute a basis

known to be incoherent with the Dirac basis [10]. Had-

amard matrices are square arrays of plus and minus ones,

whose rows (and columns) are orthogonal relative to one

another. Each row of a Hadamard matrix can be interpreted

as a rectangular wave ranging from ±1 (Walsh function).

In this context, the Hadamard matrix performs the

decomposition of a function by a set of rectangular

waveforms, instead of the usual harmonic waveforms

associated with the Fourier transform [18]. From an

experimental point of view, a CS acquisition process using

the Hadamard–Walsh basis can be carried out by generat-

ing a collection of binary intensity patterns, easily

imprinted on a DMD. To represent a Hadamard function H

on the DMD, we use two binary patterns H? = (J ? H)/2

and H- = (J - H)/2 that are related by H = H? - H-.

Here, J is the matrix consisting of all 1s. Generating H?

Fig. 1 a Setup for single-pixel

polarimetric multispectral

imaging, b transverse view of an

individual DMD micromirror

showing its two possible

orientations and c scheme of the

DMD operation mode
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and H- sequentially and subtracting the measured inten-

sities, we obtain the one that corresponds to H. In principle,

when the total light intensity is known, the acquisition

process can be performed by using only one of the above

sequences of binary patterns, taking a unique measurement

for every Hadamard function. This would lead to a

reduction in the acquisition time by a factor two. However,

this procedure is sensitive to the existence of source

intensity fluctuations. In such a common situation, the

method based on two successive measurements increases

the signal-to-noise ratio (SNR) of the acquired data.

The sequential measurement process requires the syn-

chronization between the DMD and the fiber spectrometer

with the aid of a computer (not shown in Fig. 1). For each

intensity pattern generated by the DMD, the spectrum of

the light coming from the object is measured by the

spectrometer, configured with an integration time that

ensures an acceptable SNR for the acquired data. The

minimum integration time provided by our spectrometer

(1 ms) represents the main limiting factor on the mea-

surement rate of our device, since DMDs are modulators

that can work at relatively high frequencies (upper than

1 kHz). For a given acquisition frequency, the total time

required to take image data increases with the number of

measurements, which is, in accordance with the CS theory,

a pre-established fraction of the image resolution. There-

fore, a single-pixel camera shows a trade-off between

image resolution and image acquisition time.

In our experimental setup, the measurement process is

executed and controlled by means of custom software

written with LabVIEW. The programming code used in the

off-line CS reconstruction is called l1eq-pd, which solves

the standard basis pursuit problem using a primal–dual

algorithm [19]. This code includes a collection of MAT-

LAB routines and is a well-tested algorithm for CS prob-

lems. However, other selections are possible and, in fact,

the search of improved CS algorithms (more robust to data

noise, with lower computation time, etc.) is currently an

active area in the field of convex optimization (e.g., see

Ref. [20]).

4 Experimental results

4.1 Numerical analysis

The aim of CS is to provide an accurate reconstruction of an

object from an undersampled signal, but the exact number

of measurements that allows attaining it is not a priori

known. In addition, this number strongly depends on the

features of the object under consideration. For this reason,

when CS single-pixel imaging is attempted, it is useful to

begin with relatively low-resolution reconstructions to

estimate the parameters of the acquisition process. In

accordance with this approach, and also to evaluate the

image quality achievable with our camera, we performed

multispectral imaging sending to the modulator Hadamard–

Walsh patterns of 64 9 64 unit cells (N = 4,096), each one

composed of 8 9 8 DMD pixels. The covered square

window on the modulator panel had a width of *5.5 mm.

As a sample object, we used two square capacitors with a

width of 7 mm. The illumination source was a Xenon white

light lamp, and the polarization analyzer was removed. The

number of measurements was M = 4,096, which

allowed us to fulfill the Nyquist criterion. Eight central

wavelengths k0 were selected in the visible spectrum. The

bandwidth of the corresponding spectral channels was

20 nm k0 � 10 nmð Þ. In order to determine the object

spectral reflectance, a spectrum was taken from a white

reference (Spectralon diffuse 99 % reflectance target from

Labsphere, Inc.) to normalize the measured spectra during

the CS acquisition process. The integration time of the

spectrometer was set at 300 ms.

For each spectral channel, we resolved the off-line CS

algorithm with the complete set of measurements (M = N).

