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Abstract Analytical expressions for the components of

the nonparaxial propagation a Lorentz-Gauss vortex beam

in uniaxial crystals orthogonal to the optical axis are

derived. The intensity and the phase distributions of the

components of a Lorentz-Gauss vortex beam propagating

in a uniaxial crystal orthogonal to the optical axis are

shown by numerical examples. Even though one of the two

transversal components of a Lorentz-Gauss vortex beam in

the source plane is equal to zero, it emerges upon propa-

gation inside the uniaxial crystal. Moreover, the beam

profile of a Lorentz-Gauss vortex beam in the uniaxial

crystal becomes twisted and tilted. The three components

are completely different and have their respective evolution

laws. The intensity distribution and the phase distribution

of a Lorentz-Gauss vortex beam can be modulated by the

uniaxial crystal, which is beneficial to the optical trapping

and nonlinear optics involving in the special beam profile.

1 Introduction

Due to the highly angular spreading, Lorentz-Gauss beams

have been introduced to describe the radiation emitted by a

single-mode diode laser [1, 2]. The properties of Lorentz-

Gauss beams have been extensively investigated [3–11]. If

the radiation emitted by a single-mode diode laser goes

through a spiral phase plate, it becomes a Lorentz-Gauss

vortex beam. The spiral phase plate can modulate the wave-

front phase of the Lorentz-Gauss vortex beam. The charac-

teristics of a Lorentz-Gauss vortex beam is that it has a twisted

phase front and an intensity of zero in the center of the beam

profile. Due to carrying the orbital angular momentum, the

Lorentz-Gauss vortex beam can be applied in the fields of

optical micro-manipulation, nonlinear optics, and quantum

information processing, etc. [12–14]. Many applications such

as the design of the polarizer and the compensator are

involved in laser beams propagating in uniaxial crystals. The

propagation of various kinds of laser beams in uniaxial crys-

tals has been widely examined [15–22]. In the remainder of

this paper, therefore, the propagation of a Lorentz-Gauss

vortex beam in uniaxial crystals orthogonal to the optical axis

is to be investigated. As the far-field divergence angle of the

radiation emitted by a single-mode diode laser is large, the

paraxial theory is no longer valid. Accordingly, here we

consider the nonparaxial propagation of a Lorentz-Gauss

vortex beam in uniaxial crystals orthogonal to the optical axis.

2 Theoretical derivation

In the Cartesian coordinate system, the z-axis is taken to be

the propagation axis. The optical axis of the uniaxial

crystal coincides with the x-axis. The input plane is z = 0

and the observation plane is z. The dielectric tensor of the

uniaxial crystal is described by

e ¼
n2

e 0 0

0 n2
o 0

0 0 n2
o

0
@

1
A; ð1Þ

where no and ne are the ordinary and extraordinary

refractive indices, respectively. The Lorentz-Gauss vortex

beam considered here is linearly polarized in the

x-direction and is incident on a uniaxial crystal in the

plane z = 0. The Lorentz-Gauss vortex beam in the input

plane z = 0 takes the form as [1, 2]
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where q0 = x0ex ? y0ey. ex and ey are the unit vectors in the

x- and y-directions, respectively. w0 is the waist of the Gaussian

part. w0x and w0y are the width parameters of the Lorentzian

part in the x- and y-directions, respectively. The propagation of

the Lorentz-Gauss vortex beam in uniaxial crystals orthogonal

to the optical axis obeys the following equations [23]:
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where k = kxex ? kyey, q = xex ? yey, and k0 = 2p/k is the

wave number with k being the optical wavelength. ~EsðkÞ is

the two-dimensional Fourier transform of the transverse

components of the optical field in the plane z = 0 and is given by

~EsðkÞ ¼
1

ð2pÞ2
Z1

�1

Z1

�1

Esðq0; 0Þ

� exp �iðkxx0 þ kyy0Þ
� �

dx0dy0; s ¼ x; y: ð4Þ

kez and koz are defined by

kez ¼ ½k2
on2

e � ðn2
e=n2

oÞk2
x � k2

y �
1=2;

koz ¼ k2
on2

0 � k2
x � k2

y

� �1=2

:
ð5Þ

To describe the nonparaxial field in a uniaxial crystal,

(3) can be expressed as the sum of the paraxial field and a

nonparaxial correction term [23]:

By using the property of the Fourier transforms [24], the

components of the nonparaxial field in the uniaxial crystal

orthogonal to the optical axis can also be rewritten as

Exðq; zÞ ¼
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2piz
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�1

Z1

�1

Exðq0; 0ÞKeðq; q0Þdx0dy0; ð7Þ
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where Ke(q, q0) and Ko(q, q0) being given by

Keðq; q0Þ ¼ expðik0nezÞ
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Inserting (2) into (7) and performing the integrals, the

components of the Lorentz-Gauss vortex beam in the

uniaxial crystal orthogonal to the optical axis are found to be
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with U�x ðx; zÞ, V�y ðy; zÞ, X�x ðx; zÞ, and X�y ðy; zÞ being given
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where erfc (�) is the complementary error function. The

auxiliary parameters are defined by

e ¼ ne

no

; a ¼ 1þ iez

n0zr

; b ¼ 1þ iz

enozr

; ð18Þ

c ¼ 1þ i

n0zr

; zr ¼ kw2
0=2; ð19Þ

where zr is the Rayleigh length of the Gaussian part.

3 Numerical results and analyses

Based on the analytical formulae derived in the last section,

here we investigate the propagation properties of a Lor-

entz-Gauss vortex beam in the uniaxial crystals orthogonal

to the optical axis. Here we mainly pay attention to the

influence of the uniaxial crystals on the propagation of

a Lorentz-Gauss vortex beam. The calculation parame-

ters are chosen as no = 2.616, e = 1.5, w0 = 10k, w0x =

w0y = 5k. Figures 1, 2 and 3 represent the contour graph of

the intensity distribution of the components of a Lorentz-

Gauss vortex beam propagating in the uniaxial crystals

orthogonal to the optical axis at several observation planes.

The observation planes are z = 0.01zr, z = 0.4zr, z = zr,

and z = 3zr. The intensity is proportional to the scale of

1/k2, which is omitted in the figures. If the label of the

intensity along the vertical axis in all the subfigures of one

figure is same, we only mark it in the subfigures (b) and (d)

to make the figure compact. The equality of w0x and w0y

results in the symmetry of the beam profile of the x-com-

ponent in the x- and y-directions of the source plane. Upon

propagation in the uniaxial crystals orthogonal to the

optical axis, however, the above symmetry of the beam

profile of the x-component in the transversal directions will

be lost. The outcome of the anisotropic effect of the

crystals, which results in the spreading of the beam pro-

file in the y-direction is far slower than that in the
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x-direction, and the optical vortex is the twisted profile of

the x-component. The beam profile of the x-component is

dark hollow. Though the y-component of Lorentz-Gauss

vortex beam in the source plane is zero, it is no longer

equal to zero upon propagation in the uniaxial crystals,

which can be interpreted as follows: The y-component is

affected by the x-component because of the dependence on
~ExðkÞ; and this corresponds to a change of polarization

state of the radiation that occurs during propagation in the

uniaxial crystals [23]. Compared with the magnitude of the

x-component, the magnitude of the y-component is very

small. However, the y-component can not be negligible.

Upon propagation in the uniaxial crystals, the beam profile

of the y-component will finally spilt into four lobes.

Moreover, the four lobes can be divided into two groups,

and the lobe in each group can be obtained by rotating

the other lobe. There also exists a central dark region in the

beam profile of the y-component. The magnitude of

the longitudinal component is far smaller than that of the

x-component but far larger than that of the y-component,

which is caused by the calculated values of the beam

parameters being far larger than the wavelength. When the

values of the beam parameters are smaller than or of the

order of the wavelength, the magnitude of the longitudinal

component is of the order of that of the x-component. Upon

propagation in the uniaxial crystals, the beam profile of the

longitudinal component splits into two lobes. The contour

graph of the intensity distribution of a Lorentz-Gauss

vortex beam propagating in the uniaxial crystals orthogonal

to the optical axis at several observation planes is shown in

Fig. 4. As |Ex|
2 � |Ez|

2 � |Ey|
2 �, the beam profile of a

Lorentz-Gauss vortex beam is close to that of the x-com-

ponent. However, the details in the edge of the beam profile

between the Lorentz-Gauss vortex beam and its x-compo-

nent are different.

