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Abstract Thermal noise in optical cavities imposes a

severe limitation in the stability of the most advanced

frequency standards at a level of a few 10�16
ffiffiffiffiffiffiffi

s=s
p

for long

averaging times s. In this paper, we describe two schemes

for reducing the effect of thermal noise in a reference

cavity. In the first approach, we investigate the potential

and limitations of operating the cavity close to instability,

where the beam diameter on the mirrors becomes large.

Our analysis shows that even a 10-cm short cavity can

achieve a thermal-noise-limited fractional frequency

instability in the low 10-16 regime. In the second approach,

we increase the length of the optical cavity. We show that a

39.5-cm long cavity has the potential for a fractional fre-

quency instability even below 10-16, while it seems fea-

sible to achieve a reduced sensitivity of \10-10/g for

vibration-induced fractional length changes in all three

directions.

1 Introduction

Optical cavities with spectrally narrow resonances play an

important role in metrological applications, such as optical

frequency standards [1–5], gravitational wave detection

[6], and tests of fundamental physics [7, 8]. In a typical

setup for optical frequency standards, a clock laser is sta-

bilized to one of the modes of a linear Fabry-Pérot (FP)

cavity consisting of two mirrors separated by a spacer.

Several noise sources, such as pressure and temperature

fluctuations, but also vibrations, change the optical path

length of the cavity. These disturbances can be reduced by

placing the cavity in a vacuum chamber provided with the

proper active and passive thermal control and careful iso-

lation from mechanical and acoustic vibrations. During the

past years, significant effort was put into designing refer-

ence cavity systems with inherent insensitivity to vibra-

tions [9–19]. On a more fundamental level, thermal noise

induces optical path length fluctuations [20]. Brownian

motion causes local random displacement in the cavity

spacer, mirror substrates, and mirror coatings, limiting the

achievable length stability of optical reference cavities. A

theoretical description based on the Fluctuation Dissipation

Theorem (FDT) indicates that the thermal noise strongly

depends on material parameters, such as the mechanical

loss angle (/), but also on the size of the optical mode on

the mirrors [21]. One of the dominant sources for thermal

noise arises from the mirror coatings due to their high

mechanical loss [22, 23]. Increasing the mode size of the

beam on the mirror surface significantly reduces the cor-

responding thermal noise contribution [24]. This can, for

example, be achieved through the excitation of higher-

order transverse modes [25].

Here, we analyze the feasibility of two alternative

approaches to increase the mode size on the mirrors. The
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first approach is based on cavities operated close to insta-

bility, i.e., with a near-planar or near-concentric mirror

configuration [26], whereas the second relies on long

cavities. In the latter approach, relative frequency fluctua-

tions are further suppressed since they scale with the

inverse of the cavity length. In this paper, we show through

simulations that a 10-cm long cavity, when operated near

instability, can achieve a thermal-noise-limited instability

of 1.5 9 10-16 in 1 s, whereas a 39.5-cm long cavity has

the potential to achieve an instability below 10-16 in 1 s. A

major challenge for long cavities is the required insensi-

tivity to accelerations. We present a 39.5-cm long cavity

design with a vibration sensitivity of the fractional length

change of \10-10/g in all three directions, assuming real-

istic machining tolerances. We start in Sect. 2 with a short

overview of the analytical model of the thermal noise, and

we give the results of finite element simulations of the

frequency fluctuations in short and long cavities, with

stable and near-unstable configurations. Possible technical

limitations of near-concentric and near-planar cavities

arising from the dense mode structure close to instability

and an estimation of the effects on the laser frequency

stabilization are investigated in Sect. 3. Section 4 focuses

on the design of a vibration insensitive 39.5-cm long

cavity.

2 Thermal noise of optical reference cavities

The fluctuation dissipation theorem (FDT) relates the

thermal noise to unavoidable mechanical losses in the

system [27, 28]. The resulting relative displacement noise

amplitude
ffiffiffiffiffi

SL

p
=L is converted into fractional frequency

noise by the relation:
ffiffiffiffiffi

SL

p

=L ¼
ffiffiffiffiffi

Sm

p

=m: ð1Þ

Numata et al. derived analytical expressions for the

thermal noise contributions of different parts of the

cavity system [22] that have been further improved by

Kessler et al. [29]. The power spectral density of the

displacement noise in a spacer of length L and mechanical

loss /spacer can be written as:

SspacerðxÞ ¼
4kBT

x
L

A E
/spacer; ð2Þ

where kB is the Boltzmann constant, x is the angular noise

frequency, T is the temperature, A is the end face area of

the spacer excluding the center bore, and E is Young’s

modulus. The frequency noise from thermal noise of the

spacer scales as 1=
ffiffiffi

L
p

as shown in Eqs. 1 and 2. The

thermal noise from the mirror substrate can be derived by

modeling it as an infinite half space, resulting in the

following expression:

SsubðxÞ ¼
4kBT

x
1� r2

ffiffiffi

p
p

E

/sub

w0

; ð3Þ

where r is Poisson’s ratio, w0 is the radius of the laser

mode on the mirror, and /sub is the mechanical loss of the

substrate. For a coating with thickness d, the simplified

expression of its thermal fluctuation spectrum is:

ScoatðxÞ ¼
4kBT

x
2ð1þ rÞð1� 2rÞ

pE

d

w2
0

/coat; ð4Þ

where /coat denotes the mechanical losses of a homoge-

nous coating layer.