After a suitable filtering, the recovered matrix served as a

reference (lossless) image Iref(i, j), where (i, j) indicates the

location of an arbitrary image pixel. The reconstruction

process was then repeated using decreasing fractions of the

total number of pixels. Concretely, the value of M was

varied from 5 to 90 % of N. The fidelity of the recon-

structed images was estimated by calculating the mean

square error (MSE), given by

MSE ¼ 1

N

X

i

X

j

Iði; jÞ � Irefði; jÞ½ �2; ð3Þ

where I(i, j) is the noisy image obtained for a given value

of M. We used another metric to evaluate the quality of the

reconstruction, the so-called peak signal-to-noise ratio

(PSNR), which is defined as the ratio between the

maximum possible power of a signal and the power of

the noise that affects the fidelity of its representation. In

mathematical terms, [21]

PSNR ¼ 10 log
I2
max

MSE

� �
¼ 20 log Imaxð Þ � 10 log MSEð Þ:

ð4Þ

Here, Imax is the maximum possible pixel value of the

reference image. For each spectral channel, the reference

images were represented by 28 gray-levels, so Imax = 255.

Figure 2a, b shows the curves for the MSE and the PSNR

versus M for the different values of k0. As is expected, both

figures point out that the image quality improves as the

number of measurements grows and approximates to the

Nyquist limit. However, when M C 0.4 N, the slope of
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both curves becomes visibly smoother for all spectral

channels. In the case, for instance, of k0 = 610 nm,

MSE = 0.13 (Imax)2 and PSNR = 28.72 dB for

M = 0.4 N (the PSNR for 0.9 N is only somewhat

greater, 29.10 dB).

If images of higher resolution are considered, the pri-

ority is to minimize the value of M, since even small

fractions of N can imply a huge volume of data feeding the

CS algorithm, which, in addition, operates with higher

dimensional matrices. The consequence is a dramatic

increase in the total computation time. In our system, it is

possible to change the SNR of the reconstructed image (for

a given value of M) by controlling the spectrometer inte-

gration time, since the noise of the data used in the CS

algorithm considerably depends on this parameter. To

illustrate this point, the whole CS acquisition process was

repeated for different values of the integration time. The

number of measurements in all series was M = 0.2 N. The

resulting curves for the PSNR versus k0 are shown in

Fig. 3. As can be observed, the PSNR is incremented in

approximately 8 dB when the integration time is varied

from 50 to 300 ms.

4.2 Multispectral imaging

As a first application of our camera, we performed multi-

spectral imaging of a sample object composed of an unripe

cherry tomato together with a red one. The Walsh–Had-

amard patterns addressed to the DMD had a resolution of

256 9 256 unit cells (N = 65,536). Each unit cell was

composed of 2 9 2 DMD pixels. With this resolution, in

accordance with the discussion of the previous section, the

number of measurements was chosen to be M = 812,

which corresponds to *10 % of N (i.e., a compression rate

of 10:1). The integration time of each spectrometer mea-

surement was 300 ms.

The object spectral reflectance was determined by

means of the white reference used in Sect. 4.1. In the case

of plants, this magnitude has been used, for example, to

investigate the chlorophyll content in leaves [22, 23]. The

noisy data collected by the spectrometer for wavelengths

lower than 500 nm imposed an inferior boundary to the

useable spectral range. The results of the CS reconstruction

for 15 spectral channels are shown in Fig. 4. The selected

central wavelengths k0 in the visible spectrum (VIS) range

from 510 to 680 nm. The bandwidth of each spectrum

channel was 10 nm k0 � 5 nmð Þ. The recovered images

were pseudo-colored, and the color assignment (the

wavelength to RGB transform) was carried out with the aid

of standard XYZ color-matching functions [24].

In the near-infrared spectrum, the CS algorithm pro-

vided an acceptable reconstruction around 860 nm, which

is presented by means of a gray-level image. Figure 4 also

includes a colorful image of the object obtained from the

combination of the conventional three RGB channels.

4.3 Polarimetric multispectral imaging

In this case, the sample object was the same as that used in

Sect. 4.1, but the light emerging from each element of the

scene had different linear polarizations. This effect was

achieved by locating a linear polarizer after the object with

its area split in two parts, each of which had its transmis-

sion axis oriented at orthogonal directions (0� and 90�,
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respectively). The resolution of the patterns addressed to

the DMD was 128 9 128 unit cells (N = 16,384) com-

posed of 4 9 4 DMD pixels. The number of measurements

was M = 572, which corresponds to *20 % of N (i.e., a

compression rate of 5:1). As the source light was in prin-

ciple unpolarized, half of light was lost after the object

polarizer, so the integration time of the spectrometer was

increased until 500 ms. The white reference of Sect. 4.1

was employed again to normalize the measured spectra.

Eight central wavelengths k0 were selected in the VIS

spectrum. The bandwidth of the channels was 20 nm

k0 � 10 nmð Þ. Aside from the channels at the boundaries of

the spectral range, the values of k0 correspond to the peak

emissions of commercial light-emitting diodes. For each

channel, four orientations of the polarization analyzer were

sequentially considered in separated measurement series.

