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Abstract We perform experiments on the direction of the
diffracted beam in off-Bragg replay for volume holographic
gratings. The obtained results clearly verify the assumptions
made by the first-order two-wave coupling theory for one
dimensional lossless unslanted planar volume gratings us-
ing the beta-value method rather than Kogelnik’s K-vector
closure method.

1 Introduction

Theories to analyze diffraction by sinusoidal structures mak-
ing use of coupled waves have been around since the 1930s
for diffraction of light by standing sound waves [1, 2].
In the late 1960s experimental holography became popu-
lar with the invention of lasers leading to a resurgence of
coupled wave theories to describe the diffraction of light
by plane-wave holograms [3]. Interestingly, even much ear-
lier an alternative approach using coupled modes (dynami-
cal theory of diffraction, DDT) was favored for X-rays [4],
which was applied later also for neutrons [5]. Though Mo-
haram and Gaylord offer an exact solution to the diffraction
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problem—the rigorous coupled wave analysis (RCWA)—
[6], and demonstrated that the DDT is completely equiv-
alent in its rigorous variant [7], still approximate theories
are mostly used for evaluation of experimental data. Among
those the first-order two-wave coupling theory of Kogel-
nik turned to the favorite one in holography [3]. Here, the
second-order derivatives of the amplitudes are neglected on
the basis of the slowly varying envelope approximation. Its
secret of success seems to be the simplicity of the relevant
equations and the comprehensive treatment of a number of
useful cases (transmission-reflection gratings, slanted grat-
ings, phase- and absorption gratings) for in-Bragg and off-
Bragg replay. Despite the indisputable merits, soon a variant
of the theory was published [8] that replaces one assumption
made by Kogelnik for off-Bragg replay—the K-vector clo-
sure method (KVCM)—by the beta-value method (BVM).
It was clearly pointed out by Syms that from a mathemati-
cal point of view a class of valid first-order theories exists
to which both of them belong [9]. The fundamental differ-
ence arises from neglecting (KVCM) or properly taking into
account (BVM) the boundary conditions. A comparison of
these approximate first-order theories with the RCWA led to
the conclusion ‘that the BVM offers definite advantages over
the KVCM method’ [10]. The BVM later was also strongly
promoted by the books of Solymar [11] and Yeh [12] as well
as by setting up a first-order two-wave coupling theory for
anisotropic media [13]. Any of these above mentioned pub-
lications focuses on the calculation of the amplitudes for the
diffracted waves. Both methods give similar results for the
amplitudes, but strongly disagree when it comes to the di-
rections of the diffracted beam for off-Bragg replay.

In what follows we will demonstrate that experiments fo-
cussing on the direction of the first-order diffracted beam
falsify the KVCM, as presumed previously in the case of X-
rays [14], and show that the direction of the diffracted beam
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follows the predictions of the BVM. We start with a sum-
mary of the predictions given by the two theories. Next, the
results of diffraction experiments from an unslanted volume
transmission grating and a comparison of the experiments
with the KVCM and BVM are performed. We finish with a
discussion and conclusion.

2 First-order two-wave coupling diffraction theories:
summary

The emphasis of this part lies on working out the difference
between the two theories for the direction of the diffracted
beam. The issues related to the differences on the ampli-
tudes and phases were already addressed in detail theoreti-
cally and experimentally, see e.g. Refs. [10, 15]. The con-
clusion was that they do not differ when obeying the Bragg
condition, however, the BVM having some advantages over
the KVCM for a hologram in off-Bragg replay. The first-
order diffraction efficiency for an unslanted phase grating in
transmission is

η±1 = cR

cS

ν2sinc2
√

ν2 + ξ2, (1)

with ν = n1πd/(λ
√

cRcS), cR = cos θ . Here, n1 is the
refractive-index modulation, d the grating thickness, λ the
wavelength in free space, and θ the angle of incidence in the
medium. The parameters cS, ξ for each theory are defined
below in the corresponding Sects. 2.2 and 2.3, respectively.
We show wavevector diagrams yielding the expected direc-
tion of the diffracted beam for the employed experimental
configurations and a simple analytic formula for the (ex-
ternal) excess angle ε, i.e., the angle exceeding the value
of twice the Bragg angle between the zero order and first
diffraction orders. The notation is as follows: wavevectors
inside the medium are denoted by q, in free space by k; an-
gles inside are θ and θB ; angles outside are ΘB,Θ,
Θ and
Z, to be defined in the next sections.

