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Abstract The application of wavelet transform-based

digital filter to quantum cascade laser spectroscopy was

investigated by its application to simulated spectra and

experimental results obtained with our novel and compact

QCL spectrometer, which offers the potential for high

sensitive and selective measurements of trace gas concen-

tration at high temporal resolution (less than 1 s) for spe-

cies of interest in the atmosphere. With the application of

wavelet digital filtering in post-signal processing, better

measurement precision and higher detection sensitivity

have been achieved, without reducing the fast temporal

response. Details of wavelet transform theory applied to

the spectroscopic data are presented. For comparison, the

results of other commonly used filter techniques (i.e.

Kalman filter, Wiener filter and moving average) are also

tested. Finally, the experimental results show that the

wavelet-based filter seems to be the superior choice for

noise reduction, both for spectral signal processing and

trace gas concentration signal evaluation.

1 Introduction

In atmospheric science, to gain reliable information from

the measured trace gas data for improved understanding of

atmospheric processes and transformations, to develop

better climate models and to better understand their impact

on global warming and climate change, it is of great

importance, that the level of unwanted noise in scientific

instruments should be suppressed as low as possible to

ensure sufficient precision and accuracy. Generally, for the

typical white noise, this is achieved by signal averaging to

gain a satisfactory signal-to-noise ratio (SNR). Thus, the

noise can be reduced up to the limits of the spectrometer

stability and the optimal averaging time can be determined

by an Allan variance analysis [1]. Unfortunately, multi-

signal averaging is a time-consuming method and it redu-

ces the temporal resolution of the measurement.

Unfortunately, most optical instruments in particular in

the IR-spectral range are limited in sensitivity by optical

noise fringes superimposed on the recorded spectra and not

by excess laser or detector noise. In order to reduce the

effect of these fringes, many methods have been proposed,

such as mechanical modulation or dithering of the etalon

spacing, modified modulation schemes, background sub-

traction, and post-detection signal processing. From a

practical standpoint, numeric filtering is easy to implement,

since it requires no modifications or additions to the

apparatus hardware and can be easily adapted to any

experimental configuration. Mathematical filtering tech-

niques for on-line noise reduction or off-line data pro-

cessing of recorded spectra may be a better choice when

temporal resolution is crucial. Traditional filtering methods

in most cases rely on the identification of frequencies of

noise contributions obtained in the stationary power spec-

trum. Many classic digital filter techniques and signal

processing schemes have been developed and successfully

applied to tunable diode laser absorption spectroscopy

(TDLAS) for improving system performance [2, 3]. It is

worth noting that one of the adaptive filtering techniques

known as Kalman filter is still increasingly being employed

in many research fields [3, 4]. The Kalman filter was

thought of as an adaptive (or dynamic) bandwidth filter,

because its frequency response is not fixed, but can adjust

to changes in signal statistics and dynamic range during
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operation. Thus, it offers an advantage over simple aver-

aging and conventional low-pass filters, which have a fixed

bandwidth and attenuate all fluctuations in the signal,

including those outside the filter bandwidth. Indeed, the

Kalman filter is an optimum estimation algorithm that was

first used in aerospace modeling problems; this technique

has proven to be extremely useful to estimate the trace gas

concentrations in TDLAS measurements. However, one

limitation of the Kalman filtering technique, as described

by Leleux et al. [5], is the fact that it operates on con-

centration values only after a data processing algorithm has

been applied to the original spectral signal. Indeed, the

Kalman filter removes disturbances or faults from the

signal using initialization and propagation of error covari-

ance statistics, i.e. computes, and propagates the mean and

the covariance matrix recursively for a linear system. In

distributed systems, the computational expense of Kalman

filter is thus dominated by the error covariance propagation

step, which makes implementation of the Kalman filter

impractical in large-scale models [6, 7].

Over the past decade, a new technique known as wavelet

transform has been gradually developed using scaling and

shifting properties to get better time and frequency reso-

lution based on the Fourier transform and has been suc-

cessfully employed in many fields, such as data

compression, detecting features in images, and removing

noise from signals. Wavelet transform has been proved as a

powerful tool for signal processing mainly due to its multi-

resolution characteristics, i.e. dividing the frequency con-

tents of a signal into low and high sub-bands. Unlike the

Fourier transform which considers only a single set of basis

functions (sines or cosines), wavelet transforms use an

infinite set of possible basis functions (i.e. mother wavelets

or analyzing wavelets) with different properties. Thus,

wavelet analysis provides immediate access to information

that can be obscured to other time–frequency methods such

as Fourier analysis. Discrete wavelet transform (DWT) is

the only linear transform that can analyze non-stationary

signals at varying resolutions by decomposing the signals

into their frequency bands. In addition, DWT is a very fast

algorithm with polynomial time and space complexity,

which makes it more appealing. It is also worth mentioning

that wavelet transform can be applied to any signal source

if an appropriate basic wavelet is available, regardless of

the measurement techniques. The wavelet transform tends to

concentrate the signal energy into a relatively small number of

coefficients with larger values. This energy-concentrating

property makes the wavelet analysis appropriate for signal

denoising, estimation and forecasting [8–11], and sometimes

appears to be better suitable than the widely used Kalman filter

[7, 12].