The dominant source of thermal noise for typical ref-

erence cavities arises from the mirror substrates and their

coating [22]. Choosing fused silica for the mirror material,

with its one order of magnitude higher mechanical quality

factor Q = 1// compared to ultra-low expansion glass,

significantly reduces the thermal noise. Cavities made

entirely of high mechanical Q materials, such as single-

crystal silicon [30], have been investigated. This leaves the

coatings on the cavity mirrors as the major contribution to

the thermal noise owing to their more than two orders of

magnitude larger mechanical loss compared to fused silica.

The analytical expression in Eq. 4 suggests several options

to reduce the coating thermal noise that have been exper-

imentally investigated. Decreasing the mechanical loss

/coat by replacing the commonly employed amorphous

SiO2/Ta2O5 Bragg-reflector stacks by single-crystal

AlxGa1-x As coatings is a promising approach [31]. Other

proposals include thermal noise compensated multi-layer

coating designs [32, 33]. Khalili suggested to reduce the

thickness d of the coating and compensate the loss in

reflectivity by adding another mirror behind the first [34,

35]. The two separated coating stacks form an etalon,

which results in high reflectivity of the overall two-mirror

system when tuned into anti-resonance, whereas the ther-

mal noise is dominated by the first (thinner) coating,

leading to a lower thermal noise compared to a single-

mirror high-reflective coating. Coating-free mirrors based

on micro-structured surfaces are yet another possibility

[36]. However, the low experimentally achieved optical

reflectivity and the difficulty of producing mirrors with a

curvature, as required for stable optical cavities, currently

limits the use for optical frequency metrology.

According to Eqs. 3 and 4, the thermal noise contribution

of the substrate and the coating scale with 1/w0 and 1/w0
2,

respectively, suggests enlargement of the TEM00 mode on

the mirror surface. The radius of the optical mode on the

mirror surfaces is a function of the distance between the
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mirrors and their radii of curvature. Two-mirror optical

cavities with radii of curvature R1 and R2 are optically stable

for 0 B g1 g2 B 1, where gi = 1 - L/Ri [26]. Close to

instability, the mode sizes on the mirrors diverge. The two

symmetric configurations close to instability are the near-

planar (R� L, gi& 1) and the near-concentric (R & L/2,

gi& - 1) configuration. Most experimentally realized sta-

ble cavity designs use a flat mirror and a mirror with 0.5–1

m radius of curvature. This configuration is well within the

stability regime, and the mode radius on the mirrors

increases with cavity length. Moreover, according to Eq. 1,

the fractional frequency noise decreases while increasing

the length of the cavity as 1=
ffiffiffi

L
p

for the spacer contribution

(See Eq. 2) and 1/L for the substrate and the coating con-

tributions (Eqs. 3, 4). Consequently, the best thermal-noise-

limited fractional instabilities of 2 9 10-16 and 1 9 10-16

were achieved for cavities 29 cm [37] and 40 cm [38] long,

respectively. Both approaches, cavities close to instability

and long cavities, pose different technical difficulties that

will be addressed in Sects. 3 and 4. In the following, we

present numerical estimates of the thermal noise for various

cavity geometries, in particular short near-planar cavities

and long optical cavities, and compare them to existing

systems. The calculations are based on a direct application

of the FDT using Levin’s theorem [21], implemented by

finite element simulations (FEM) using the commercial

program Comsol Multiphysics [39]. The simulation is

similar to the work presented in [29], except for the coating

contribution to the thermal noise that we calculated using

the analytical expression of Eq. 4.

Table 1 provides a summary of the estimated Allan

deviation rm of the frequency (flicker) noise for 3 different

geometrical cavity designs and lists the individual contri-

butions from the spacer, the substrate, and the coating to

the frequency instability. The relative frequency instability

is calculated for the implemented or planned operating

wavelength of the respective cavity. However, the selected

wavelength plays only a minor role with longer wave-

lengths providing a slightly better performance due to a

larger mode size on the mirrors. For cavities with coating-

dominated thermal noise, doubling the wavelength also

doubles the thickness of the coating [40], leaving the

overall noise contribution constant.