2.1 Experimental geometries

Experiments were realized for two different geometries that
are sketched in Fig. 1:

[a] Planar geometry: the wavevector k0 of the incident
beam, grating vector K and sample surface normal N
are coplanar in the x–z-plane.

[b] Tilt geometry: k0 and K lie in the plane x–z whereas
N is rotated by an angle Z around the grating vector.
This is equivalent to the experimental situation depicted
in Fig. 3 of Ref. [16] and treated in a rigorous manner in
Ref. [17].

Fig. 1 Schematic of the setup in an off-Bragg replay diffraction ex-
periment for planar and tilt geometry. For the notation refer to the text

Note that for an unslanted grating K · N ≡ 0 applies. For
the discussion that follows we assume the sample to be fixed
in the reference frame while the incident beam rotates in the
x–z-plane in contrast to the experimental situation shown in
Fig. 1 where instead the sample is rotated while keeping the
incident beam fixed.

2.2 KVCM

Let us define the parameters for Eq. (1) as cS = cR and ξ =
(θ − θB)|K|d/2.

For the wavevector qS of the diffracted beam the KVCM
simply assumes

qS = qR ± K, (2)

with qR the wavevector of the forward diffracted beam. The
corresponding wavevector diagrams for the diffraction pro-
cess are shown in Fig. 2. As pointed out earlier [15], Eq. (2)
comprises a valid choice to obtain a 1-D scalar wave equa-
tion. However, taking Eq. (2) seriously, the diffraction would
be ‘inelastic’ for off-Bragg replay [10], i.e., the wavelength
of the diffracted beam is expected to change upon rotation.
For the parameters of the experiment described in section 3
the wavelength change at ±20◦ off-Bragg angle would be
about ±10 %, so that the incident green beam color should
change to either deep blue or yellow, respectively. By exam-
ining Fig. 2, using Eq. (2) and Snell’s law—neglecting the
dispersion of the refractive index—the expected ‘excess’ an-
gle reads

ε(
Θ)

= arcsin

[
n(2 sinΘB − sin
Θ)√

n2 − sin2 
Θ + (2 sinΘB − sin
Θ)2

]

+ 
Θ − 2ΘB. (3)
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Fig. 2 KVCM: wavevector diagram for three angles of incidence:

Θ = Θ − ΘB = −22,0,+22◦. The full (dashed) arrows represent
the wavevectors inside (outside) the medium. The blue shaded sector
covers 2ΘB , whereas the hatched sector gives the ‘excess’ angle ε.
Note that ε < 0 for 
Θ < 0

2.3 BVM

For the BVM the parameters for Eq. (1) are ξ = (cos θ −
cS)βd/2 and cS = √

1 − (2 sin θB − sin θ)2 with β =
2πn/λ. The latter parameter, which is eponymous to the
method, is the modulus of the wavevectors in the medium
with average refractive index n and sin θB = ±λ|K|/(4πn).