In this paper, we evaluate the application of the wavelet-

based denoising technique to a quantum cascade laser

spectrometer for in situ and real-time atmospheric trace gas

measurements. With the utilization of this algorithm to

improve the spectral SNR and to minimize the dispersion

of concentration values, higher detection sensitivity and

better measurement precision can be achieved without

reducing the fast temporal response. In order to assess the

benefit of the wavelet filter, the efficiency of the wavelet

filter was compared with other commonly used filter

techniques, such as the Kalman filter, the Wiener filter and

a moving average technique. The remainder of this paper is

organized as follows: Sect. 2 gives a brief overview of the

basic wavelet transform theory and the thresholding

method used. Section 3 presents the procedure for deter-

mining the optimal wavelet parameters by simulation.

Section 4 briefly describes the experimental instrument, the

application wavelet to actual observed results, and the

comparison with other filter techniques. Finally, Sect. 5

contains the conclusions and some outlook.

2 Wavelet transform

2.1 Wavelet theory and algorithm

Generally, the continuous wavelet transform (CWT) of a

signal f ðtÞ can be written as:

Wf ðs; sÞ ¼
1
ffiffiffiffiffi

sj j
p

Z

þ1

�1

f ðtÞW t � s
s

� �

dt ð1Þ

where s and s are the so-called translation (or time location)

factor and the scaling (or dilation) factor, respectively. The

factor sj j�1=2
is for energy normalization across the different

scales, whereas Ws;sðtÞ ¼ 1
ffiffiffiffi

sj j
p W t�s

s

� �

is the so-called

continuous wavelet, or ‘‘mother wavelet’’. For each scale

s and location s, the wavelet coefficient Wf ðs; sÞ represents

the information contained in f ðtÞ at that scale and

position. Thus, the original signal can be exactly

reconstructed from the wavelet coefficients by inverse

wavelet transform:

f ðtÞ ¼ 1

CW

Z

1

0

Z

þ1

�1

Wf ðs; sÞWs;sðtÞds
ds

s2
ð2Þ

where CW is defined as CW ¼
R1

0
WðxÞj j2

x dx, WðxÞ is the

Fourier transform of the mother wavelet.

If we assume s ¼ s j
0 and s ¼ ks0s j

0 ðj; k 2 Z; s0 6¼ 0Þ,
then the wavelet can be re-written as Wj;kðtÞ ¼
s
�j=2
0 W s�j

0 t � ks0

� �

, which is commonly called discrete

wavelet, where s0 ¼ 2 and s0 ¼ 1 are generally used. From

the definition, one can see that the wavelet is a family of
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functions derived from a basic function WðtÞ. The DWT can

be carried out with several different algorithms. A common

pyramid algorithm of multi-resolution signal decomposition

introduced by Mallat, for calculating DW coefficients that

are widely used in signal processing, is graphically illus-

trated in Fig. 1. The algorithm consists of a series of suc-

cessive decompositions of the signal (with length of 2n) into

two components: ‘‘detail coefficients Dj’’ and ‘‘approxi-

mation coefficients Aj’’ both with a reduced size of 2n-j,

where j is the decomposition level. At each level, high and

low-pass filters are applied to the input signal. The actual

features of these filters depend on the wavelet basic function

used. The high-pass filter at each scale filtering the high-

frequency components is recorded as the wavelet coeffi-

cients. While the low-pass filter extracts the low-frequency

components for the next scale before another set of high-

and low-pass filters is employed. The procedure is repeated

until at a prescribed level j is reached. Note that the maxi-

mum of j cannot exceed n. This way, the pieces of infor-

mation represented by Dj and Aj are different and

correspond to the high-frequency and the low-frequency

part of Aj-1. They are always orthogonal to each other. The

lengths of vectors Dj and Aj are the same and are half of that

of Aj-1. More details about the algorithm can be found in

the Mallat’s work [13].

Multi-resolution analysis provides wavelets with the

capability of decomposing any signal into its contributions

in different regions of time–frequency or time-scale space,

where various features of the signals can be well studied.