According to the table, the major contribution to thermal

noise for all cases stems from the coated mirrors, which is

in good agreement with the findings of reference [22] and

the experimentally achieved thermal noise limits of

3 9 10-16 [41] and 6.7 9 10-16 [14] for (A) and (C),

respectively. For the cavities with 24 cm length, replacing

the ULE mirror substrates of case (A) by lower mechanical

loss FS substrates would improve the frequency stability by

a factor of 2 (case (B)).

The thermal-noise-limited performance of 10-cm long

cavities is treated with plane/concave (C) and near-planar

(D) mirror configurations. In case (D), the mode radius on

the mirrors is increased to 766 lm, resulting in a reduction

of the frequency instability by a factor 2 compared to (C).

It is remarkable that using an optical configuration near

instability for a cavity of only 10 cm length provides a

frequency stability comparable to the performance of a

much longer cavity such as the 24-cm long cavity of case

(B). This design is particularly attractive for applications

requiring portable optical cavities [19, 45–47]. Possible

technical issues in the realization of such a cavity are

discussed in Sect. 3.

Cases (E) and (F) compare the improvement in fre-

quency instability for a 39.5-cm long cavity when moving

from a plane/concave (E) to a near-concentric (F) configu-

ration. The long cavities result in improvements in the

frequency stability by factors of 4 and 6 compared to case

(A), while the improvement between the design of the

stable plano-concave cavity (E) and the near-concentric

cavity (F) is about 30 %. Recently, a cavity similar to case

(E) has been implemented with a slightly different mirror

configuration, demonstrating a thermal-noise-limited

instability of 1 9 10-16 [38]. Both cavity geometries close

to instability offer superior thermal-noise-limited perfor-

mance compared to more stable geometries.

3 Cavities with large mode field diameters

Operating optical cavities close to instability results in an

increased alignment sensitivity and a small higher-order

mode spacing. The frequency spacing of higher-order

(m, n) Hermite-Gaussian modes TEMmnq of a particular

longitudinal mode q is given by the resonance condition

[48]:

xmnq

DxFSR

¼ qþ 1

p
ðmþ nþ 1Þ arccos

ffiffiffiffiffiffiffiffiffi

g1g2

p� �

; ð5Þ

where DxFSR ¼ 2p� c=ð2LÞ is the free spectral range of

the cavity with c denoting the speed of light. The close

spacing of higher-order modes can disturb the stabilization

scheme of the resonance frequency. Furthermore, the

cavity becomes sensitive to misalignment of the mirrors

that can significantly shift the position and angle of the

optical mode axis inside the cavity. This leads to an

enhanced sensitivity to seismic and acoustic vibrations (see

Sect. 4).

For the remainder of this section, we consider cavities

with higher-order mode spacing Dxhom ¼ jx00q � x01qj �
2p� 27 MHz, corresponding to the cases (D) and (F) of

Table 1.
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3.1 Influence of higher-order modes on the error signal

The stability of passive optical cavities is typically

transferred to a laser frequency using the Pound Drever

Hall (PDH) technique [49]. It is based on a measurement

of the dispersive response of the cavity as a function of

laser detuning from cavity resonance. In this scheme,

sidebands are modulated onto the optical carrier at a

frequency ranging between a few and a few hundred

MHz. An example of the obtained error signal is shown

in Fig. 2. Typically, higher-order modes are neglected in

the error signal analysis. However, imperfect mode

matching into the cavity can lead to non-negligible

coupling to these modes. Off-resonant coupling of the

laser to these modes can result in a small offset in the

error signal of the fundamental mode. Beam pointing

fluctuations will then lead to a fluctuation in the offset of

the error signal and therefore instabilities in the laser

frequency.

We investigated the two scenarios shown in Fig. 1:

(A) Off-resonant coupling to the first higher-order mode

near the fundamental resonance and (B) near-coincidence

of the fundamental resonance x00q with higher-order

modes xnmq ± 1 of a different longitudinal mode of the

cavity. By carefully choosing the length of the cavity, the

x00q-resonance comes to lie close to the center between

two higher-order modes.

Table 1 Frequency noise calculation for different materials and cavities

Case Frequency noise ðHz=
ffiffiffiffiffiffi

Hz
p
Þ Relative contribution (%) References to

similar geometries
Substrate/Spacer R1/R2 w0 (lm) Spacer Substrate Coating ry (10-16)

24 cm long cavities; k ¼ 563 nm; d ¼ 3 lm

A ULE / ULE 0.5 m/1 293/212 0.021

2 %

0.11

77 %

0.061

21 %

2.97 [41, 22]

B FS / ULE 0.5 m /1 293/212 0.021

9 %

0.027

17 %

0.058

74 %

1.51

10 cm long cavities; k ¼ 1; 064 nm; d ¼ 5:3 lm

C FS / ULE 0.5 m/1 260/291 0.023

6 %

0.033

12 %

0.087

82 %

4.05 [14, 42]