To simplify data display, image reconstructions are arran-

ged in a table, as can be observed in Fig. 5. Each column

corresponds to a spectral channel, and each row shows the

results for a given orientation of the analyzer. As shown in

Fig. 4, a colorful image of the object is also presented. This

RGB image was made up from the data taken for the

second configuration of the analyzer (45�). The result for

680 nm is presented by means of a gray-level image due to

its proximity to the near-infrared range.

5 Discussion and conclusions

We have performed polarimetric multispectral imaging by

using a detector with no spatial resolution, which is com-

posed of a configurable polarization analyzer and a com-

mercial spectrometer. This single-pixel camera employs a

DMD that generates a collection of binary intensity pat-

terns that samples the image of the object under study. For

a given analyzer configuration, a succession of spectra is

sequentially acquired (one for each DMD realization).

From this data, the object spectral image cube is recovered

off-line by means of a CS algorithm, which makes possible

to achieve a sub-Nyquist limit, that is, the total number of

measurements is a fraction of the number of image pixels.

In contrast to cameras based on tunable band-pass filters,

which carry out a wavelength sweep to measure the spectral

content, our system collects the spectral information of all

Fig. 4 Multispectral image cube reconstructed by means of the CS

algorithm. In the VIS spectrum, the reflectance for each spectral

channel is a 256 9 256 pseudo-colored image. A gray-scale repre-

sentation is used for the CS reconstruction in the NIR spectrum range.

A colorful image of the scene made up from the conventional RGB

channels is also included

Fig. 5 Multispectral image

cube for different configurations

of the polarization analyzer. The

RGB image of the object is also

included. Except for the

wavelength closer to the NIR

spectrum, all channels in the

VIS range are represented by

pseudo-colored images

556 F. Soldevila et al.

123



channels at once (albeit at the expense of sequentially

acquiring the spatial information). As a result, the number of

channels, their spectral resolution and the total wavelength

range are those provided by the spectrometer integrated in the

system. This fact facilitates to exploit the high performance of

commercial devices. Our spectral system can in principle

cover the whole VIS spectrum and part of the NIR range (up to

1.1 microns). In the infrared region, conventional multispec-

tral systems require pixelated sensors specifically designed for

that wavelength range (like InGaAs cameras).

As in other multispectral systems, the illumination is a

main question to ensure a minimum signal along the

selected spectral range. We have used a high-power Xe arc

lamp, which produces a continuous and roughly uniform

spectrum across the VIS region and a complex line spec-

trum in the 750–1,000 nm region of the NIR range.

However, the decreasing source irradiance at the ‘‘blue’’

side of the VIS spectrum, as well as the low reflectance of

samples at that region, limited our spectral range to

wavelengths higher than 470 nm.

As is discussed in the previous section, our single-pixel

camera presents a trade-off between image resolution and

total acquisition time. Increasing the illumination level or

reducing the spectral resolution (which permits lower

integration times) could make the acquisition time to drop

in at least one order of magnitude. A comparable drawback

can be found in cameras that employ acousto-optic or liquid

crystal tunable filters. In such systems, the higher spectral

resolution (number of channels), the longer acquisition

time, with a strong dependence on the exposure time of the

pixelated sensor used as a detector. For image resolutions

similar to those presented in this work, a hyperspectral

camera (i.e., with more than 100 spectral channels) can take

a few minutes in acquiring a data cube [25].

The single-pixel spectral system presented here also

provides spatially resolved information about light polari-

zation. To this end, the camera detector includes a polar-

izing film mounted in a rotating holder. This element limits

the total spectral range, since the optical behavior of

polarizing films is wavelength dependent. As a conse-

quence, when the polarimetric multispectral imaging is

carried out, the upper boundary of the spectral range is

*700 nm. The use of high-grade crystalline polarizers can

resolve this limitation. For the successive configurations of

the analyzer, a separated series of measurements must be

taken. From the polarimetric images recovered for each

spectral channel, it is possible to obtain information about

the spatial distribution of the Stokes parameters of light, Si

(i = 0, …, 3). If a linear polarizer is used as analyzer, the

spatial distribution of S1 and S2 can be straightforward

derived. A full Stokes polarization analysis should be

performed by means of a rotating circular (or elliptic)

polarizer. It is also possible to avoid mobile polarization

elements by using an analyzer that combines voltage-con-

trolled linear retarders (as those based on liquid crystal

technology) with linear polarizers [8]. In that case, all

polarimetric information could be acquired in a unique

series of measurement, changing sequentially the configu-

ration of the variable retarders for each DMD realization.
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