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Abstract Plane EM waves transmitted through nano-

corrugated metallic thin films produce evanescent waves

which include the information on the nano-structures. The

production of the evanescent waves at the metallic surface

is analyzed. A microsphere located above the metallic

surface collects the evanescent waves which are converted

into propagating waves. The equations for the refraction at

the boundary of the microsphere and the use of Snell’s law

for evanescent waves are developed. The magnification of

the nano-structure images is explained by a geometric

optics description, but the high resolution is related to the

evanescent waves properties.

1 Introduction

Any microscopic image can be magnified by the use of a

microscope. However, observing sub-wavelength struc-

tures with microscopes is difficult because of the Abbe

diffraction limit [1], by which light with a wavelength k
traveling in the medium with a refractive index n and angle

h will make a spot with a radius

d ¼ k
2ðn sin hÞ : ð1Þ

The term n sin h appearing in the denominator is called the

numerical aperture (NA) and Abbe limit for ordinary

microscopes is of order k/2. In order to increase the reso-

lution one may use UV and X-ray microscopes which

increase the resolution due to their shorter wavelengths.

Such microscopes suffer from lack of contrast in biological

systems are expensive and may also damage the sample.

The use of evanescent waves to increase the resolution

beyond the Abbe limit can be related to Helmholtz equa-

tion [2]. In homogeneous medium this equation is given as

ðnk0Þ2 ¼ k2
x þ k2

y þ k2
z ; ð2Þ

where k0 = (2p)/k0, k0 is the wavelength in vacuum (or

approximately in air), n is the index of refraction (assumed

it to be approximately real), and kx, ky, kz are the

wavevector components. There might be different

mechanisms of producing evanescent waves by which we

obtain

k2
x þ k2

y

� �
[ ðnk0Þ2 ð3Þ

and then kz becomes imaginary, i.e., there is a decay of the

wave in the z direction. The increase of the components of

the wavevector k~ in the (x, y) plane decreases the ‘‘effec-

tive’’ value of the wavelength in this plane, and thus

increases the resolution. But the evanescent waves decay,

however, in the z direction perpendicular to the objects

plane, so that to ‘‘capture’’ the fine structures which are

available in the evanescent waves we need to put detectors

very near to the plane from which the electromagnetic

(EM) waves are propagating.

Recently, a very high resolution which is much better

than the Abbe limit has been observed in microspheres,

including the imaging by a microscope [3–5]. Although

these results are quite impressive and has many applica-

tions, there is not yet a clear theoretical explanation for

these phenomena. In this connection, I would like to

emphasize that although the magnification of the image by

a microscope is explained by a geometric optics approach
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[3–5], such magnification will not increase the resolution

unless there is an additional effect which increases the

resolution beyond the Abbe limit. In previous studies [2, 6–

9], general mechanisms of increasing the resolution using

evanescent waves have been analyzed by various methods.

I would like to use these methods to analyze in the present

paper the special properties of the microsphere system by

which the evanescent waves lead to extremely high

resolution.

One should take into account that EM evanescent waves

incident with a large incidence angle are not transmitted

through the microsphere due to total reflection [5]. Then,

the microsphere acts as a thick lens producing the image of

the corrugated metallic surface near the second focal plane,

which is magnified afterward according to a conventional

description of a microscope [10]. Our interest in the present

paper is, however, in the analysis of the high resolution

obtained by evanescent waves.

The present paper is arranged as follows:

In Sect. 2, the evanescent waves emitted from nano-

curved metallic film by transmitted plane EM field is

analyzed using Fourier optics methods [2, 6–9]. In Sect. 3,

the transformation of evanescent waves into propagating

waves by the microsphere is treated. The refraction of the

evanescent waves at the boundary between the microsphere

and the air is analyzed by following simple boundary

equations for refraction at this boundary. The use of Snell’s

law for evanescent waves is developed. In Sect. 4, we

summarize our results and conclusion, including a certain

discussion.

