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Abstract We report on the generation of tunable light

around 400 nm by frequency-doubling ultrashort laser

pulses whose spectral phase is modulated by a sum of

sinusoidal functions. The linewidth of the ultraviolet band

produced is narrower than 1 nm, in contrast to the 12 nm

linewidth of the non-modulated incident spectrum. The

influence of pixellation of the liquid crystal spatial light

modulator on the efficiency of the phase-modulated second

harmonic generation is discussed.

1 Introduction

The outcome of nonlinear light–matter interaction can be

controlled by shaping specific electric fields to produce

either constructive or destructive interference among

intrapulse spectral components during the interaction. This

coherent control of light–matter interaction opens the

possibility for applications such as selective two-photon

microscopy [1], control of the outcome of both sharp and

broad resonance systems [2, 3], and so on. The creation of a

specific pulse shape can be accomplished by manipulating

the phase and/or the amplitude of the spectral components

of a femtosecond laser pulse using zero-dispersion pulse

shapers. The most common pulse shaper uses a liquid

crystal-based spatial light modulator (SLM) [4, 5], but

other techniques for generating shaped ultrashort laser

pulses, such as acousto-optic modulation (AOM) [6],

acousto-optic programmable dispersion filter (AOPDF) [7],

micro-electro-mechanical system (MEMS) [8], and

deformable mirror [9] were also demonstrated.

The effect of spectral phase modulation on the second

harmonic (SH) generation has been studied by a number of

groups [10–14]. In particular, Hacker et al. [10] investigated

the SH generation of phase-modulated pulses in BBO

crystals with the purpose of producing shaped pulses in the

ultraviolet (UV) spectral region for direct electronic exci-

tation of molecular or atomic systems. Their motivation

relies on the fact that one-photon excitations of quantum

systems have selection rules different from those of two-

photon absorption [2], in particular, different angular

momentum transfer. In their study, frequency doubled

sinusoidally phase-modulated fundamental pulses were

used and in this case, the electric field of the SH can be

approximated by a zero-order Bessel function whenever the

modulation period is shorter than the pulse linewidth. The

same sort of modulation was employed to demonstrate

selective two-photon excitation of fluorescent probes for

microscopy [1]. Later, an approach based on a binary phase

shaping was demonstrated to spectrally narrow the multi-

photon excitation, as required for selectivity in two-photon

microscopy [11]. The proposed scheme improved the con-

trast ratio by a factor of 6 when compared to the sinusoidal

phase alone, and the use of an evolutionary learning algo-

rithm even improved the solution by a further factor of 2.5.

Another interesting approach used for high-resolution,

high-contrast, nonlinear optical spectroscopy, also based on

phase-modulated ultrashort pulses, uses low-autocorrela-

tion binary sequences that give rise to Galois fields [15].

This method allows achieving selective nonlinear optical

excitation while strongly suppressing the background.

In this study, we show that it is possible to generate

tunable, narrowband light around 400 nm by frequency-

doubling ultrashort laser pulses whose spectral phase is
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modulated by a sum of sinusoidal functions with different

frequencies. The idea behind this modulation scheme is

that additive phase modulation results in a product of

exponential functions, each one giving rises to a zero-order

Bessel function. With periods and phases properly chosen,

the product of these functions is nearly zero, except in a

narrow band. This band can be continuously tuned across

the whole spectrum, which is an important feature for

selectivity in two-photon microscopy and one-photon

spectroscopy in the UV region. A positive aspect of the

phase-modulation approach presented here is that it relies

in an analytical function and does not require any complex

evolutionary learning algorithm to produce fairly good

results.

2 Tunable second harmonic generation

The analytical description of second harmonic generation

(SHG) of sinusoidal phase-modulated ultrashort laser pul-

ses in a thin nonlinear crystal is presented in Ref. [10]. For

a Gaussian incident pulse E1, of frequency x1 relative to

the center frequency, carrying a spectral phase modulation

of the type U sinðDtx1 þ wÞ the generated SH field E2 of

frequency x2 is given by:

E2ðx2Þ� exp � 1

2

x2

Dx1

� �� �2

� J0 2U sin
1

2
Dtx2 þ w

� �� �
;

ð1Þ

where w is an arbitrary constant phase, Dt is the spectral

frequency, U is the modulation depth, and Dx1 is the

spectral width of the fundamental beam. This expression is

strictly true for DtDx1 sufficiently large, as it is usually the

case. 2U can be conveniently set to 2.4 rad to accomplish

perfect modulation, which corresponds to the first zero of

the Bessel function J0.

