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Abstract Computer-generated binary holograms are

written on a polished copper surface using single 800-nm,

120-fs pulses from a 1-kHz-repetition-rate laser system.

The hologram efficiency (i.e. the power in the holographic

reconstructed image relative to the incoming laser power)

is investigated for different laser-structuring parameters.

Theoretical diffraction grating efficiencies for a binary

amplitude grating show good agreement with the experi-

mental measurements for diameters of the laser-formed

holes below the pitch. Modelling based on straightforward

geometrical arguments is used to find the optimal hole size.

For a coverage (i.e. relative laser-structured area) of

*43 %, the efficiency reaches *10 %, which corresponds

to a relative power transferred to one reconstructed image

of *20 %. The efficiency as a function of pitch (for fixed

coverage) is fairly constant from 2 to 6 lm.

1 Introduction

Computer-generated holograms (CGHs) are holographic

interference patterns that are calculated numerically—as

opposed to a classical hologram, which is a photography-

like recording of an actual optical interference pattern.

CGHs were first demonstrated in 1967 by Lohmann and

Paris [1], and several different computational techniques

have been demonstrated [2, 3]. The feasibility of writing

CGHs directly by ultrashort laser pulses has been demon-

strated previously, for example, on silicon surfaces [4],

inside glasses [5] and by evaporation of metal films on

glass substrates [6]. The ultrashort laser pulse duration

provides a high writing resolution due to minimized heat-

propagation effects [7, 8]. In addition, the technique is

highly versatile, since the method can be applied on all flat,

reflecting materials. Laser-written CGHs have various

potential applications such as security marking, anti-

counterfeiting, beam shaping [9] and holographic data

storage [10], in specific cases even with the possibility of

erasing and rewriting [11]. Naturally, the hologram effi-

ciency (i.e. the ability to transfer power to the holographic

reconstruction) is important to all applications. We present

a systematic investigation of changes in the hologram

properties when the geometry of the laser-written areas is

controlled. Optimal hologram parameters are determined.

2 Experiment

Holograms are written on polished copper surfaces using

800 nm, 120 fs laser pulses from a 1-kHz-repetition-rate

laser system. The beam is focused onto the sample surface

using an aspheric lens with a focal length of 10 mm and

NA = 0.545. The size of the ablated holes is controlled by

adjusting the pulse energy, which is in the range 0.2–7 lJ.

The actual size of the holes is determined using scanning

electron microscopy (SEM). A gentle flow of helium is

applied through a nozzle enclosing the focusing beam to

prevent breakdown in the air and remove laser-generated

debris. The sample reflectivity is significantly reduced in

the laser-structured areas. For the present work, copper was

selected because it has a high reflectivity and it is relatively

inexpensive, but the CGHs can be written on any reflecting

surface.

The sample motion is done by computer-controlled

stages. The writing speed has increased significantly
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compared to Ref. [4] by applying in one direction a fast,

precise, magnetically driven air-bearing stage. Using the

position-sensitive output from the stage controller, the

individual pixels of the CGH can be written by a single

laser pulse during the stage motion. The positional accu-

racy is better than one micrometre. Typical holograms of

2 9 2 mm2 are written in *10 min.

The CGHs are calculated as binary Fresnel holograms as

in Ref. [4]. The hologram is divided into a finite grid of

square pixels that are placed side by side. The pitch is the

distance between the centres of neighbouring pixels.

Hence, the area of one pixel is the square of the pitch. For

each pixel, the real part of the complex electric field of the

object is calculated. The binary bit pattern is generated by

setting all pixels in the grid with values below the median

level to 0 and the rest to 1. The actual hologram is gen-

erated by transferring the calculated bit pattern to the

sample by selective ablation, such that half the pixels are

absorbing and half are reflecting. No pre- or post-treatment

of the sample is necessary. The holographic images are

reconstructed on a white screen using a 2-mW He–Ne laser

at 633 nm. A digital camera is used to record images of the

screen for quantitative measurements of the hologram

efficiency.

3 Results and discussion

An example of an image reconstructed from a laser-written

hologram is shown in Fig. 1. The image shows both the

normal and the inverted reconstructed image of the first

diffraction order on each side of the 0th order spot. If the

hologram efficiency is characterized by the power in one

holographic reconstruction (i.e. the top right pattern in

Fig. 1) relative to the power of the incident beam, this

efficiency can be measured as a function of the hologram

parameters.

