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Abstract This paper aims to demonstrate the quantitative

simulation of photoacoustic signals using finite element

modelling software. The software Comsol Multiphysics is

used to calculate the response of a differential Helmholtz

resonator cell previously modeled using an electrical anal-

ogy. Quality factors and resonance frequencies are com-

pared with experimental ones. Moreover, for the first time,

the absorption coefficient of the gas sample and the laser

intensity are also used to quantitatively predict photoacou-

stic signal that can be obtained in such a configuration.

1 Introduction

Photoacoustic (PA) spectroscopy has proven to be a very

sensitive method for gas monitoring [1]. The PA technique

consists of sending modulated radiation into a sample gas

cell containing a microphone. Any absorbed radiation will

be, in general, converted to thermal energy of the gas due

to collisions of molecules, thus leading to a modulated

pressure detectable with a microphone. As any spectro-

scopic system, a PA detector presents the main advantage

of being highly selective. Moreover, PA sensors are the

robust devices that can easily be implemented for in situ

monitoring. Thanks to resonant cells and differential

measurement techniques; PA sensors have shown excellent

sensitivities on the level of part-per-billion (ppb) for most

atmospheric gases [2–5]. These results are comparable to

those of other apparatus, such as multipass cells or cavity

enhanced absorption spectroscopy techniques, but with a

generally simpler set-up. Finally, PA sensors present the

advantages of a high dynamic range and the possibility to

work at atmospheric pressure.

To improve the sensitivity of the system, resonant cell

schemes can be used exploiting most of the time radial,

azimuthal or longitudinal resonance of acoustic waves. The

cell that will be quantitatively modelled in the present

paper is based on a different scheme: resonance is obtained

by differential Helmholtz resonance [6]. This type of res-

onator has been used by several teams to develop trace gas

sensors [7–10]. Two volumes Va and Vb linked by two

capillaries form this PA cell. The gas in the capillaries

moves like a piston, compressing gas in one volume

whereas dilating it in the other. Consequently, acoustic

waves are opposite in phase at resonance and by measuring

it with two microphones (one in each volume), differential

measurement is obtained: the difference of the two signals

eliminates a great part of the acoustic noise and rises by a

factor 2, the acoustic signal itself. The two capillaries

enable to do flow measurements, as each of them is sup-

plied with a valve, linked on one side to vacuum pumping

system, on the other to atmosphere.

In photoacoustic spectroscopy, the light must be mod-

ulated at acoustic frequency to generate a signal in the cell.

In the case of amplitude modulation, W(x, t) corresponds

to the mean power in the cell, if we assume that Wðx; tÞ ¼
Wmð1þ exp ixtÞ where x is the angular frequency. PA

signal is linked to Beer–Lambert law [1]:

SPA ¼
RW

L
1� expð�aLÞð Þ ð1Þ

where R is the total cell response, W the laser power, L the

cell length and a the absorption coefficient of the gas sample.
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For low concentrations of absorbing molecules, the PA

signal is then equal to:

SPA ¼ RWa ð2Þ

The total response of the PA system is given by [11] :

R ¼ ðc� 1ÞLQRm

xVc
¼ RcRm ð3Þ

where c is the ratio of the specific heat at constant pressure

Cp to specific heat at constant volume Cv, Q the quality

factor of the resonant cell, Rm the microphone sensitivity

and Vc the cell volume. Rc characterizes the acoustical

response of the cell. Usually, this total cell response is not

calculated using Eq. 3, but is obtained using calibrated

mixtures in the cell and measuring the obtained photoa-

coustic signal [12, 13]. This calibration procedure may be a

burdensome work that needs expensive certified mixtures.

Moreover this task may be realized only when the

photoacoustic cell is constructed. For this two reasons, it is

very interesting to quantitatively model the response of a

photoacoustic cell. This paper will demonstrate the possi-

bility to determine photoacoustic cell constant without any

calibration procedure, and to predict the absolute photoa-

coustic signal obtained in various configuration using the

finite element modelling (FEM) software Comsol

Multiphysics.