The basic idea of multi-resolution analysis is to write a

function or the signal f ðtÞ, as a limit of successive

approximations at different approximation subspaces,

while each of the approximations at subspaces is a

smoother version of f ðtÞ. According to the Mallat’s algo-

rithm, in case of CWT, a signal can be decomposed with

wavelets as follows [9]:

f ðtÞ ¼
X

1

k¼�1
Aj;kuj;kðtÞ þ

X

n

j¼1

X

1

k¼�1
Dj;kWj;kðtÞ ð3Þ

where uj;kðtÞ and Wj;kðtÞ are called scaling functions and

wavelet functions, respectively. Aj;k and Dj;k are the

approximation coefficients and the detail coefficients

mentioned in the Mallat’s algorithm. At each successive

scale (or decomposition level), only high-frequency

information (noises) is retained in the details, while the

low-frequency information (signal features) is retained in

the approximations. Subsequently, the standard denoising

technique operating with thresholding policy is applied to

the wavelet coefficients for removing the noises. The

denoising procedure requires the estimation of the noise

level from the detail coefficients. Finally, the de-noised

signal can be reconstructed with the new estimated wavelet

coefficients:

f �ðtÞ ¼
X

1

k¼�1
Anopt;kuj;kðtÞ þ

X

nopt

j¼1

X

1

k¼�1
D�j;kWj;kðtÞ ð4Þ

where Anopt;k are the approximation coefficients at the

optimal decomposition level nopt, and D�j;k are the detail

coefficients that are retained. In practical applications, any

measured variable signal can be assumed to be the sum of

two components:

f ðtÞ ¼ f �ðtÞ þ nðtÞ ð5Þ

where f �ðtÞ is the ideal signal and nðtÞ is the associated

noise. Therefore, the basic idea to estimate f �ðtÞ (i.e. by

denoising f ðtÞ and extracting the true trend) using wavelets

including the current work is as follows:

(1) Decompose the signal using DWT into n levels

(n depending on the signal length of 2n) and obtain

the empirical wavelet coefficients at each scale

j (j = 1, …, n).

(2) Thresholding of the empirical wavelet coefficients

using proper thresholding function, so that the

estimated wavelet coefficients are obtained based on

the selected threshold.

(3) Reconstruct the processed signal from the thresholded

wavelet coefficients using the inverse DWT.

2.2 Thresholding policy and threshold estimation

To perform the denoising algorithm described above, we

must choose the appropriate transform, the thresholding

function and the value of the threshold k used by the

thresholding function. Usually, two different thresholding

Low pass filter

j = 1

Original Signal

D2

D1 A1

High pass filter Low pass filter

A2

High pass filter Low pass filter

...

Dn An

High pass filter

j = 2

j = n

Fig. 1 Schematic diagram of the Mallat’s algorithm
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approaches are applied to signal denoising: hard thres-

holding or soft thresholding. The hard thresholding oper-

ation sets the wavelet coefficients smaller than the

threshold to zero and keeps the values of the other wavelet

coefficients. The soft thresholding operation consists of

setting the wavelet coefficients smaller than the threshold

to zero and shrinks the others toward zero. The hard

thresholding operation keeps the amplitude constant before

and after denoising, but might induce some Gibbs oscil-

lation at the edges due to its discontinuity. The so-called

soft thresholding function has the well-known and desir-

able properties of smoothness and adaptation, which might

reduce the signal amplitude due to the constant presence of

a bias at the wavelet coefficients w higher than the

threshold wj j[ kð Þ. In view of these issues (depicted in the

next section), another way to achieve a tradeoff between

hard and soft thresholding is to use a soft-squared thres-

holding non-linearity, also named a Stein estimator, which

has been used on the signal processing in this paper. The

new estimated wavelet coefficients ŵ under different

threshold estimators are graphically shown in Fig. 2.

The last parameter to specify is the value of the

threshold. The choice of the threshold directly influences

the effectiveness of the denoising algorithm. A too high

threshold would result in too many wavelet packet

decomposition coefficients being reset to zero, and thus

losing too many details of the signal, while a too low

threshold would not yield the expected denoising effect.

Universal threshold estimation known as the most popular

one was widely applied to estimate the threshold. It is

based on the statistical properties of white Gaussian noise,

but might lead to an overestimation of the noise level.