The efficiency of a one-dimensional binary amplitude

grating can be determined theoretically. The normalized

amplitude of the mth diffraction order is given by [12]

Gm ¼ expð�imapÞ
Zma2p

0

1

m2p
exp ðiHÞdH; ð1Þ

where a is the fill factor (i.e. the ratio of the reflecting to the

total area of the grating). The efficiency of the diffraction

order is then given by

gm ¼ jGmj2 ¼
sin2ðmapÞ

m2p2
: ð2Þ

For the first diffraction order, the maximum diffraction

efficiency is found for a fill factor of a ¼ 1
2

to be 1
p2 (i.e.

10.1 %). Note that this efficiency is actually higher than for

a sinusoidal amplitude grating, where the maximum

efficiency of the first diffraction order is only 6.25 %

[2, 13]. However, the sinusoidal diffraction grating has the

advantage of suppressing higher-order diffraction peaks.

Figure 2 shows the efficiency as defined above versus

the diameter of individual laser holes for a fixed pitch of

6 lm. The coverage (i.e. relative area covered by ablated

pixels), A(d), for a given diameter, d, is determined by

geometrical calculations based on the actual pixel positions

and the circularity of the holes for each individual CGH.

For diameters\6 lm, the covered area is simply given by

the area of all the holes and is therefore proportional to the

diameter squared. However, above 6 lm the ablated

regions start to overlap; hence, the covered area is less than

the sum of the individual areas. The partly full (d B 6 lm),

partly dashed (d [ 6 lm) line is the theoretical efficiency

given by Eq. 2, with a fill factor of a(d) = 1 - A(d). For

diameters up to and a bit above the pitch, the theory

reproduces the experimental measurements well without

any scaling of the experimental data. However, at larger

diameters (i.e. smaller fill factor) the theory overestimates

the efficiency. This is probably due to the fact that the

theory is based on a regular periodic grating. The irregu-

larity of the hologram causes the above-mentioned over-

lapping of pixels to be more random, which decreases the

holographic reconstruction efficiency compared to that of a

perfect periodic grating.

To determine the diameter and coverage, where the

efficiency is the highest, the experimental data are fitted to

a simple model. It is assumed that the efficiency increases

linearly with the coverage until a maximum is reached and

Fig. 1 Example of a reconstructed holographic image used to

characterize the efficiency. Here, the efficiency is defined as the

ratio of the power in one reconstructed image (i.e. the top right

pattern) to that of the incident beam
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then decreases linearly with the same slope. That is, the

efficiency is fitted with the piecewise function given by

gðdÞ ¼ cAðdÞ for d� dopt

c½2AðdoptÞ � AðdÞ� for d [ dopt

�
; ð3Þ

where the slope, c, and the optimal diameter, dopt, are free

parameters in the fit. The dotted line in Fig. 2 shows the fit

to this model. The fit does not reproduce the initial evo-

lution of the efficiency as well as the analytic theory, but it

reproduces the sharp bend and the following rapid decrease

more accurately. The optimal diameter is found from the fit

to be 6.3 ± 0.2 lm. Combined with exactly half the pixels

being ablated, this corresponds to an optimal coverage of

A(dopt) = 43 ± 2 % . The CGHs are calculated as being

made up of square pixels, but in reality, the ablated regions

are circular. If the hole diameter is equal to the pitch, the

ablated region only covers part of the intended pixel area so

that Aðd ¼ pitchÞ ¼ 39 %. On the other hand, if the ablated

area for a single hole is set to be equal to the area of the

square pixel, the diameter has to be 2=
ffiffiffi
p
p
ð’1.13) times

larger than the pitch, which gives A(d) = 48 %. However,

as mentioned above, when the hole diameter exceeds the

pitch, adjacent holes start to overlap and parts of pixels that

were supposed to be reflecting become absorbing. There-

fore, the optimal diameter and coverage is a compromise

between the two. The theoretical optimal coverage is 50 %,

which is reached at a pitch of about 7 lm, but at this

coverage, the overlap is too dominant and the efficiency

has dropped significantly. Nevertheless, the maximum

efficiency achieved in the experiment is *10 %, which is

close to the theoretical maximum of 10.17 %. The maxi-

mum efficiency achieved for these reflection holograms

compares with that achieved for volume gratings also

produced by femtosecond lasers, where a maximum effi-

ciency of *15 % is reached [14]. The theoretical maxi-

mum for binary volume holograms is 4 times higher (i.e.

40.5 %) than for thin holograms [15].

The efficiency, which is directly proportional to the

absolute power in the reconstruction, may not be the most

appropriate measure for the quality of the reconstruction.