2 Description of a differential Helmholtz resonant cell

Helmholtz resonances have been first experimentally

observed in the analysis of solid samples with photoacou-

stic cells designed to separate the microphone cavity from

the sample chamber [14, 15]. Simple system models, based

on equation for a driven harmonic oscillator [16] and

acoustic analogy to the electric circuit approach [17, 18],

predict with acceptable accuracy both the experimentally

determined responses of Helmholtz resonator as function of

frequency and values of acoustic quality factor Q. Com-

pared to other resonators, the Helmholtz arrangement has

the advantages of using cells of small volumes with low

resonance frequency, and the possibility to enhance the S/N

ratio using differential schemes. The differential Helmholtz

resonant cell presented here is simple in design and con-

sists of two cell volumes connected together by thin cap-

illaries. A 3D view of the cell is presented in Fig. 1.

To investigate all parameters of the Helmholtz reso-

nance and the feasibility of the flow measurement, we have

built several identical Pyrex PA cells. Each cell is equipped

with low-cost commercial electret microphones, Knowles

EK3024. The cells have BaF2 windows mounted at

Brewster angle. The Helmholtz configuration is obtained

by connecting the cells to each other by two identical Pyrex

capillaries with two-way vacuum valves to form a bilateral

symmetric design. The geometrical parameters of the cell

are summarized in Table 1.

The experimental characterization of the cells was per-

formed using a continuous wave SAT C7 18O12C18O

waveguide laser, emitting on 9P20 line with a mean power

around 0.5 W, chopped by a high precision mechanical

chopper EG&G, model 197, at frequencies from 20 to

300 Hz. The laser beam passes through the first cell of the

photoacoustic detector and is directed to a power meter.

Emission wavelength is checked by a CO2 spectrum ana-

lyzer Optical Engineering.

The two-way vacuum valves allow to operate the PA

cell either in non-resonant mode where the excited cell is

isolated from the other and the two capillaries are closed,

or in resonant mode where one or both capillaries are open.

In non-resonant mode, the measured signal U0 is the

response of the microphone located in the excited cell. In

resonant mode, the signals Ua and Ub correspond, respec-

tively, to the response of the microphone (a) located in the

excited cell and the microphone (b) in the non-excited cell.

The configuration is named Helmholtz Resonator (HR) if

the microphone signals in each cell (Ua and Ub) are mea-

sured separately, and Differential Helmholtz Resonator

(DHR) if the difference between the microphone signals Ua

- Ub is measured. Fig. 2 presents a schematic represen-

tation of the two possibilities of use of the PA cell.

Fig. 1 Three-dimensional view of the glass PA cell

Table 1 Geometrical parameters of the DHR cell

Parameter Value

Length of the cell Lc (m) 0.102

Cell diameter Dc (m) 0.0108

Length of the capillaries Lcap (m) 0.071

Capillaries diameter Dcap (m) 0.00206

Length of the valves Lv (m) 0.013

Valves diameter Dv (m) 0.0015
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The characteristics of the cell (sensitivity or responsi-

tivity as function of frequency, pressure and concentration

of absorbing gas molecules) in non-resonant, HR and DHR

configurations were experimentally determined using eth-

ylene in the vapor phase (Air Liquide) diluted in N2 (Air

Liquide). We did not have certified mixtures, so the mix-

tures of the given concentrations were prepared in a vac-

uum tank and were kept for 3 or 4 h before the

measurements. The amplitudes and phases of the photoa-

coustic signals U0, Ua, Ub, Ua - Ub were measured by two

lock-in amplifiers (EG&G, model 5301), with 1s integra-

tion time for several ethylene concentrations and for sev-

eral total pressure. These measurements have been detailed

in [6], and compared to simulations based on electric

analogy. A quantitative good agreement between mea-

surements and simulations has been found provided, we

add a supplementary loss term in the electric analogy

modelization. This parameter was determined by fitting the

simulation to measurements for one ethylene concentra-

tion, and was found to be correct for all other

concentrations.

The need for this empirical parameter strongly limits the

use of electric analogy for PA cell shape and response

optimization. Although some more complex models have

been developed based on electrical analogy (Extended

Helmholtz Resonator [17], Matrix formalism [19]), they

also require some empirical adjustments.