D FS / ULE 30 m/1 767/766 0.023

28 %

0.020

21 %

0.031

51 %

1.85

39:5 cm long cavities; k ¼ 1; 069 nm; d ¼ 6 lm

E FS / ULE 1 m/1 524/408 0.007

17 %

0.0064

14 %

0.014

69 %

0.72

F FS / ULE 0.2 m/0.2m 778/778 0.007

35 %

0.0049

17 %

0.0083

48 %

0.50

The cavities have a cylindrical (A–D) or rectangular shape (E–F) operating with a laser at wavelength k. The diameters of spacers of case (A–B),

(C–D), and (E–F) are 150, 100, and 74 mm respectively. The diameter of the spacer has a negligible influence on the total thermal noise. The

optical mode radius w0 at the position of the mirror is a function of L and the mirror radius of curvature R1,2. The relative frequency noise

contribution of each component of the cavity is presented in addition to the calculated value of the total frequency noise
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Smð1HzÞ
p

:rm is the

fractional frequency instability with ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Smð1HzÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðln 2Þ
p

=m: For all geometries, the central bore in the spacer is 1 cm diameter, the

temperature is T = 293 K, /ULE = 1.6 9 10-5, /FS = 10-6. The coating on each mirror is of thickness d and /coat = 4 9 10-4. We assume

for ULE (Corning) a Young’s modulus of 67.6 GPa and a Poisson ratio of 0.17 [43] and for FS a Young’s modulus of 73.1 GPa and a Poisson

ratio of 0.17 [44]

A B

higher order
modes

modulation 
sidebands

R
el

at
iv

e 
am

pl
itu

de

Fig. 1 Example of two longitudinal modes (in green and blue) with

higher-order modes distribution in a Fabry-Perot cavity of free

spectral range DxFSR ¼ 2p� 1:5 GHz: For illustrative purposes, the

relative amplitude of the TEMmnq modes is scaled according to 1/

(m ? n ? 1). The circle (A) depicts the interaction of higher-order

modes with a spacing Dxhom ¼ 2p� 27 MHz with the frequency

modulation sidebands at X ¼ 2p� 20 MHz: The circle (B) illustrates

the near-coincidence of the higher-order modes from a different

longitudinal mode with the fundamental mode
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The required length accuracy of the cavity spacer of a

cavity near instability (gi& ±1) can be estimated through

dL� Dxhom
2

DxFSR � n
¼ DLhom; ð6Þ

where DLhom is the required change in length to shift the

resonance frequency x00q between two neighboring higher-

order modes and n ¼ oDxhom

oL
: For dL ¼ DLhom=10; we

estimate that dL for the 10 cm near-planar cavity

(Table 1d) is in the order of 370 lm. This result is com-

pared to the case of the near-concentric 39.5-cm long

cavity (Table 1f) which has a similar higher-order mode

spacing and dL is on the order of 70 lm. However, for the

same cavity finesse, the long cavity has a narrower line-

width compared to the short one, which relaxes the toler-

ances on dL. For the short cavity, coincidences occur at

very large mode indices due to its large free spectral range,

for which the coupling efficiency is expected to be small.

The effect of an off-resonant higher-order mode on the

PDH error signal (case (A) of Fig. 1) is evaluated assuming

a coupling efficiency ghom = 0.1 of the laser beam to this

first higher-order mode of the cavity. In addition, we

assume this coupling to fluctuate by dghom/ghom = 10% to

estimate the frequency fluctuations. This represents a

worst-case scenario. In the PDH setup, the error signal and

thus the frequency shift are derived from a measurement of

the power of the reflected phase-modulated beam. For a

lossless cavity, the reflection function RðDÞ of an incident

beam with amplitude eEðDÞ is an Airy function that can be

approximated by a Lorentzian:

RðDÞ ¼ �DðDþ ıC=2Þ
ðC=2Þ2 þ D2

; ð7Þ

where D ¼ x� x0 is the frequency shift of the laser of

frequency x from the nearest longitudinal mode x0 and C
is the cavity linewidth. The expression of the photodiode

current signal is well known [50], and we expand it, taking

into account the interaction between reflected fields up to

the second-order modulation sidebands. The error signal is

obtained through demodulation with a local oscillator field

E0� sinðXt þ uÞ and low-pass filtering. For the usual

situation of a fast modulation frequency (X� C) the error

signal becomes:

eðDÞ ¼ �2J0ðbÞJ1ðbÞ=½RðDÞR	ðDþ XÞ
� R	ðDÞRðD� XÞ

� 2J1ðbÞJ2ðbÞ=½RðDþ XÞR	ðDþ 2XÞ
� R	ðD� XÞRðD� 2XÞ
:

ð8Þ

Here, Jn(b) is the nth order Bessel function of the first kind

as a function of the modulation index b;= refers to the

imaginary part, and X is the modulation frequency.