The Floquet-condition in the BVM case requires the
wavevector of the diffracted beam to obey

qS = qR ± K ± 
qN, (4)

with


q(θ) = β
(
cos θ −

√
1 − (2 sin θB − sin θ)2

)
. (5)

Fig. 3 BVM: wavevector diagram for three angles of incidence:

Θ = Θ − ΘB = −22,0,+22◦. The full (dashed) arrows represent
the wavevectors inside (outside) the medium, respectively. The blue
shaded sector covers 2ΘB , whereas the hatched sector represents the
excess angle ε > 0

At first let us consider the planar geometry [a] as defined in
Sect. 2.1. By geometric reasoning and applying Snell’s law
at the boundaries we obtain the (external) excess angle ε as
a function of the (external) off-Bragg angle 
Θ as

ε(
Θ) = arcsin[2 sinΘB − sin
Θ] + 
Θ − 2ΘB. (6)

We want to draw the attention to the fact that ε is indepen-
dent of the refractive index of the medium because of phase-
matching at the boundaries. The wavevector diagrams for

Θ = −22,0,+22◦ are shown in Fig. 3. It can be seen that
for qS,x > 2π/λ the diffracted beam is excited but totally re-
flected in the medium. The corresponding rotation angle for
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Fig. 4 Wavevector diagram for the tilt geometric configuration [b] for
three rotation angles (
Θ = 0,±17◦) where q0,± denote the corre-
sponding wavevectors. The orange curve gives the tie-points of the
diffracted wavevectors qS for off-Bragg replay. Tilt angle Z = 45◦

which total reflection occurs is

ΘT R = arcsin (2 sinΘB ∓ 1) − ΘB. (7)

Now, let us turn to the more general case, i.e., configuration
[b] defined in Sect. 2.1. By inspecting Fig. 4 it is obvious
that now the diffracted beam moves out of the x–z-plane
upon off-Bragg replay.

The direction of the diffracted beam can be analytically
expressed as a function of the two external angles Θ and Z

characterizing the incident beam. The three-step-procedure
to arrive at this is as follows: define the external wavevec-
tor k0 and the plane of incidence in terms of Θ and Z, ap-
ply Snell’s law at the entrance boundary and make use of
Eq. (4) to derive the internal wavevectors qR,S . Finally we
employ Snell’s law once more for the diffracted beams to
end up with kR,S . Again—as expected—the direction of the
diffracted beams does not depend on the refractive index of
the medium. The result is lengthy and therefore we do not
give it explicitly here. We also find an angle of total reflec-
tion ΘT R that depends on the tilting angle Z or vice versa a
cutoff ZT R(Θ)

ZT R(Θ) = arccos

[
2
√

sinΘB(sinΘB − sinΘ)

cosΘ

]
. (8)

2.4 Comparison

For the planar geometry both theories correctly predict that
the direction of the diffracted beam lies in the plane of inci-

Fig. 5 Excess angle ε(
Θ) for the BVM (Eq. (6), solid lines) and the
KVCM (Eq. (3), dashed lines) in planar geometry for two wavelengths:
351 nm (thin) and 633 nm (thick)

dence, i.e., kR,N,K,kS are coplanar. When applying the
KVCM we expect that the diffraction angle ∠(kR,kS) ≥
2ΘB for Θ ≤ ΘB and ∠(kR,kS) < 2ΘB else. On the con-
trary for the BVM there is always an excess angle ε > 0 for
any deviation from the Bragg condition as shown in Fig. 5.

For the tilt geometry the KVCM again predicts that the
diffracted beam lies in the x–z-plane, as the surface vector
normal does not play a role. The BVM on the other hand
implies that the diffracted beam moves out of this plane
for the off-Bragg geometry as shown in Fig. 4. Thus for
the KVCM we arrive at the same situation as in planar ge-
ometry [a], see Fig. 5 (dashed lines). When employing the
BVM instead, however, the diffracted beam is out of the x–
z-plane upon off-Bragg replay, i.e., the spot moves mostly
up/down on a screen perpendicular to the diffracted beam
for in-Bragg. The corresponding situation is shown in Fig. 6
(left).

The above mentioned differences as predicted by the
KVCM and BVM are easy to verify in experiments and
allow—next to the fact that all processes are elastic—to dis-
criminate between the methods.