3 Modelization of PA cells

3.1 Description of sound generation

The theoretical description of sound generation in

photoacoustic cells has been given in the 70s by several

authors [11, 20], and is summarized here. According to

[21], the heat produced in a photoacoustic cell by light

absorption represents the source for sound wave. There-

fore, a corresponding source term has to be added to the

Helmholtz equation:

r2pðr;xÞ þ k2pðr;xÞ ¼ ix
c� 1

c2
Hðr;xÞ ð4Þ

where p is the Fourier transform of the acoustic pressure,

k = x/c and c is the sound velocity. Assuming that the

absorbing transition is not saturated, and that the modula-

tion frequency is considerably smaller than the relaxation

rate of the molecular transition, the relation

H(r, x) = aI(r, x) applies where I(r, x) is the Fourier

transformed intensity of the electromagnetic field.

It is well-know that the solution of the inhomogeneous

wave equation can be expressed as the superposition of the

acoustic modes of the photoacoustic cell:

pðr;xÞ ¼
X

j

AjðxÞpjðrÞ ð5Þ

The modes pj(r) and the corresponding eigenfrequencies

xj = ckj can be obtained by solving the homogeneous

Helmholtz equation:

r2pðrÞ þ k2pðrÞ ¼ 0 ð6Þ

It is assumed that the walls of the photoacoustic cell are

sound hard, which leads to the boundary condition:

op

on
¼ 0 ð7Þ

i.e. the normal derivative of the pressure is zero at the

boundary. To use Eq. 5, it is necessary to normalize the

modes according to

Z

Vc

p�i pjdV ¼ Vcdij ð8Þ

where Vc denotes the volume of the photoacoustic cell and

pi
* the complex conjugate of pi. When the acoustic modes pj

Light

U0

(a)

Light

Ua         Ub

(b)Fig. 2 Schematic

representation of the non-

resonant photoacoustic cell

when capillaries are closed (a),

and of the Helmholtz resonator

obtained by connecting the two

identical cells with the two

capillaries (b)
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can be determined, the amplitude for each mode is

expressed as

AjðxÞ ¼ i
Ajx

x2 � x2
j þ ixxj=Qj

ð9Þ

with

Aj ¼
aðc� 1Þ

Vc

Z

Vc

p�j IdV ð10Þ

and

1=Qj ¼ 1=Qv
j þ 1=Qsj

j þ 1=Q
sg

j ð11Þ

The inhomogeneous Helmholtz equation (Eq. 4) does

not contain the terms that account for loss. Loss effects are

included via the introduction of quality factors Qj in the

amplitude formula (9). Several loss mechanisms occur in

photoacoustic cells: volume loss, thermal and viscosity

surface losses. Following [11], volume loss is simply due to

the energy transferred from the acoustic wave to thermal

energy through heat conduction and through the viscosity:

1=Qv
j ¼

xj

c
lg þ ðc� 1Þlj
� �

ð12Þ

where lg and lj are characteristic lengths, respectively,

defined by

lg ¼
4

3

g
qc

ð13Þ

lj ¼
j

qCpc
ð14Þ

with g being the viscosity and j the thermal conductivity.

q represents the gas density. The surface loss occurs in a

thin region near the walls that is composed of two layers of

thicknesses dj and dg given by :

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2j
Cpqxj

s
ð15Þ

dg ¼
ffiffiffiffiffiffiffiffi
2g
qxj

s
ð16Þ

Near the wall, the expansion and contraction of the gas

are isothermal due to the greater thermal conductivity of

the wall, whereas they are adiabatic far from the walls.

Acoustic losses from heat conduction occur in the layer of

thickness dj where the gas behavior is partly adiabatic and

partly isothermal.

1=Qsj
j ¼

1

2
c� 1ð Þ dj

Vc

Z

Sc

pj

�� ��2dS ð17Þ

Similarly, at the wall surfaces, the tangential component

of the acoustic velocity is zero because of the viscosity,

while far from the wall, it is proportional to the gradient of

the acoustic pressure. Viscoelastic loss occurs in the region

of thickness dg

1=Q
sg

j ¼
1

2

c

xj

� �2
dg

Vc

Z

Sc

rtpj

�� ��2dS ð18Þ

According to this description, the first step for the

determination of PA cell response is the obtention of the

acoustic eigenmodes pj, which can be done analytically

only in some specific cases (cylindrical [22] or rectangular

cell, for example). When the geometry of the cell is more

complex, the analytical determination of the eigenmodes is

not possible. The progresses in numerical methods and the

availability of user friendly software using FEM open the

way to direct resolution of the Helmholtz equation and to

the optimization of photoacoustic cell’s response. We

present, here, an example of PA cell and its analysis using

numerical simulation.