A plot of the normalized error signal is shown in Fig. 2.

Close to the cavity resonance (D� C), the second-order

terms in X in Eq. 8 are negligible and ½RðDÞR	ðDþ XÞ �
R	ðDÞRðD� XÞ
 � �ı2=½RðDÞ
: Near resonance, we can

approximate the error signal with a linear function of the

frequency shift dx, where the slope is called the frequency

discriminant D, and write the error signal near resonance

eNR ¼ D� dx with:

D ¼ �8J0ðbÞJ1ðbÞ
1

C
: ð9Þ

The general expression of the frequency shift is then

obtained by dividing the offset contributed by the off-res-

onant higher-order mode at detuning D; dghom � ehomðDÞ by

the frequency discriminant D:

dxðDÞ ¼ dghom �
ehomðDÞ

D
: ð10Þ

To understand the effect of the higher-order mode, e.g.,

TEM010, on the PDH error signal, we consider 2 possible

cases. The first case is for C� Dxhom\X as shown in

Fig. 2 by the green area around D � X=2: As an example,

we use Eq. 10 to calculate the laser frequency deviation

dxðX
2
Þ due to a distortion of the error signal by a higher-

order mode situated at D ¼ X
2

for a 10-cm long cavity with

a finesse F ¼ 105; a modulation index of b = 1, and a

modulation frequency of X ¼ 2p� 20 MHz: In this case,

the frequency fluctuation is estimated to be on the order of

dxðX
2
Þ ¼ 2p� 75 mHz: This value is too large for

operating a laser with \10-16 instability, and therefore,

the first higher-order mode resonance needs to be beyond

the first modulation sideband. The second case is for

X\Dxhom\2X as shown in Fig. 2 by the blue colored

area around D � 3X=2: As an example, for a higher-order

mode situated exactly at 3X=2 and for the parameters

0.5

1.0

0.5

1.0

Frequency detuning in MHz

R
el

at
iv

e 
am

pl
itu

de

-60 60-40 -20 4020
0

Fig. 2 Error signal including first and second order modulation

sidebands. The modulation frequency is X ¼ 2p� 20 MHz; the

modulation depth b = 1 and we assume for illustrative purposes a

finesse of 5000. The green and blue regions are discussed in the text
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stated above, we get dxð3X
2
Þ ¼ �2p� 6:6 mHz; still

representing a fairly large shift. However, the error signal

has a zero crossing at D ¼ D0 � 1:67X for our parameters.

If the first higher-order mode is situated at D ¼ D0 from the

longitudinal mode resonance, this mode will have no

influence on the error signal of the fundamental mode. This

situation can always be achieved by adjusting the sideband

modulation frequency. We evaluate the influence of the

next higher-order mode on the error signal for this case to

be tolerable -2 p 9 1.6 mHz.

3.2 Alignment tolerances

Cavities close to instability are more sensitive to mis-

alignment of the mirrors. This requires tight tolerances to

spacer and mirror manufacturing and to mirror alignment.

The displacement of the optical mode from the center of

the mirror affects the vibration sensitivity of the optical

cavity as we will discuss in Sect. 4 In order to estimate the

required tolerances, we consider a FP resonator made of

two mirrors Si with the corresponding radii of curvature Ri

and centers Ci, separated by the optical path length of the

cavity L (see Fig. 3). If the mirror Si is tilted by an angle

hi, the center of the mode intensity pattern on each mirror

Si will shift due to a rotation of the optical axis by an angle

Da and a translation by a distance Dxi from the geometrical

axis [26] with:

Da ¼ ð1� g2Þh1 � ð1� g1Þh2

1� g1g2

Dx1 ¼
g2

1� g1g2

� Lh1 þ
1

1� g1g2

� Lh2

Dx2 ¼
1

1� g1g2

� Lh1 þ
g1

1� g1g2

� Lh2:

For the case of a 10-cm long FP cavity with a near-planar

mirror configuration (Table 1d), we estimate a shift of

jDx1 þ Dx2j ¼ 100 lm for a mirror tilt of ±0.8 l rad,

while with a near-concentric mirror configuration

(R1 = R2 = 0.51 cm), the same shift occurs for a mirror

tilt of ±0.9 m rad. We note that the sensitivity to mirror tilt

scales with the length of the cavity for fixed g1 and g2. In

addition, for near-concentric cavities, the positioning of the

mirrors on the end face of the spacer is critical, particulary

for long near-concentric cavities. A shift Dr of one mirror

center from the symmetry axis of the cavity results in the

rotation of the optical axis by an angle c ’ Dr
2R�L

: This leads

to a displacement Dx ¼ c� R of the optical mode on both

mirrors. We estimate for a 39.5-cm long cavity (Table 1f)

that a shift of 10 lm of one mirror results in a mode dis-

placement of 400 lm. We conclude from these estimates

that for a long cavity, working with a configuration close to

instability requires challenging mechanical machining and

alignment tolerances. However, for a short cavity, the

required tolerances are technically feasible.