2 Evanescent waves emitted from the surface of a thin

metallic film, with nano-curved structures

by transmitted plane EM field

The basic property of the microsphere systems is related to

the development of laser nano-fabrication methods [11,

12], by which nano-grooves on the metallic surfaces can be

obtained. The mechanism for the production of evanescent

waves from metallic surfaces is related to plasmonic waves

[3, 13]. Surface plasmons are produced by TM EM waves

which have a component of the electric field perpendicular

to the metallic surface [13]. In the microsphere experi-

ments, the curved metallic surfaces have an electric field

perpendicular to these surfaces (both for TM and TE

waves). This effect leads to localized surface plasmons [14]

which increase the amount of evanescent waves.

Although near field properties of microspheres have

been treated [15], I would like to point out that macro-

scopic properties of plasmonic waves would not be

enough to explain superresolution effects. Such effects

should follow from local variations of the EM field as

function of transversal distances which are smaller than a

wavelength.

We can treat the analysis following from the above

effect (localized surface plasmons [14]) by assuming that

the EM waves in the air plane surface z = 0 which is a

little beyond the metallic surface have a field distribution

Eðx; yÞz¼0, where its fine structure is correlated with the

metallic nano-structures.

Let us assume that the scalar EM field in the plane

z = 0 can be represented as the following Fourier integral

[2, 6, 7, 16, 17]:

Eðx; y; z ¼ 0Þ ¼
Z1

�1

Z1

�1

eðu; vÞ exp½iðuxþ vyÞ�dudv; ð4Þ

where u and v are the spatial coordinates produced by the

electric field in the (x, y) plane, including its fine structure.

The assumption of a scalar field [18–20] simplifies very

much the analysis, and the main properties of the evanes-

cent waves can be related to such field.

For simplicity of analysis, we assume that the micro-

sphere is located symmetrically above the metallic film,

and is separated from the metallic surface by a thin film of

air. Using a straight forward analysis [2, 6, 7, 17], we find

that the transmitted electric field in the air before the

microsphere is given by

Eðx; y; z [ 0Þ ¼
Z1

�1

Z1

�1

eðu; vÞ exp½iðuxþ vyþ wzÞ�dudv;

ð5Þ

where

w2 ¼ k2
0 � u2 � v2: ð6Þ

For cases for which k2
0 [ u2 þ v2, w0 becomes real and we

get propagating waves in the z direction. For cases for

which k2
0\u2 þ v2, w becomes imaginary and we get

evanescent waves decaying in the z direction. The fine

structure details of the metallic film are included in the

evanescent waves.

For evanescent waves, there is no flow of energy in the

propagation direction of the evanescent waves. This result

[7] follows from the fact that for evanescent waves, there is

a phase difference of p/2 between the electric and magnetic

fields, in the plane perpendicular to the propagation of the

evanescent waves [1]. Therefore, the Poynting vector in the

propagation direction of the evanescent waves has zero

time average. This conclusion is obtained also for a

superposition of evanescent waves since usually there is no

phase correlation between the different components of the
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evanescent waves [2, 6–9]. The role of the microsphere is

to convert the evanescent waves into propagating waves.

The use of Eqs. (4–6) as the starting point for our

analysis has the following advantages: (a) It includes the

mechanism for producing EM field in the z = 0 plane (a

little beyond the metallic surface) which will be correlated

with the metallic fine structure. (b) Since the EM field

emitted from the metallic film is given by a superposition

of plane waves propagating in different directions, the

analysis for the refraction at the boundary of the micro-

sphere becomes relatively simple.

In Eq. (5), we have included only the EM field propa-

gating into the air as we are assuming that the microsphere

collects the transmitted waves, and we have not taken into

account in this equation the reflected waves going back into

the metal. A similar analysis to that made in the present

article can be made for cases in which the microsphere

collects the reflected EM wave from the metallic film [5].

3 Conversion of evanescent EM waves into propagating

EM waves at the boundary between the air

and the microsphere

We are interested in the region which is near to the contact

point O between the microsphere and the object plane, and in

the conversion of evanescent waves into propagating waves.