3.2 FEM analysis of DHR cells

FEM softwares have been used for resonant frequencies

[23], eigenmodes [24, 25] and quality factors [26] deter-

mination. Baumann et al. [27] performed a careful com-

parison between analytical determination and FEM

simulation using Comsol Multiphysics 3.5 software for a

cylindrical cell, and found a good agreement for the

eigenfrequencies and for the Q factors. They also per-

formed a comparison between FEM simulation and

experiment for T-shaped resonators that also shows a good

agreement for eigenfrequencies and Q factors. In order to

analyze our DHR cell, we built a model with Comsol 4.2

software. Only the core of Comsol is needed to perform the

calculation presented, hereafter, without any specific

module. The model defines the geometry of the cell and the

properties of the material, and then uses an eigenvalue

solver to determine the modes pj(r) and the associated

eigenfrequency xj. The calculation of the amplitudes Aj

and of the various losses for each eigenfrequency is then

performed using the Comsol model (Eqs. 10–18). Most of

the parameters needed for the evaluation of Eqs. 10–18 are

related to the gas properties (density, viscosity,. . .), and are

already defined in Comsol for various gases. Our experi-

ments were performed using low concentration of ethylene

in N2, and we used the predefined values for N2. Those

results and the values of pj(r) for particular points located

near the microphones positions in the actual cell are

exported to matlab to evaluate Eqs. 9 and 5. This model

was first used to solve the Helmholtz equation for the

various geometries presented in [27]. Amplitudes, losses

and frequency responses were calculated, and a very good

agreement with the published values for eigenfrequencies
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and Q factors was found. In a second step, the model

has been adapted to the geometry of our DHR cell. The

eigenmodes of the cell have been determined, the ampli-

tudes Aj, losses, and the frequency response have been

estimated. A typical mesh of the photoacoustic DHR cell is

presented on Fig. 3. The mesh is a free tetrahedral mesh

and consists of about 200,000 elements. Figure 4 presents

the acoustics pressure repartition for the Helmholtz

eigenmode normalized using Eq. 8. For this particular

eigenmode, one can observe the phase opposition for the

acoustic pressure in both parts of the cell.

During the experiments, four different signals were

measured versus the modulation frequency (Ua, Ub and

Ua - Ub in resonant mode and U0 in non-resonant mode).

The experimental resonant frequency for Ua (respectively,

Ub, Ua - Ub) is the frequency that corresponds to the

maximum of |Ua| (respectively, |Ub|, |Ua - Ub|). The

quality factor for Ua (respectively, Ub, Ua - Ub) is given

by the peak value of |Ua|/|U0| (respectively, |Ub|/|U0|,

|Ua - Ub|/|U0|). These values are summarized in the first

column of Table 2. Resonant frequencies and quality fac-

tors are derived from FEM simulation by evaluating

Eq. 5 at two nodes of the mesh located, respectively, near

microphone (a) and microphone (b). The quality factor for

Ua (respectively, Ub, Ua - Ub) is obtained by dividing the

resonant frequency for Ua (respectively, Ub, Ua - Ub) by

the witdh at half maximum of the frequency response for

Ua (resp. Ub, Ua - Ub). These values are summarized in

the second column of Table 2.

All these values are in good agreement and we can

conclude that the use of FEM simulation to solve the

homogeneous Helmholtz equation (Eq. 6) to obtain reso-

nance frequencies, and quality factor is satisfactory even

for cell geometries that significantly differs from cylindri-

cal or rectangular shape (Brewster angle windows, thin

capillaries, etc.). Furthermore, we will demonstrate in the

next part that FEM simulation can also provide accurate

and quantitative value for the cell’s response Rc.