4 Vibration insensitive long cavity

As indicated in Table 1, long cavities can reach a thermal-

noise-limited instability below 10-16. However, low-fre-

quency seismic and acoustic noise in the environment of

the cavity cause fluctuations of the optical path length,

particularly for long cavities with their intrinsically higher

sensitivity to vibrations. Careful positioning of the

mounting points allows to support the cavity spacer with

significantly reduced sensitivity to accelerations in all three

directions. Although length fluctuation and bending of the

cavity can in principle be compensated, imperfections of

the spacer manufacturing and mounting process lead to a

non-zero vibration sensitivity.

We begin by presenting the analysis of the sensitivity to

vibrations and the results for an optimized mounting con-

figuration, before comparing different diameter-length ratio

configurations of a 39.5-cm long cavity. We end the section

by estimating the effect of asymmetric spacer machining

and unequal force distribution on the vibration insensitivity

of the cavity.

4.1 Optimized design of a vibration insensitive long

optical cavity

Small acceleration forces acting on an elastic body such as

a cavity spacer lead to a linear deformation of its shape

through Hooke’s law. The first-order relative change of the

optical path length in a cavity subject to accelerations aj in

the direction j is given by:

DL

L
¼ �Df

f
¼
X

j¼x;y;z

ajkj þ
X

j¼x;y;z

ajjjDr: ð11Þ

x2x1

L+ L

C2 C1

L

Y

Z

1 2

Fig. 3 Illustration of the misalignment and the mode displacement in

a stable FP resonator. The original positions are drawn in green and

the misaligned positions are drawn in blue
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The first sum on the right-hand side of Eq. 11 describes a

relative length change under aj with the sensitivity coeffi-

cient kj. The second sum denotes a relative change in

optical path length due to a tilt of the mirrors characterized

by the coefficient jj in case the optical mode is displaced

from the mechanical symmetry axis of the cavity by an

average distance Dr: In the ideal case, where Dr ¼ 0; the

mirror tilt has a second-order effect on the length change

(dL in Fig. 3), which can be neglected [9].

We have performed simulations using the finite element

method (FEM) [39] to determine the optimum position of

the supporting points for a 39.5-cm long cavity with a

square cross-section equal to 74 mm side length. The

choice of this square cross section will be justified after

comparing the cavity performance with different side

lengths at the end of this section. For the simulation, we

assume that the ULE spacer material is perfectly homog-

enous, as well as the FS mirrors. A force density a!� qx

with j a!j ¼ j g!j ¼ 9:8 m s�2; is applied on the ULE spacer

of density qs = 2,210 kg m-3, and on the FS mirrors of

density qm = 2,203 kg m-3, and it induces a quasi-static

elastic deformation, as we study low-frequency effects.

The simulation provides an optimum solution for which the

cavity length variation kj and residual angle tilt jj coeffi-

cients both vanish, and the sensitivities of these coefficients

to changes from the optimum support point positions.

We consider a cuboid shape of the spacer, which seems

to be the preferable choice for long cavities if loaded

properly [11, 10, 51]. Four small cutouts have been

designed in the ULE spacer (two on each side) in order to

support the cavity. The parameters of the cavity are pre-

sented in Fig. 4. All the cutouts (box (A) in Fig. 4) have the

same dimensions. The size of the cutouts is a compromise

between maximum adjustability of the support points and

the desire to retain the symmetry between upper and lower

half of the spacer by having the support points as close as

possible to the central horizontal symmetry plane. The

mechanical support of the cavity is in contact with the ULE

spacer only in a small circular area of 2 mm diameter to

reduce thermal conductivity between the heat shields and

the cavity through the supporting legs. The displacement of

the mirror and its tilting angle are evaluated from a vertical

cut line (for the case of vertical (along Y) or axial (along Z)

accelerations) and a horizontal cut line (for the case of

horizontal acceleration (along X)) crossing the center of the

mirror, as shown by the green and red lines of Fig. 4,

respectively.

For finding the optimum mounting points and for esti-

mating the allowed machining tolerances, the position of

the entire cutout within the spacer is varied in the simu-

lations. We first consider vertical acceleration along the

Y axis. The volume of the cutouts and in particular their

height dl (dimension of the cutout along the Y axis) break

the symmetry of the cavity with respect to the middle

horizontal symmetry plane (Z, X). This results in a finite

axial length change under vertical acceleration through

Poisson’s ratio [9]. This effect scales with the diameter of

the cavity and can be canceled by optimizing the parameter

dy (position of the cutout along the Y axis, relative to the

middle horizontal plane of the cavity).