In this study, an adaptive threshold selection rule of Stein’s

Unbiased Estimate of Risk (SURE) for signal denoising

was used [14]. The aim of this estimate is to minimize

the risk. Because the coefficients of the true signal are

unknown, the true risk is also unknown. We derive the

unbiased estimate of the true risk for generalized threshold

functions, then, the SURE threshold value minimizes

the unbiased risk estimate. The risk function based on the

standard minimum mean square error (MSE) can be

expressed as [15]:

Rðw_;wÞ ¼ 1

N

X

j;k

ðŵj;k � wj;kÞ2: ð6Þ

3 Simulation

The purpose of an optimal filter is to recover the de-noised

signal without degrading the approximation degree

between the real signal and the reconstructed signal. The

key issue is which wavelet should be used for signal pro-

cessing. Consequently, doing some theoretical simulation

and test is necessary before applying this technique to

actual observations. A computer program has been written

in the numerical script language Python for the computa-

tions and signal simulations. In order to evaluate the per-

formance of the denoising operation, large numbers of

spectral simulations were performed. The criterion to

quantitatively illustrate the effectiveness of the denoising

operation is the SNR improvement, defined as follows:

SNRðdBÞ

¼ 10 log10

stdðSignalnoise�freeÞ
stdðSignalnoise�free � Signalwavelet denoisedÞ

� �

ð7Þ

where std means the standard deviation, Signalnoise�free and

Signalwavelet denoised are ideally simulated spectral and

wavelet de-noised spectral signals, respectively.

To achieve a better filter performance, some parameters

used for the wavelet filter should be optimized. The

parameters mostly influencing the final signal denoising

efficiency include the following five items: (1) wavelet

type; (2) thresholding policy; (3) threshold; (4) method of

decomposition and synthesis; (5) decomposition level. The

key feature of the Mallat algorithm is how to choose a

suitable wavelet basis and decomposition scale. We used

the computer program to evaluate various kinds of

parameter combinations.

From the viewpoint of practical applications, a CO

absorption line near wavelength of 2190.01 cm-1 was very

attractive for atmospheric CO measurements. Therefore,

relative spectroscopic simulation of a wavelength modu-

lated signal covering this spectral region was made (see

Fig. 3). Related spectroscopic parameters are extracted

from the HITRAN database [16], considering a set of given

experimental conditions including temperature, pressure,

gas concentration and optical path length. All the simulated

spectra contain 1024 sample points. These simulated

discontinuity

ŵ

w
-λ

Hard thresholding
Soft thresholding
Stein thresholding

λ

bias 

Fig. 2 Thresholding policy of wavelet coefficients
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spectra (2nd harmonic of WMS) were purposefully cor-

rupted with Gaussian white noise to simulate an instru-

ment-based signal. This type of noise interference often

appears in optical spectroscopic instruments. To evaluate

the performance of the wavelet-based signal denoising, a

total of 76 wavelets belonging to seven different families of

wavelets in the Python Toolbox were tested and compared

according to the criterion mentioned above. Ultimately, we

found that the Daubechies (db) and Symmlet (sym) wavelet

families, except for the db1 and sym2 wavelets, show a

relative better performance for spectral signal denoising.

Similar to other filters, improper choice of wavelet

parameters can cause distortions and artifacts in the con-

structed signal. For comparison, the optimal reconstructed

signal using wavelet db8 and the improper choice of the

wavelet basis (i.e. Haar wavelet) under the Stein thres-

holding policy, as well as sometimes the issues induced by

soft and hard thresholding scheme mentioned previously,

are also illustrated in Fig. 3.

Besides the wavelet basis and the thresholding function,

selection of the analysis depth (i.e. the number of decom-

position levels) also plays an important role in a suitable

denoising process. As an example, Fig. 4 shows both db

and sym wavelet families at different decomposition levels

with Stein thresholding policy applied. As one can see, the

SNR of de-noised spectrum exhibits an approximate linear

increase with the decomposition level, with a slight

decrease after the optimal decomposition level has been

reached. This trend is almost for all wavelets. Moreover,

the figure shows that both db and sym wavelet families

have approximately the same optimal decomposition level

of 5 except for the db1 wavelet. Most of the later yields

show almost equivalent performance with respect to noise

remove comparable to levels 5 and 6 with the exception of

wavelet sym2, sym3 and sym11, while in case of sym11,

the SNR at level 5 is very close to that at the best level of

9 (the discrepancy is only 2.82 9 10-2). For clarity, the

best SNR obtained for each wavelet at the optimal

decomposition level are complied in Table 1. In a further

simulation test, by adjusting the noise intensity to the

simulated noisy 2nd harmonic signal with varying SNR

from 1 to 10 dB, we found that the optimal decomposition

levels have slightly shifted between levels 5 and 7 fol-

lowing the variation of the SNR. In conclusion, db8 and

Fig. 3 Spectral simulation (a) noise-free CO WMS-2f spectral

signal, (b) Gaussian noise, (c) noised CO WMS-2f spectral signal,

and wavelet filtered results at the same decomposition level of 5

(d) wavelet db8 with Stein thresholding, (e) wavelet db8 with soft

thresholding, (f) wavelet db8 with hard thresholding and (g) wavelet

Haar with stein thresholding. The calculated SNR is also inset in the

corresponding panel
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sym10 show a relative better performance at the optimal

decomposition level for denoising the simulated noisy 2nd

harmonic signal. Note that sometimes the difference of the

best SNR obtained between the so-called optimal wavelet

and others (such as db8 and db20, sym10 and sym15) is

really very small, as can be seen from Table 1. Anyway,

wavelet db8 and sym10 are selected as good candidates

for denoising applications to the experimental spectra in

this work.