Figures 5, 6 and 7 represent the contour graph of the

phase of the components of a Lorentz-Gauss vortex beam

propagating in the uniaxial crystals. Just as their different

intensity distributions, the phase distributions of the three

components of a Lorentz-Gauss vortex beam propagating

in the uniaxial crystals are also completely different. With

the increase of the axial propagation distance, the phase

distribution of the x-component gradually takes on spiral

shape. The phase distributions of the y-component in the

observation planes z = 0.01zr and 0.4zr are irregular. When

the axial propagation distance is far enough, the phase

distribution of the y-component is regular and takes on the

distribution of back to the font. When in the observation

plane z = 0.01zr, the phase distribution of the longitudinal

component is composed of two petals. With the increase of

the axial propagation distance, the phase distribution of the

longitudinal component experiences combination, rotation,

and finally takes on a ring distribution.

Figure 8 represents the contour graph of the intensity of

a Lorentz-Gauss vortex beam in the observation plane

z = zr of different uniaxial crystals. When e = 1, the beam

Fig. 1 Contour graph of the

intensity of the x-component of

a Lorentz-Gauss vortex beam in

several observation planes of

the uniaxial crystal. e = 1.5.

(a) z = 0.01zr, (b) z = 0.4zr,

(c) z = zr and (d) z = 3zr
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Fig. 2 Contour graph of the

intensity of the y-component of

a Lorentz-Gauss vortex beam in

several observation planes of

the uniaxial crystal. e = 1.5.

(a) z = 0.01zr, (b) z = 0.4zr,

(c) z = zr and (d) z = 3zr

Fig. 3 Contour graph of the

intensity of the longitudinal

component of a Lorentz-Gauss

vortex beam in several

observation planes of the

uniaxial crystal. e = 1.5.

(a) z = 0.01zr, (b) z = 0.4zr,

(c) z = zr and (d) z = 3zr
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profile of the Lorentz-Gauss vortex beam is nearly sym-

metric and slightly leans toward the right. When e \ 1, the

beam profile becomes twisted and slants to the right. When

e [ 1, the beam profile is also twisted and slants to the left.

With increasing the deviation of e from unity, the twisting

and the tilt of the beam profile both become larger.

Fig. 4 Contour graph of the

intensity of a Lorentz-Gauss

vortex beam in several

observation planes of the

uniaxial crystal. e = 1.5.

(a) z = 0.01zr, (b) z = 0.4zr,

(c) z = zr and (d) z = 3zr

Fig. 5 Contour graph of the

phase of the x-component of a

Lorentz-Gauss vortex beam in

several observation planes of

the uniaxial crystal. e = 1.5.

(a) z = 0.01zr, (b) z = 0.4zr,

(c) z = zr and (d) z = 3zr
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4 Conclusions

The analytical nonparaxial formula of a Lorentz-Gauss

vortex beam propagating in a uniaxial crystal orthogonal to

the optical axis has been derived. The intensity and the

phase distributions of the components of a Lorentz-Gauss

vortex beam propagating in a uniaxial crystal orthogonal to

the optical axis have been demonstrated by numerical

Fig. 6 Contour graph of the

phase of the y-component of a

Lorentz-Gauss vortex beam in

several observation planes of

the uniaxial crystal. e = 1.5.

(a) z = 0.01zr, (b) z = 0.4zr,

(c) z = zr and (d) z = 3zr

Fig. 7 Contour graph of the

phase of the longitudinal

component of a Lorentz-Gauss

vortex beam in several

observation planes of the

uniaxial crystal. e = 1.5.

(a) z = 0.01zr, (b) z = 0.4zr,

(c) z = zr and (d) z = 3zr
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examples. Though the y-component of Lorentz-Gauss

vortex beam in the source plane is zero, the y-component

emerges upon propagation in the uniaxial crystals. The

patterns of the intensity and the phase distribution of the

three components are completely different, and the inten-

sity and the phase distribution of the three components

have their respective evolution laws. The uniaxial crystal

can modulate the intensity distribution and the phase dis-

tribution of a Lorentz-Gauss vortex beam. With increasing

the deviation of e from unity, the twisting and the tilt of the

beam profile of a Lorentz-Gauss vortex beam both become

larger. This research is beneficial to the optical trapping

and nonlinear optics involving in the special beam profile.
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