Mirror tilt is introduced through the asymmetric

expansion of the spacer with respect to the middle hori-

zontal plane (X, Z) due to Poisson’s ratio and through the

bending of the cavity around the support points with two

extreme cases: supporting in the center leads to downward

tilt of the ends of the cavity, whereas supporting at the ends

results in an upward tilt. In between these two configura-

tions, there is an optimum position with vanishing total

mirror tilt that can be found by adjusting dz (position of the

cutout along the optical axis Z, starting from the end faces).

The depth of the cutout dx (from the side face of the spacer

toward the optical axis) has a negligible effect on the

mirror tilt and length change of the cavity at the optimum

parameters for dz and dy.

The relative displacement values at the mirror center as

a function of the parameter dy are plotted in Fig. 5a.

The tilt angle of the mirror is plotted as a function of the

parameter dz in Fig. 5b. The simulations confirm the

dependence of the length change and the mirror tilt to

the almost independent variables dy and dz, respectively.

Linear fits to the data provide us with the optimum posi-

tions dz = 82.6 mm and dy = 0.5 mm. The slope of these

fits is a measure for the sensitivity against machining tol-

erances d dy and d dz for the cutouts. For horizontal and

axial acceleration, the sensitivity to changes in the support

dz
dy

Cut lines
Mirrors

Central bore
10mmØ

    Evacuation
         holes

74mm

74mm

Y

X

Z

Supporting area
2mmØ

dl

20mm

dx

A

Fig. 4 Parameters of the 39.5-cm long cavity. The inset shows the

parameters for one of the cutouts by which the cavity will be

supported, and the blue point indicates the fixed contact position of

the mechanical support
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points was determined analogously to the sensitivity in the

vertical direction described above.

Table 2 presents a summary of the simulation results as

functions of machining tolerances for a 39.5-cm long

cavity loaded with vertical, axial, and horizontal acceler-

ation fields. The symmetry of the cavity spacer with respect

to horizontal (along X) and axial (along Z) acceleration is

maintained through the mounting structure, thus eliminat-

ing length changes along the cavity axis. For the axial

acceleration, a mirror tilt occurs due to dy = 0 and cannot

be avoided as long as the supporting legs are not exactly on

the horizontal symmetry plane (dy = 0). By choosing

cutouts of small volume, we reduce the magnitude of the

dy parameter to dy = 0.5 mm and get a tolerable sensi-

tivity to axial acceleration of 63 9 10-12/g for the ideal

case of d dy = 0. For the horizontal acceleration, the

optimum cutout position agrees with the optimum value

found for the vertical acceleration within the precision of

the simulations.

The measured vibration spectrum in our experimental

laboratory is around 7lg=
ffiffiffiffiffiffi

Hz
p

at 1 Hz in all three direc-

tions. Thus, to achieve a relative length change below the

expected thermal noise limit (DL
L

\10�16), we will need the

machining tolerances for making the supporting cutouts in

the spacer to be in the order of a few 100 lm. The large

sensitivity to mirror tilt in long cavities requires an align-

ment of the optical with the geometrical axis on the mirrors

(Dr) to be precise to within a few 100 lm. Both require-

ments are achievable with current technology.

4.2 Influence of the diameter-length ratio

Bending of the mirrors under accelerations orthogonal to

the optical axis is caused by a bend of the entire spacer

(extremal for support points either in the center or the outer

points along the optical axis) and an asymmetric expansion

along the cavity axis of the lower and upper half of the

cavity due to Poisson’s ratio [9]. For vertically mounted

cavities, these two effects can cancel for a certain diameter-

length ratio [14]. For the horizontally mounted cavities
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0

0.5

1

1.5

-7x 10

dz (mm)

a
n
g
le

 (
ra

d
/g

)
a

b

Linear fit
Relative length change

Induced tilting angle
Linear fit

Fig. 5 Simulated cavity length change and tilt under vertical

acceleration as a function of parameters dy and dz. a Relative cavity

length change Uz/L at the center of the mirror as a function of the

cutout position dy for fixed dz = 83 mm. A linear fit provides the

optimum value of dy = 0.5 mm and a sensitivity to machining

tolerances of ky ¼ 42� 10�12 � ddy=ðg � mmÞ: b Cavity mirror tilt as a

function of the cutout position dz for fixed dy = 0.5 mm. A linear fit

provides the optimum value of dz = 82.6 mm and a sensitivity to

machining tolerances in dz of jy ¼ 84� 10�12 � ddz=ðg � mm2Þ

Table 2 Optimum support point positions and acceleration sensitiv-

ities to machining tolerances of a 39.5-cm long cavity with a square

cross section of 74 mm side length

Direction of acceleration

(g = 9.8 ms2)

Tolerances, D=7.4 mm

kjð10�12=ðg �mmÞÞ jjð10�2=ðg �mm2ÞÞ

Vertical (Y) 42 � ddy 84 � ddz

Horizontal (X) & 0 68 � ddz

Axial (Z) & 0 126 � ðdy�ddyÞ

Spacer diameter (mm)

50 60 70 80 90 100 110 120 130 140 150
0

20

40

60

80

100

120

140
150

ky

Fig. 6 Variation of the sensitivity coefficients for mirror tilt jj and

mirror displacement kj as a function of the spacer cross section, under

vertical (Y axis), axial (Z axis), and horizontal (X axis) accelerations.