By reviewing literatures and our experimental trials with

many wavelet families, generally, we found that an ideal

wavelet basis function must be symmetrical or anti-sym-

metrical, orthonormal complement, compactly supported

and high number of vanishing moments for a given support

width. However, it is not easy to find a wavelet with all

these properties, being adaptive to any signal features. The

basic idea is that the energy or information of the signal

should be concentrated on as few coefficients as possible.

This depends mostly upon the number of vanishing

moments of the wavelet and the size of the support.

Besides, the wavelet library should try to match the

expected shape of the signal, i.e. have the largest correla-

tion with the signal to be analyzed. It is worth noting that

wavelet denoising is a data-dependent process, thus, the

optimal wavelet parameters, such as mother wavelet,

threshold and decomposition level, need to be carefully

adopted, by combining the consideration of the noised

signal characteristics [17].

4 Application to actual observations

4.1 Quantum cascade laser spectrometer

The design principles and construction details for our room

temperature QCL spectrometer are discussed in Ref. [18],

so we only briefly review them here. The instrument (see

Fig. 5) combines a commercially available room temper-

ature QCL (ALPES Laser) operated in continuous wave

(cw) mode, a compact astigmatic Herriott cell (Aerodyne

Research, Inc., Model AMAC-36), a short reference cell, a

sophisticated optical and electronic system, and a portable

computer-controlled system programmed with Labview

software that incorporates the electronics for driving the

QCL along with signal generation, data acquisition and

on-line signal analysis and display.

Fig. 4 SNR as a function of decomposition level for both db and sym wavelet families applying to the noised CO WMS-2f spectral signal in

Fig. 3
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The QCL spectrometer is devised for simultaneous

measurement of sample absorption from the Herriott cell

and a frequency-lock spectrum from the reference cell

using two similar TE-cooled mercury cadmium telluride

(MCT) infrared detectors (PVI-4TE-5, Vigo Systems). The

laser used here can be tuned to the infrared frequencies

between 2187.6 and 2202.1 cm-1 over a temperature range

of 243–283 K with a power range of 0.1–13.5 mW. This

wavelength range permits access to the R(11)–R(15) tran-

sitions in the CO fundamental vibration-rotation band. The

CO absorption line R(12) near 2190 cm-1 was chosen for

the present experiments, because it exhibits the smallest

overlap with absorption lines from other molecules, par-

ticularly N2O. For this wavelength, the laser was operated

at *276 K.

Wavelength modulation spectroscopy with 2nd har-

monic detection technique was employed to improve the

detection sensitivity. To acquire WMS signals, the com-

bination of a low-frequency triangle ramp (12.5 Hz) and a

high-frequency sinusoidal modulation (25 kHz) was sup-

plied to the QCL as an addition to the injection current and

the 2nd harmonic signals were demodulated using a digital

lock-in amplifier programmed with Labview. A total

number of 128 sampling points were acquired for each

spectrum, averaged from 11 sequential laser scans with

approximately 1-s integration time to improve the SNR. To

determine the ambient CO concentration, a multi-linear

least-square fitting routine was employed [19]. In this

procedure, ambient air spectra are fitted to a known ref-

erence spectra obtained from a gas standard that is peri-

odically added (typical at 1-h interval) to the sample cell.

Data acquisition card, power supplies and the electronic

elements controlled by National Instruments (NI) field-

programmable gate array (FPGA) board are mounted in a

standard 19-inch rack housed below the main optical

breadboard. Control of all electronics, signal acquisition

and real-time signal processing is completely implemented

through a LabView-based graphical user interface software

program using a laptop linked via a local area network

(shown in Fig. 6). Further details of the optical setups,

electronics design and sampling line have been described

in previous publications due to the use of identical or

modified components [20–23].