4 Quantitative modelization of photoacoustic signals

In their implementation of the calculation of the amplitude

associated with the eigenmodes (see Eq. 10), Baumann

et al. [27] were only interested in the spatial repartition of

the beam intensity:

Iðr?Þ ¼ I0 exp �2
r?
w

� 	2
� �

ð19Þ

where w is the beam radius and r? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
is the

distance perpendicular to the beam axis of propagation

denoted by x. An arbitrary value for the product aI0 was

Fig. 3 Typical finite element mesh of the DHR cell

Fig. 4 Acoustic pressure repartition of the Helmholtz resonant

eigenmode

Table 2 Comparison between experimental and calculated values for

the Helmholtz resonant frequencies and quality factors

Measurements Simulation

Eigenfrequency (Hz) 215.35

Ua resonant frequency (Hz) 221 ± 2 219.2

Ub resonant frequency (Hz) 209 ± 2 211.1

Ua - Ub resonant frequency (Hz) 215 ± 2 215.3

Ua Quality factor 2.8 ± 0.1 2.72

Ub Quality factor 2.7 ± 0.1 2.58

Ua - Ub Quality factor 5.2 ± 0.2 5.12

Table 3 Experimental parameters

Parameter Value

Ethylene concentration *4%

a @ k(CO2) 0.0166 cm-1

Laser power 0.62 W

x 1.55 mm
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used in their calculations (Evaluation of Eq. 10). Instead of

this arbitrary value for aI0, the absorption coefficient a is

derived from the HITRAN 2008 database [28] for our

absorbing gas concentration and to express I0 in term of the

laser power P:
Z Z

S0

I0 exp �2
r?
w

� 	2
� �

dydz ¼ P ð20Þ

where S0 is the projection of the entrance window per-

pendicular to x axis. Comsol multiphysics is used to per-

form the integration of exp �2 r?
w


 �2
� 	

over the entrance

window cross-section and to calculate I0.

The model ran using the values of laser power and C2H4

concentration, corresponding to our previous measure-

ments. Several values for the parameters Aj, Qj
i and for the

pressures pj(r) at the positions corresponding to the

microphones in each part of the cell are then obtained.

A short matlab script is used to evaluate the expressions

(10) and (5) over a convenient frequency range. As the

Helmholtz resonance frequency is much lower than the

longitudinal, radial or azimutal resonance frequencies, only

the firsts eigenmodes need to be determined. In first step,

our model was used on a non-resonant geometry (corre-

sponding to one half of the DHR cell). The comparison of

simulation with measurements for this non-resonant

geometry is plotted on Fig. 5. On this figure, the measured

signal U0 is normalized by the frequency response Rm of

the Knowles microphones. The experimental conditions

(C2H4 concentration and absorption coefficient, laser

power...) are summarized in Table 3. A traditional 1/f

dependence is observed and the agreement between

experiment and simulation is very good.

In second step, the same model was used with the res-

onant geometry (complete cell, corresponding to both

capillaries open), and the pressure wave amplitude was

calculated in both the excited and the non-excited part of

the cell. The comparison of simulation with measurements

for the resonant geometry is plotted on Fig. 6. Again, the

model perfectly fits the experimental points demonstrating

the possibility to quantitatively simulate photoacoustic

signal using FEM software.

5 Conclusion

This paper has demonstrated the possibility to quantita-

tively simulate photoacoustic signals using FEM software.

After a brief report on the theoretical description of sound

generation in photoacoustic cells, the modelling of a pre-

viously developed differential Helmholtz resonant cell was

presented. The software Comsol Multiphysics 4.2 was used

to calculate the response of DHR cell. Quality factors and

resonance frequencies were compared with experimental

ones demonstrating a very good agreement. The fact that

the FEM calculation doesn’t contain any fitted parameter

may be underlined. Moreover, in the last part, the

absorption coefficient of the gas and the laser intensity

were used in addition to FEM simulation to quantitatively

predict photoacoustic signal that can be obtained in such a

configuration. This calculation has demonstrated a very

good agreement with experimental data. To our knowl-

edge, this paper is the first demonstration of a complete

modelization of photoacoustic cell. This will be particu-

larly useful for size reduction of this type of cells.
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