The length of the spacer is fixed to 39.5 cm as well as the shape of

supporting cutouts. We have assumed Dr ¼ 0:5 mm for the calcula-

tion. The dashed lines are a guide to the eye
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considered here, the effects add up, and an additional

length change is introduced. However, by choosing an

appropriate diameter-length ratio, we can balance the

sensitivities to length change and tilt.

In Fig. 6, we compare the factors kj and jj, under ver-

tical, axial, and horizontal accelerations for different square

cross sections of a 39.5-cm long cuboid cavity. The sen-

sitivity to the mirror tilt becomes larger for smaller cross

section, whereas the sensitivity to length changes under

accelerations perpendicular to the optical axis scales line-

arly with the cross section [9]. We found that, given

machining tolerances on the order of a few 100 lm, square

cross sections between 65 mm and 85 mm offer a good

trade-off between length and tilt sensitivity.

4.3 Asymmetric spacer and inhomogeneous loading

forces

We investigated the influence of geometrical deviations

from the optimum cavity shape to assess the required

machining tolerances, which become critical for longer

cavities. Through numerical simulations, we estimate the

sensitivity of a 39.5-cm long cavity to accelerations in the

case of an asymmetric spacer that has an end surface tilted

by an angle a around a horizontal axis, maintaining the

calculated optimal support points for a perfect rectangular

shape. The sensitivity of the cavity becomes 4:9�
10�9a=ðg � radÞ and 4� 10�8a=ðg � radÞ under vertical and

axial accelerations, respectively. The horizontal accelera-

tion is unchanged, since the corresponding symmetry is not

broken by the tilt. We expect that a tilt along the vertical

axis results in similar sensitivities for horizontal and axial

accelerations. We conclude, for a 39.5-cm long cavity of

width and depth equal to 74 mm, that the faces of opposing

sides of the cavity should be parallel to within 0.1 m rad to

achieve a sensitivity of less than 10-11/g to accelerations in

all directions. This requirement is technically achievable

and can probably be further relaxed by experimentally

determining new optimal support point positions.

Equal distribution of the total reaction forces F
!¼ m a!

applied between the supporting points is also of crucial

importance and may be a reason for differences between

theoretical results and experiential measurements of the

vibration sensitivities [19]. An estimate shows that a force

difference DF applied between two pairs of supporting legs

induces a sensitivity of 7:4� 10�9=g � DF
F

in the axial

direction and 2:4� 10�10=g � DF
F

in the vertical direction,

for this cavity of mass m = 4.7 kg. Thus, equal force

distribution within 1% between the supporting legs is

therefore of major importance to achieve a vibration

insensitive cavity. Equalizing the forces applied on the

cavity could be either achieved by using elastic supports or

by converting the four-point support into an effective three-

point support.

5 Summary and Conclusion

We investigated two different approaches to reduce the

thermal noise of optical cavities. The first approach con-

sists of operating the cavity near instability to increase the

mode size on the mirrors, thus reducing the dominant

source of thermal noise. Whereas the long cavity provides

a modest improvement over a comparable cavity operated

under stable mode conditions, the improvement for short

cavities in terms of stability ry is better than a factor of 2.

Possible issues with the off-resonant coupling of higher-

order modes for the near-instability cavities can be solved

by a proper choice of the modulation frequency and the

optical path length. Furthermore, the mirror alignment

requirements are feasible, particularly for the 10-cm short

cavity. These results are important for the development of

ultra-stable portable lasers, e.g., for portable clocks and

future space missions such as LISA, GRACE-fo, and STE-

QUEST, for which short cavities are advantageous.

The second approach for reducing thermal noise consists

of using a long cavity spacer. We presented a mounting

design for a 39.5-cm long cavity. This robust design is the

result of finite element simulations made for multiple

cavity designs that allowed us to find the best diameter-

length ratio and machining tolerance for a minimum

vibration sensitivity while allowing a large degree of

adjustability of the support points. This cavity of reduced

theoretical thermal noise limit lower than 10-16 is now

implemented in our laboratory in order to stabilize the

interrogation laser of an Aluminum quantum logic optical

clock.
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