Table 1 The best SNR obtained for db and sym family wavelets and

the corresponding optimal decomposition level

Wavelet

order

Maximal SNR (dB) Optimal decomposition level

db family sym family db family sym family

1 9.38 – 4 –

2 11.54 11.54 4 4

3 12.08 12.08 4 4

4 12.42 12.14 5 5

5 12.41 12.36 5 5

6 12.83 12.70 5 5

7 12.88 13.03 5 6

8 13.51 12.84 5 5

9 12.81 12.77 5 5

10 13.07 12.92 5 5

11 13.05 12.75 5 9

12 13.39 12.51 5 5

13 12.93 13.02 5 5

14 13.10 12.47 5 5

15 13.13 12.91 5 5

16 13.45 12.64 5 5

17 12.97 12.57 5 5

18 12.97 12.84 5 6

19 13.19 12.86 5 5

20 13.49 12.74 5 5

Fig. 5 Photograph of the

prototype QCL spectrometer
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4.2 Results and discussion

It is well known, that all signals obtained from any ana-

lytical apparatus are often corrupted by noise obtained in

the processes of data acquisition and transmission. The

noise will degrade the accuracy and precision of the data,

and it also affects the detection limit of the instrumental

technique. Signal denoising is therefore highly necessary to

improve the instrument sensitivity, detection limit, mea-

surement precision and accuracy, in particular at low

ambient concentration level. The goal of signal denoising

is to remove the noise while retaining as much as possible

the important signal features. In this study, we applied the

wavelet-based denoising technique to our QCL spectrom-

eter in post-signal processing to achieve two objectives:

improving the SNR of the raw spectra and diminishing the

dispersion of the final concentration values, in order to

improve the detection limit, measurement precision and

accuracy.

4.2.1 Application of wavelet to QCL spectral signal

We evaluate the wavelet-based denoising technique by

applying it to actually recorded spectra. A series of WMS-

2f spectra recorded for very lower CO concentrations

(several ppbv) were measured by diluting a primary stan-

dard with a certified mixing ratio (Scott Marrin Specialty

Gases, Inc., CA) with CO-free zero air obtained from a

home-made CO scrubber, consisting of SOFNOCAT 423

(Molecular Products, Thaxted, Essex, UK), a hydrophilic

CO oxidizing agent, that scrubs CO from ambient air.

Spectra from this CO-free zero air are also used to deter-

mine the instrument background and can be subtracted

from the sample spectra to improve the system perfor-

mance. According to the discussion of the simulated

spectra mentioned above, wavelet db8 was used to study

the improvement of the detection limit after denoising.

Figure 7 presents an experimental spectral signal after

background subtraction with a CO concentration of

Fig. 6 Front panel interface of

QCLS control system based on

the Labview software
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Fig. 7 Typical example of experimentally determined CO 2nd

harmonic spectrum of R(12) transition at 2190.01 cm-1 recorded

with QCL spectrometer and corresponding simulated spectrum (upper
panel), as well as the results by applying different filter techniques

(lower panel) (for details of comparison, see text)
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3.69 ppb in air. For comparison, the simulated signal

according to the harmonic theory is also given. Note that

the slight asymmetric lineshape in both wings is potentially

due to the residual amplitude modulation effect, which has

been considered during the spectral simulation.

As can be seen, after the application of the wavelet filter,

the noisy signal becomes clearer and smoother. Also note,

that the wavelet de-noised signal keeps its original spectral

features without any distortion relative to the simulated

signal. Only the SNR is significantly enhanced. In addition,

the performance of the wavelet filter was compared to other

classic filter techniques, such as Wiener filter, moving

average and Kalman filter. The results show similar

behavior for Kalman filter and moving average, as shown

in the figure (lower panel). As noted in Sect. 1, the Kalman

filter is generally used for forecasting trace gas concen-

trations but is not well suitable for application to denoising

of absorption spectra. Therefore, it is not surprising that the

performance of the Kalman filter to improve the detection

sensitivity is not perfect here. As for the moving average,

because of the limit of total sampling points in the spectral

signal, the optimal number of points in the moving average

window was set to 5 points. A larger moving window will

degrade the approximation degree between the raw and the

filtered signal. The Wiener filter presents a better perfor-

mance compared to Kalman filter and moving average.

However, it is obvious that the wavelet filter shows the best

result and keeps the maximum approximation degree. It

greatly improves the spectral SNR yielding a detection

sensitivity enhancement by a factor of at least a factor of 3.

4.2.2 Application of wavelet filter to QCL concentration

signal

In TDLAS, a high measurement precision can in principle

be achieved with longer integration times for signal aver-

aging. The optimal stability time before instrument drifts

influence the averaging can be determined by the Allan

variance technique [1]. However, the multi-signal averag-

ing technique is time consuming and thus unsuitable for

some special applications like eddy correlation flux mea-

surement, which requires a high temporal resolution. In

field deployments, the measurement precision will addi-

tionally depend upon vibrations and the thermal stability of

the instrument, as well as the duty cycle of additions of zero

air or calibration gas to compensate for instrument drift.