Then, the width h of the thin film of air between the objects

plain and the microsphere can be derived using the relation

r2 þ ðR� hÞ2 ¼ R2; ð7Þ

as described in Fig. 1, where the coordinates (x, z) are

relative to the contact point O and the Figure is given for

the special case for which y = 0. Here, R is the radius of

the microsphere, r is the horizontal distance from the

contact point, and h is given at this distance. Eq. (7) leads

to the relation

r2 � 2Rhþ h2 ¼ 0: ð8Þ

Since 2R � h, we can neglect h2 and get the approximate

result

h ¼ r2

2R
: ð9Þ

We assume that h B k so that the evanescent waves have

not decayed much before they are incidenting on the

microsphere. For getting some orders of magnitude let us

assume for example [3, 4], R = 4 lm, k = 5,000 Å, then

the circle for which the evanescent waves have not yet

decayed, is given approximately by
ffiffiffiffiffiffiffiffi
2kR
p

¼ 2 lm, which

is not negligible relative to R.

According to Eq. (5), the scalar electric field at air

on the boundary of the microsphere (for the general case

for which both x and y are different from zero) is given

by

Eðx; y; z ¼ hÞ ¼
Z1

�1

Z1

�1

eðu; vÞ exp½iðuxþ vyþ whÞ�dudv;

ð10Þ

where

x2 þ y2 þ ðR� hÞ2 ¼ R2; x2 þ y2 ¼ r2; ð11Þ

and h is related approximately to r by Eq. (9). Equation

(10) is described by integral over plane waves, where each

plane wave is given as eðu; vÞ exp½iðuxþ vyþ whÞ� and the

condition for this wave to be evanescent or propagating,

respectively, in the air is given according to Eq. (6) by:

u2 þ v2 [ k2
0 ) evanescent wave;

u2 þ v2\k2
0 ) propagating wave:

ð12Þ

For the refracted EM plane wave in the microsphere, at

the boundary, we get the relation

Fig. 1 A dielectric microsphere with a refractive index n is located

above a thin metallic film with a corrugated upper surface. Plane EM

field is transmitted through the metallic film producing evanescent

waves where ux̂ represents the sum of wavevectors components in the

object plane, defined to be in the x coordinate, and imaginary w
represents the decay in the z coordinate, satisfying the relation

u2 � wj j2¼ k2:
0 . The parallel and perpendicular components of the

wavevector in the microsphere at point P, are given, respectively, by

u0 and w0. The point P is located at a distance h above the object plane
and at a distance r from the vertical line, where h is its azimuthal

angle. The parallel component u0 is equal to that of the parallel

component ~u in air where u02 ¼ ~u2 ¼ u2 cos2 h� wj j2sin2 h. The

perpendicular component w0 becomes real (a propagating wave) under

the condition u02 þ w02 ¼ k2
0n2
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u02 þ v02 þ w02 ¼ ðk0nÞ2; ð13Þ

where w0 is the component of the refracted wave at the

boundary of the microsphere which is perpendicular to its

surface, and u0 and v0 are the components parallel to its surface.

w0 is imaginary (real) for evanescent (propagating) wave.

According to Maxwell equations for a plane wave with a wave

vector k~¼ ux̂þ vŷþ wẑ, in air, incident on the microsphere

at a certain boundary point, the components of the wave vector

which are parallel to surface of the microsphere are preserved.

(Such relation is equivalent to the use of Snell’ law which is

valid also for an evanescent plane wave). I find two limiting

cases in which evanescent waves are converted into

propagating waves using corresponding approximations:

(a) For plane waves incident very near to the contact

point of the microsphere i.e., when r � R, we can use

the approximation that the surface of the microsphere

is parallel to the object plane. Then, the wave vector

components u0 and v0 in the microsphere which are

parallel to its surface satisfy the equalities

u0 ffi u; m0 ffi v; ð14Þ

and under the condition that the microsphere material

has a real index of refraction n, the condition for

evanescent and propagating wave in the microsphere

is changed to

u02 þ v02 ffi u2 þ v2 [ k2
0n2 ) evanescent wave;

u02 þ v02 ffi u2 þ v2\k2
0n2 ) propagating wave:

ð15Þ

We find that evanescent waves in air which satisfy the

relation u2 þ v2 [ k2
0 become propagating wave in

the microsphere if they satisfy the relation

u02 þ v02\k2
0n2, so that many evanescent waves are

converted to propagating waves.