3 Experimental

Light optical diffraction experiments were conducted on
a SiO2 nanoparticle-polymer grating [18] with a grating
spacing Λ = 2π/|K| = 500 nm using an s-polarized Ar-
ion laser beam at a readout wavelength λ = 514.5 nm un-
less noted otherwise. To prepare the beam properly (plane
wave), we used a beam expansion system followed by a
diaphragm with a diameter of about 4 mm. The effective
thickness of the grating at zero tilt angle was found to be
d0 = 58.5 ± 0.05 µm by fitting Eq. (1) to the angular depen-
dence of the diffraction efficiency with a coupling strength
of ν(θB) ≈ 1.2π/4. A schematic of the setup is shown
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Fig. 6 Left: Diffracted beam on a screen for off-Bragg replay ac-
cording to BVM in configuration [b]. The screen is perpendicular
to the diffracted beam for in-Bragg. Right: Measured position of
the diffracted beams on a screen for a sequence of rotation angles
Θ = −22 . . .+ 8 with an increment of 2◦ and a tilt angle of Z = 41.7◦.
Dashed circles are the centers of gravity of the spots, the solid disks
are the fitted results

in Fig. 1. The sample is placed on an Eulerian cradle and
rotated around a vertical axis for an angle Θ with or with-
out a tilt Z. The screen was placed at a distance of 265 mm
from the sample, so that for Bragg incidence the beam hit the
screen perpendicularly. To monitor the position of the beam
we took photos of the beam spot on the screen using a digi-
tal camera (Canon EOS D10) in auto-exposure mode. Then
each photo was analyzed as follows: as a starting point we
found the position of maximum intensity, followed by cal-
culating the spot’s center of gravity in a region around the
maximum with about the size of the beam’s diameter (4 mm
∧= 10 pixel). This was defined as the spot’s position. The
size of the open circles in Figs. 6 and 7 reflects the spot’s
size.

In planar geometry (case [a], Z = 0) we observed the ex-
cess angle ε(
Θ) > 0 upon off-Bragg replay as shown in
Fig. 7, i.e., the spot on the screen moves in the x–z-plane
and always in the same direction independent of the off-
Bragg rotation sense. This behavior is in contradiction to
the KVCM. In checking the validity of the BVM we employ
Eq. (6) and find that the model fits the data without any ad-
justable parameter. To emphasize this we performed the ex-
periment also for another read-out wavelength λ = 476 nm

Fig. 7 Measured excess angle ε(
Θ) for the experimental data at
λ = 514 nm (solid circle) and λ = 476 nm (dashed circle). The solid
disks are the simulated values according to Eq. (6). Note that the model
is free of any adjustable parameter

and the model fits as well. While we already falsified the
KVCM, the latter is a another strong indication for the ap-
plicability of the BVM instead.

Next we turn to the even more striking case of tilting
the grating around the grating vector K about an angle of
Z ≈ 45◦. This results in a larger effective thickness d of
the grating, thus higher angular selectivity and stronger ef-
fective coupling as well. This feature is utilized as sug-
gested in Ref. [19] in recent diffraction experiments from
holographic gratings using cold and very cold neutrons to
tune the diffraction efficiency for beam splitters or mir-
rors [20–22]. First we checked the angle of total reflec-
tion. The measured value is (17.3 ± 0.05)◦, the theoreti-
cally expected one ΘT R(Z = 45) − ΘB = 17.0◦ according
to Eq. (8), which fits quite well. Next we monitored the
position of the diffracted beam while rotating by an angle

Θ off-Bragg. Figure 6 (right) shows the experimentally
observed position of the diffraction spots on a screen upon
variation of 
Θ . The graph compiles all photographs for
a rotational increment of 2◦ from 
Θ = −22◦ . . .8◦. This
graph impressively demonstrates that the direction of the
diffracted beam is out of the x–z-plane, thus being contra-
dictory to the KVCM. To compare the measured data with
the predictions of the BVM we fitted the model to the ex-
perimental data by using a single parameter—the tilt angle
Z—which in principle can be also just measured. Minimiz-
ing the least-squares error yielded an angle of Z = 41.7◦.
The fitted positions are given by the solid disks, whereas
the centers of gravity for each diffraction spot are indi-
cated by dashed circles together with the photographs of the
diffracted spots in the background. The agreement between
the data and the positions predicted by the BVM is excel-
lent.
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4 Discussion