A more meaningful evaluation of the instrument perfor-

mance is the so-called replicate precision, which can be

Fig. 8 Comparison of mean CO concentration (top panel) and standard deviation (std) (bottom panel) obtained by applying different wavelet as

a function of decomposition level to the time series of CO concentration signal
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obtained from the standard deviation of replicate measure-

ments of a reference sample with constant concentration.

Indeed, the time series of gas concentration data can also

be considered a noisy signal, with noises induced by

instrument noises (optically and electrically), instability

and environmental factors that the wavelet denoising

applied previously to the raw spectral signals could not

eliminate completely. In the next evaluation test, the

wavelet filter was further applied to minimize the disper-

sion of the gas concentration values, in order to improve

the instrument measurement precision. As discussed above,

the wavelet basis should be carefully adopted depending

upon the signal characteristics for optimal data denoising.

However, in case of practical gas concentration data, any

simulation is no longer possible. In order to obtain an ideal

wavelet basis for this kind of application, a similar pro-

cedure with the test of wavelets to spectral signals in the

simulation section has also been used for evaluating vari-

ous mother wavelets on the experimental time series of gas

concentration data. Herein, the selection criterion is the

measurement precision, which was defined as the standard

deviation (std) for a range of CO concentrations which

were rather constant.

For clarity, we only present results obtained with some

typical wavelets from different wavelet families, as shown

in Fig. 8. The raw experimental CO data used for the

wavelet test and the data range (between 1750 and 2120 s)

selected for calculating the measurement precisions are

shown in Fig. 9 (data details see next paragraph). From this

figure, we can see that the mean CO value after the appli-

cation of wavelet filtering is approaching the ‘‘real value’’ of

about 100 (±10 %) ppb (manufacturer provided), while the

std is decreasing with the increasing of decomposition level

(i.e. measurement precisions is improving), and retains

almost constant after the optimal decomposition level

(between 6 and 8 depending on the wavelet basis) is reached.

This varying trend is similar to the case of applying wavelets

to the spectral data as discussed previously. However, here

Fig. 9 Continuous measurements of CO from a series of standard

tanks with 1-s sampling rate under lab conditions and comparison of

various filter results (lower panel). A typical zoom-in on the CO

concentration measurements between 380 and 420 s for clear

comparison of filter lag effect (left upper panel), and replicate

precisions calculated from data between 1750 and 2120 s are shown

in the right upper panel
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wavelet bior2.2 shows a better performance at the optimal

decomposition level for the time series of concentration

data. This may be due to the different noise characteristics

and the correlation between mother wavelet and the ana-

lyzed signal, since wavelet denoising is a data-dependent

process. In addition, from Fig. 8, we can see that the dif-

ference in the std between the optimal decomposition level

and the maximum is very small. Taking wavelet bior2.2 as

an example, the discrepancy between level 7 and 11 is only

1.6 9 10-3. Therefore, the maximal decomposition level

n (depending on the signal length of 2n) and Stein thres-

holding scheme were widely used in the following studies.

On the basis of analysis above, a subsequent experiment

involved applying the best wavelet candidate (i.e. bior2.2)

to various concentration data with different features

recorded under different experimental conditions. Similar

to the analysis of experimental spectral data, a comparison

with other widely used filter techniques was also investi-

gated. First, the performance of the wavelet filter was

studied over a significant dynamic concentration range by

allowing CO mixing ratios to change by a factor of about 6,

between 50 and 300 ppb, as shown in Fig. 9. Another

distinct feature of this dataset is the rapid changes between

different CO concentration levels, which are useful to

evaluate the adaptability of the filter techniques. This

experiment included 2,120 concentration measurements

obtained with a 1-Hz sampling rate under laboratory con-

ditions, using a series of primary standard tanks (Scott

Marrin Specialty Gases, Inc., CA). From Fig. 9, we can see

that the ‘‘T’’ shape concentration increase becomes

smoother after application of the wavelet filter compared to

the raw data. This indicates that small fluctuations due to

optical fringe instability, laser frequency or laser power

drifts are efficiently reduced through the adaptive filter.

However, the true information of the concentration change

is conserved and the features of the sensor’s response to

variations are still reflected in the filtered data. Replicate

precision evaluated from the raw concentration data and

various filtered results are shown in the inset in the right

upper panel. These results show similar behavior. By

comparing the replicate precisions, we can see that wavelet

filter provides a better performance than other filter tech-

niques. Moreover, it indicates that a slight delay is intro-

duced by the 5-point moving average (left upper panel).

The wavelet filter is not sensitive to this kind of quick

changing effects.