(b) For a plane wave incident on the microsphere for which

the condition r � R is not valid (although r \ R), the

analysis becomes even more favorable to the conver-

sion of evanescent waves into propagating waves.

Owing to the spherical symmetry of the microsphere,

we can reduce the problem to refraction of a plane EM

wave propagating in the (x, z) plane in air, with a wave

vector k~0 ¼ ux̂þ wẑ. Such representation can be made

for each plane wave as we can choose the x coordinate

so that it will be in the direction of the sum of wave

vector components in the object plane. Under the

condition u2 [ k2
0 such waves are evanescent in the air.

Owing to this description, the analysis of refraction and

reflection at the boundary of the microsphere is reduced

to corresponding equations in the (x, z) plane. By

following this representation, which is described in

Fig. 1, we analyze here the refraction of the EM wave at

the microsphere. We analyze the refraction of the plane

wave which is incident on the microsphere at a point P

with a azimuthal angle h relative to the vertical line

through the center C of the microsphere.

We are interested in the conversion of EM evanescent

waves to propagating waves into the microsphere, since

the information on the fine structures of the corrugated

metallic surface is included in the evanescent waves.

The EM field at the incidence point P of the micro-

sphere, for an evanescent plane wave in air, with a wave

vector k~0 ¼ ux̂þ wẑ, and amplitude eðuÞ; ðu2 [ k2
0Þ is

given by

Eðx; z ¼ hÞ ¼ eðuÞ exp½iðuxþ whÞ�; ð16Þ

where w is imaginary, and we have reduced the analysis to

a plane (x, z) using the spherical symmetry of the

microsphere. Then, the components of the vector k~¼
ux̂þ wẑ which are parallel and perpendicular to the surface

of the microsphere at point P at air, denoted by tilde, are

given by

~u~¼ u cos hx̂þ w sin hẑ; parallel

~w~ ¼ w cos hx̂� u sin hẑ; perpendicular;
ð17Þ

where x̂ and ẑ are the unit vectors in the x and z directions,

respectively. We notice that this transformation satisfy the

relation

~u~2 þ ~w~2 ¼ u2 þ w2 ¼ k2
0: ð18Þ

Owing to the continuity equation the component of the

wavevector in the microsphere, denoted by prime, which is

parallel to its surface at the point P is given by

u~0 ¼ ~u~¼ u cos hx̂þ w sin hŷ: ð19Þ

The components of the wave vector k~
0

in the microsphere

satisfy the relation

u02 þ w02 ¼ ðk0nÞ2 ð20Þ

We find that the evanescent waves in air are transformed

into propagating waves if they satisfy the relation

u2 cos2 h� wj j2sin2 h

� k2
0n2 ðpropagating waves in microsphereÞ: ð21Þ

We should take care of the fact that we have treated here

evanescent wave for which w is imaginary. These waves
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remain evanescent in the microsphere if they satisfy the

relation

u2 cos2 h� wj j2sin2 h

[ k2
0n2 ðevanescent waves in microsphereÞ: ð22Þ

Since for a large values of w and a relatively large value for h

u2 cos2 h� wj j2sin2 h� u2; ð23Þ

we find that relation (21) can improve the condition for the

transformation of evanescent waves into propagating

waves by an order of magnitude relative to the condition

u2\k2
0n2 which is valid under the condition h & 0.

We should take into account that Eqs. (16–22) have

been obtained in the (x, z) plane assuming that the sum of

the components of the wave vector in the object plane is in

the x direction. Similar equations will be obtained for any

ð~x; zÞ plane (in case the sum of the wave vector components

in the object plane is in the ~x direction) where the ð~x; zÞ
plane is obtained from the (x, z) plane by a rotation around

the z axis. Such property for the boundary equations are

related to the spherical symmetry of the microsphere. The

values of u and w are, however, different for different

planes as they depend on the image of the metallic corru-

gated object, which is usually non-symmetric. Using the

spherical symmetry of the microsphere, the condition (21)

for propagating waves can be generalized to the three

dimensional case as

ðu2 þ v2Þ cos2 h� wj j2sin2 h� k2
0n2

ðpropagating waves in microsphereÞ; ð24Þ

where u and v are the components of the wave vector in the

x and y coordinates, respectively, and w is in the z direction

assuming it to be imaginary.