In what follows, we assume a phase modulation of the

type U
P

sin[nj(Dtx1 ? w)], where j is the summation

index and the number nj can be arbitrarily chosen. By using

the same mathematical procedure of Ref. [10], one can

show that the generated SH field is written as

E2ðx2Þ� exp � 1

2

x2

Dx1

� �� �2

�
Y

J0 2/ sin nj
1

2
Dtx2 þ w

� �� �� �
: ð2Þ

Each Bessel function presents a spectral modulation

with a spectral frequency njDt, as shown in Fig. 1a for the

case where nj are integers. Therefore, the product of Bessel

functions with different frequencies produces a narrow,

well-defined maximum whose width is determined by the

shortest period, as depicted in Fig. 1b. In this case, we have

a situation that mimics a narrow-band filter made of a stack

of tilted birefringent plates placed inside a laser resonator

[16]. The idea of the method is that the maximum of a

Bessel function with a given period coincides with the zero

of another one, except when the argument of the sinusoidal

function is multiple of p. Obviously, the use of Bessel

functions is just an approximation. If we consider the

Gaussian profile of the fundamental laser pulse and the

applied spectral phase as a sum of sinus functions, we can

numerically calculate the SH spectrum, as shown in

Fig. 1c. A noticeable difference is that the sidebands are

smaller in the case where the approximation with Bessel

functions is considered. By changing the phase w, the

output can be easily tuned across the broadband non-

modulated SH profile, as required for one-photon

spectroscopy and two-photon microscopy. Although this
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Fig. 1 a Plot of E2(x2) given in Eq. (1) for nj = 2 (solid line), nj = 4

(dashed line), and nj = 8 (dotted line). w is 0.31 rad and Dt is set to

18 fs. b Spectra of the non-modulated second harmonic (dashed line)

and modulated with a product containing nj = 1, 2, 4, 8, and 16 in

Eq. (2) (solid line), and c numerical simulation of the SH spectrum

considering a Gaussian profile for the fundamental laser pulse and the

applied spectral phase as a sum of sinus functions with the same nj as

in (b)
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choice for a set of nj theoretically produces the desired

narrowing, the pixellation of the liquid crystal (LC)

modulator leads to a significant limitation because the

higher frequencies sinusoidal phases are transformed into

staircase-shaped functions by the SLM. In this case, the

Bessel function is not a good approximation and the result

is that the product of functions is smaller than 1 at the

maximum and sidebands start to show up. To circumvent

this problem, we used a set of smaller nj that are not

integers, as presented later.

3 Experimental details

The experimental arrangement used to manipulate the

spectral phase of the fundamental beam is depicted in

Fig. 2. Ultrashort laser pulses were delivered by a Ti:sap-

phire oscillator system (KM Labs, Ti:sapphire kit pumped

by a 5 W Nd:YVO4 laser operating at 532 nm). The central

wavelength was set at 790 nm, the bandwidth was about

35 nm (FWHM), the pulse duration was 27 fs (FWHM,

corresponding to a transform-limited (TL) pulse) at a

pulse-energy level of 5 nJ and a repetition rate of 80 MHz.

The pulses are sent to a phase-only pulse shaper, where the

LC-based SLM is placed at the Fourier plane of a folded

4f zero-dispersion compressor consisting of a 600-grooves/

mm grating and a spherical mirror of focal length 30 cm.

By folding the optical path with a plane mirror, we save

one diffraction grating and one spherical mirror, besides

duplicating the phase change owing to the fact that the

beam passes twice through the LC modulator. Careful

positioning of the grating guarantees the TL condition, as

confirmed by frequency-resolved optical gating (FROG)

measurements carried out with a home-made apparatus.

After passing through the SLM, the beam was focused into

the crystal with a 10-cm focal-length lens. Coherent control

of SHG using SLM has been investigated in a thin 300-lm-

thick KDP crystal cut for type I phase matching. The SH

generated was analyzed by means of a 0.3-nm-resolution

UV portable spectrometer, although we also used a 60-cm

monochromator, with a resolution better than 0.1 nm, to

make sure that the resolution of the spectrometer did not

affect the results.

4 Results and discussion

Spectra of the non-modulated SH (dashed line) and mod-

ulated with products containing nj = 1, 2, 4, 8, and 16

(solid lines) are shown in Fig. 3. Several values of w were

used to demonstrate the tunability. As we advanced earlier,

the spectra obtained are narrow but the amplitudes are half

of what should be expected from the product of Bessel

functions shown in Fig. 1b. Moreover, there are a few

small sidebands around the main peaks, which could pro-

duce some background noise in selective two-photon

excitation microscopy.