Fig. 10 Pre-field CO concentration measurements in Mainz for a 17-min data collection. A typical zoom-in on the CO concentration

measurement data for clear comparison (both upper panels), and replicate precisions are inset (lower panel)
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A pre-field test of the QCL spectrometer was performed

at the outside of MPI-C main building in Mainz, as

described in Ref. [18]. Figure 10 shows an example of

applying wavelet filter to the pre-field results. The high CO

mixing ratios are periodically sampled from pressurized

bottled air (PBA, 325 ppbv traced to a primary gas stan-

dard), which was used to evaluate the system performance.

The lower trace near 100 ppbv shows the real-time ambient

CO mixing ratios. As can be seen, the observed atmo-

spheric CO concentrations vary a lot, due to changes in

meteorological parameters, for example, wind speed and

direction, or local emissions. It is mandatory, that the

application of any digital filtering conserves the charac-

teristic of the high temporal resolution. From the figure it is

clear, that all filter techniques show a similar behavior,

except the time lags introduced by the 5-point moving

average. In general, the wavelet filter provides a better

measurement precision. A long-term (66 h) precision

of 1.41 ppbv was deduced from the original data of the

pre-field measurements, improving to a better precision of

0.88 ppbv after utilization of the wavelet filtering.

From these three figures above, one can see that wavelet

filter can not only be used for spectral signal denoising but

is also effective for concentration estimating. The results

show that the wavelet filter has a superior performance in

improving detection sensitivity and increasing measure-

ment precision compared to either Kalman filter, Wiener

filter or moving average, both visually and quantitatively.

Primary analysis from a recent field campaign at the

Taunus Observatory on the summit of the Kleiner Feldberg

[24] confirms that this completely TE-cooled system is

capable of long term, unattended and continuous operation

at RT without cryogenic cooling of either laser or detector.

In a similar measuring procedure as shown in Fig. 11, the

primary CO standard is used for instrumental calibration,

while the continuous measurements of the commercial

compressed air are used to evaluate the instrument perfor-

mance (precision, stability). Finally, the field measurement
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Fig. 11 In-field CO concentration measurements at the Taunus

Observatory in Kleiner Feldberg for a typical 1-h interval and the

application of wavelet filter (lower panel). Upper panel presents a

zoom-in on an approximate 2-min interval for clarity, and an

approximate 1-min replicate precision evaluated from the compressed

air
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precision of 1.55 ppb improves to 0.74 ppb after applying

the wavelet filter technique during a nearly 40-day mea-

surement period. Data analysis is still ongoing and will be

discussed in a further publication.

5 Conclusions and outlook

We presented an application of wavelet transform-based

denoising technique to quantum cascade laser spectrometer

for in situ and real-time atmospheric trace gas measure-

ments. With the utilization of the wavelet digital filter

technique in post-signal processing, better measurement

precision and higher detection sensitivity have been

achieved without reducing the fast temporal response. A

procedure to optimize parameters used in signal denoising

in the wavelet domain was presented. In order to assess

the benefit of the wavelet filter, we compared the wavelet-

based filter to other commonly used digital filter tech-

niques, i.e. Kalman filter, Wiener filter and moving

average, by application to actual observations. Of the four

methods studied, wavelet filtering demonstrated a higher

ability to considerably improve detection sensitivity and

increase measurement precision and accuracy. The method

implemented here largely depends on wavelet parameters,

for example, wavelet type, thresholding policy, threshold

estimation and decomposition level, etc. To achieve a

better performance in practical applications, wavelet

parameters should be optimized according to the charac-

teristics of signals to be de-noised.

Wavelets are becoming an increasingly important anal-

ysis tool for signal processing. Wavelets can effectively

extract both time and frequency-like information from a

time-varying signal. Given the powerful and flexible multi-

resolution decomposition, the linear and non-linear pro-

cessing of signals in the wavelet transform domain offer new

methods for infrared laser spectra denoising and trace gas

concentration evaluation. The adaptive Kalman filter is a

popular tool in the discipline of environmental science for

predicting the concentration of trace gases in real time due to

its capability of making a more accurate prediction by

minimum-variance estimations. However, the Kalman filter

is usually applied with some prior assumption on the vari-

ances of the process noise and the measurement noise,

which are difficult to be obtained in practice. Both wavelets

and Kalman filters can handle non-stationary signals.

Therefore, the wavelet coefficients can be modeled as the

state variables of Kalman filters, using the recursive Kalman

filter algorithm to best estimate the wavelet coefficients.

Thus, a more promising technique based on incorporating

both wavelet transform and Kalman filter (i.e. wavelet-

based Kalman filter) can be more effectively applied on

trace gas sensors. Recently, the so-called wavelet-based

multi-model Kalman filter has been successfully applied in

the field of hydrology for food forecasting and electric

power systems [25, and references therein]. Future research

work will focus on this proposed method, to implement this

method to our QCLS system for various field applications.
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