Therefore, we define the transferred power ratio (TPR) as

the power in one reconstruction relative to the sum of the

powers in the 0th order spot and the two first-order

reconstructions. This gives a relative measure of how much

power is transferred from the directly reflected beam into

the holographic reconstruction and thereby how clearly the

reconstructed image appears relative to the central (0th

order) spot.

Figure 3 shows the TPR as a function of diameter for the

same data shown in Fig. 2. The theoretical TPR (full and

dashed line) has again been calculated by Eq. 2 (note: the

0th-order diffraction efficiency is simply given by

E0 = a2). Again, the theory reproduces the experimental

data well up to and a bit above the pitch, and not very well

at larger diameters. The theory actually predicts a contin-

uously increasing TPR that approaches 1
3

(or 33 %) for the

coverage approaching 100 %. Nevertheless, for the same

reasons as mentioned above, the measured TPR in fact

reaches a maximum value for an optimal diameter and

coverage.

Once again, a simpler model has been used to fit the data

to determine the optimal values. There is a decrease in the
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Fig. 2 Measured efficiency (data points) of the holographic recon-

struction as a function of the hole size, together with the theoretical

diffraction grating efficiency (full and dashed line), and a fit (dotted

line) to a model described in detail in the text. The horizontal error

bars represent the statistical spread of the measured diameters. The

vertical error bars represent an estimate of the efficiency uncertainty

determined from the holographic images
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Fig. 3 Measured TPR (data points) of the holographic reconstruction

as a function of the hole size, together with the theoretical

calculations (full and dashed line), and a fit (dotted line) to a model

described in detail in the text
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total power reflected from the hologram with increasing

diameter, due to the corresponding decrease in the area of

the reflecting part of the hologram. Measurements show

that the total power drops linearly with the reflecting area

(data not shown), as expected by summation of Eq. 2 over

all diffraction orders. Hence, the data in Fig. 3 are fitted to

Eq. 3 divided by a function that is linearly decreasing with

A(d):

TPRðdÞ ¼
cAðdÞ

1�AðdÞ for d� dopt

c½2AðdoptÞ�AðdÞ�
1�AðdÞ for d [ dopt

(
; ð4Þ

In this fit (dotted line in Fig. 3), the optimal diameter is

found to be 6.2 ± 0.2 lm corresponding to an optimal

coverage of 42 ± 2 %, which agrees within uncertainties

with the fit in Fig. 2. About 20 % of the power (see Fig. 3)

is transferred into the reconstructed image at hole

diameters close to the optimal one, which fits well with

the theoretical value of 22 % at a coverage of 50 %.

The reconstruction efficiency has also been tested as a

function of the hologram pitch. For these measurements,

CGHs have been calculated to reconstruct the same image

(shown in Fig. 1), but with different pitches resulting in

different CGH patterns. When increasing the resolution

(i.e. decreasing the pitch) larger holographic images can be

reconstructed without overlap between different diffraction

orders [4]. In each calculation, the size of the reconstructed

image is scaled to take up the same relative area between 0-

and higher-order diffraction spots—this means that the

actual size of the reconstructed image increases with

decreasing pitch. In this experiment, when writing the

CGHs on the copper sample, the diameter of the holes is

kept almost the same as the pitch, which ensures that the

coverage is constant (*39 %). Fig. 4 shows the TPR as a

function of the pitch. For pitches up to 6 lm, the TPR is

seen to be fairly constant. As expected, the power in a

reconstructed image does not increase with increased res-

olution, since the maximum efficiency is already reached at

the 6 lm pitch. However, although it does not increase the

diffraction efficiency, the increased resolution has several

advantages. First, as mentioned above, it enables recon-

struction of larger images without overlap between differ-

ent diffraction orders. Second, owing to the increase in

information in the hologram, the increased resolution gives

sharper images, which means that more detailed objects

can be successfully reconstructed [4].

4 Conclusion

The efficiency of computer-generated holograms written

directly on a surface by ultrashort laser pulses has been

investigated as a function of the hologram parameters. The-

oretical calculations of the diffraction efficiency and TPR for a

one-dimensional binary amplitude grating reproduce the

experimental data well for hole diameters up to the pitch.

However, for diameters above the pitch, the ablated holes start

to fill some of the pixels that should be reflecting, and thus the

theory and experimental data disagree. By fitting to simple

coverage-dependent models, a hole diameter of *6.2 lm

corresponding to a coverage of *42 % is found to optimize

the hologram reconstruction efficiency. At this optimum, the

TPR reaches *20 % and the efficiency *10 %, which is in

good agreement with the theoretical maximum of 10.1 %.

Variations in the pitch for a fixed coverage showed that the

TPR was fairly constant from 2 to 6 lm.
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