As already mentioned, the spectral modulation should

be a smooth function but the finite size of the individual

modulator elements produces a staircase approximation

that limits the phase control process and hence the effi-

ciency of the phase-modulated SH. In other words, the

Bessel solution of Eq. (1) is not a good approximation. To

confirm this fact, we applied a single, variable frequency

sinusoidal function and obtained the modulated signal as

shown in the inset of Fig. 4, together with the non-modu-

lated SH. By normalizing the modulated SH to the non-

modulated one, we obtained spectral fringes similar to

those of Fig. 1a, from which we can define the contrast as

g = (Imax - Imin)/(Imax ? Imin), where Imax (Imin) is the

maximum (minimum) of the normalized fringe pattern.

The result depicted in Fig. 4 shows that g decreases for

higher spectral frequencies. A similar behavior was

Fig. 2 Layout of the folded SLM used to control the spectral phase of

the fundamental beam
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Fig. 3 Spectra of the non-modulated second harmonic (upper curve)

and modulated with a product containing nj = 1, 2, 4, 8, and 16

(lower curves) for phases 1.26, 0.76, 0.26, -0.26, -0.76, and -1.26 rad,

from left to right
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observed in Ref. [10], although that effect was attributed to

the spectrometer resolution, which is not our case.

To mitigate this sampling limitation one must use a

phase modulation that varies sufficiently slow to be ade-

quately sampled by the fixed modulator elements. This can

be accomplished by using nj’s that are closely spaced,

without the requirement of being integers. As Fig. 5 shows,

such choice of parameters produces a phase modulation

that varies slower than the case where the nj’s are integers

and multiples. Plots equivalent to those of Fig. 1 are shown

in Fig. 6a and b for a combination of nj’s equal to 3, 3.75,

4.5, 5.25, and 6. Here, one has the product of five Bessel

functions, which is 1 just at the origin, i.e., when the

arguments of all sinusoidal functions are 0 (this happens at

the center of the band for w = 0). When the arguments

departs from 0, each Bessel function starts to decrease and

their product can become a number much smaller than 1 if

the number of Bessel function is high enough. Therefore,

the linewidth is related mostly to the number of Bessel

functions, in contrast to the case where nj’s are integers and

multiples, where the width is determined mainly by the

shortest period of the sinusoidal function.

Figure 6c shows the spectra of the non-modulated SH

(dashed line) and modulated with products containing

nj = 3, 3.75, 4.5, 5.25, and 6 (solid lines). The result shows

that the amplitude of the modulated SH is closer the non-

modulated case, although not 1 because the contrast of

each Bessel function’s fringe is slightly less than 1.

Moreover, the linewidth is somewhat broader, but still

acceptable for the purpose of one-photon spectroscopy and

two-photon microscopy.
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Fig. 4 Contrast of the fringes obtained with a single sinusoidal

modulation for different spectral frequencies. The insets show two

examples of SH obtained with the single sinusoidal phase modulation

together with the non-modulated phase
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Fig. 5 Phase modulation for nj = 1, 2, 4, 8, and 16 (solid line) and

nj = 3, 3.75, 4.5, 5.25, and 6 (dashed line). w is 0.31 rad and Dt is set

to 18 fs
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Fig. 6 a Plot of E2(x2) given in Eq. (1) for nj = 3 (solid line),

nj = 3.75 (dashed line), and nj = 4.5 (dotted line). b Spectra of the

non-modulated second harmonic (dashed line) and modulated with a

product containing nj = 3, 3.75, 4.5, 5.25, and 6 (solid line) for

w = 0 rad and Dt = 18 fs. c Spectra of the non-modulated second

harmonic (dashed line) and modulated with a product containing

nj = 3, 3.75, 4.5, 5.25, and 6 (solid lines) for different phases given in

rads by the arrows
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5 Conclusions

The phase-modulation approach based in a sum of sinu-

soidal functions produces the narrowing and tunability of

the UV line necessary for selective two-photon micros-

copy. In addition, it does not require any complex evolu-

tionary learning algorithm for its implementation. Two

kinds of modulations can be employed that where nj’s are

integers and multiples produce narrower lines, but the

amplitude is just half of the optimum non-modulated SH,

while the one where the nj’s are closely spaced, but not

integers, give a more intense SH at the expense of the line

broadening.
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