We have analyzed here the plane EM waves properties

by which evanescent waves are converted into propagating

waves. The intensity of each transmitted wave is decreased

by the reflectance properties of the microsphere which can

be analyzed by conventional methods, but are of less

interest here. For large values of h, the resolution is

increased but the width h of the air film also increases

which leads to a decrease in the transmittance intensity of

evanescent waves due to a decay which is of order

exp � wj jhð Þ.
For using Snell’s law for evanescent waves in air, we

find according to Eqs. (17–20):

sin h ¼ ~uj j
k0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 cos2 h� wj j2sin 2h

q

k0

; ð25Þ

sin h0 ¼ ~uj j
nk0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 cos2 h� wj j2sin 2h

q

nk0

: ð26Þ

Equations (25–26) have been developed for the plane (x, z)

assuming that the total component of the wavevector in the

object plane is given by u in the x direction. In the general

case that we have two components u and v of the

wavevector in the x and y directions, respectively, Eqs.

(25–26) are generalized as

sin h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2ð Þ cos2 h� wj j2sin 2h

q

k0

ð27Þ

sin h0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 þ v2Þ cos2 h� wj j2sin 2h

q

nk0

ð28Þ

We find that Snell’s law sin h ¼ n sin h0 is valid. However,

if Eqs. (26) or (28) would lead to the result sin h0[ 1then

the evanescent wave will remain evanescent also in the

microsphere, which is consistent with the above analysis.

4 Summary, discussion and conclusion

In previous studies [2, 6–9], it has been shown that the

convolution between the spatial modes of the evanescent

waves and the spatial modes of the tip detector leads in the

near field analysis to conversion of evanescent waves into

propagating waves. In this connection, I would like to

explain that the microsphere used for getting high resolu-

tion acts as a tip-detector which leads to tunneling of the

evanescent waves into the microsphere, where there they

are converted into propagating waves. It has been shown in

the present research that there are two effects which can

lead to the tunneling of evanescent waves: (a) Using

boundary conditions, we find that since the microsphere

has an index of refraction n [ 1, which is larger than that

of air (n ^ 1), a part of the evanescent waves are con-

verted into propagating waves. This effect is the dominant

one only for tunneling near the contact point between the

microsphere and the metallic surface (sin h � 1).

(b) Using the spherical geometry of the microspheres

which are very small (diameters of order of some microns)

and assuming a certain geometry to the metallic thin film

corresponding to its nano-structures, it has been shown that

the boundary conditions lead to a very strong tunneling of

evanescent waves into propagating waves for relatively

large values of h. This effect is analogous to that discussed

in previous works by a convolution description but the

knowledge of the microsphere geometry allowed us to get

more explicit results using Fourier optics and boundary

conditions for the spatial modes. In the usual use of tip

detectors, in near field optics one gets the information on

the image only around one point and by moving the tip

detector over many points one can collect the image

information. An important advantage of using the
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microsphere is that the image information can be collected

from various parts of the object plane at the same time,

(and using the microscope system even from some micro-

spheres [5]).

A general analysis for the evanescent waves produced

by plane waves transmitted through corrugated metallic

thin film due to surface plasmons has been given in Sect. 2.

In Sect. 3, the refraction of the evanescent waves at the

boundary of the microsphere has been analyzed. Using the

spherical geometry of the microsphere, boundary equations

for the EM field components which are parallel and per-

pendicular to the surface of the microsphere have been

developed. The conditions by which evanescent waves are

converted into propagating waves in the refraction of the

EM field are described. The use of Snell’s law for eva-

nescent waves have been developed.

In conclusion, although the optical geometry description

for the magnification of nano-metallic structure images by

microsphere and microscope is valid [3–5], for interpreting

the high resolution, it is necessary to make a different

analysis for the conversion of evanescent waves, into

propagating waves.
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