In an excellent review Russell [23] compared the dynamical
diffraction theory, i.e., a two-eigenmodes approach, with the
two-wave first order coupling theory as derived by Kogelnik
and came to the conclusion that the expressions for the am-
plitudes are exactly analogous. Knowing this we gave a cor-
respondence of the relevant parameters, i.e., terms for neu-
trons [24] to facilitate the communication between people
working in light or neutron optics. However, it was some-
what astonishing that the results should be exactly the same
as ‘In the modal method, the boundary assumes paramount
importance, acting as a strong discontinuity (. . . ). In the
coupled-wave picture the boundary has a very subsidiary
role’ [23]. Moreover, for the latter a class of different bound-
ary conditions are permitted [9] which are expected to lead
to different amplitudes, too. For the KVCM the sample sur-
face normal does not appear in the derivation at all, whereas
for the BVM phase matching at the boundary is required
exactly as for the DDT. So why do KVCM and DDT lead
to the same expressions? In short the answer is as follows:
in the derivation of the dispersion surface (DDT) the quar-
tic equation in the magnitude of the permitted wavevectors
is reduced to a quadratic one. This approximation is valid
for small deviations from the Bragg condition. The disper-
sion surface then consists of hyperbolic branches for the
permitted wavevectors in the grating region. Without this
approximation the equation to solve is in fact of fourth or-
der and such a deviation is expected to occur for far off-
Bragg replay. For this reason the approximate DDT and the
KVCM lead to the identical diffraction amplitude dependen-
cies. However, when considering the full dispersion surface
we end up with a different expression that is very well con-
sistent with the BVM. A detailed analysis will be given else-
where.

The normalized diffraction efficiency, i.e., η(θ)/η(θB),
upon off-Bragg replay for the BVM and the KCVM is de-
picted in Fig. 8 (top). The difference between diffraction ef-
ficiency according to RCWA and the above discussed theo-
ries, i.e., Koglenik’s KVCM, Uchida’s BVM and the exact
DDT are potted in Fig. 8 (bottom). One can clearly notice
that the BVM and the exact DDT yield very similar results,
in particular when considering the zeros of the diffraction ef-
ficiency, which are determined by the boundary conditions.
When now considering the case of neutrons (X-rays) the cor-
responding derivations given in, e.g., Refs. [25–27] always
treat only small deviations from the Bragg condition and
thus approximate the Ewald spheres by planes. In addition,
due to the fact that the refractive index is very close to unity,
i.e. 1 ± 10−5, the boundary conditions have only negligible
influence on the dephasing behavior of the diffraction am-
plitude. In this case any of the theoretical methods describes
the experimental results equally well.

We want to conclude the discussion with a few remarks.
It was noted in literature that the tilt geometry used here can
be utilized to achieve polarizing effects, e.g., a polarizing
beam-splitter [16] as is obvious already by having a look on
the rigorous theory [17]. In the course of the treatment given
above we did not make any analysis of the diffracted beam’s
polarization state while keeping the polarization state of the
incoming beam perpendicular to the x–z-plane. Yet, it is ob-
vious that whenever the direction of the diffracted beam for
this geometry is needed, reasoning on the basis of Kogel-
nik’s KVCM fails, see e.g. [28].

A second remark relates to a cutoff mentioned in Ref.
[15]. In this context we want to emphasize that the total re-
flection angle discussed above (see Eq. (7)) is not this cutoff.
The difference is as follows: in our case a diffracted beam
is excited in the medium but cannot be coupled out via a
parallel grating slab. In contrast the cutoff angle defines the
critical value for which a (higher) diffraction order cannot
be excited any more (evanescent wave).

The results for the direction of the diffracted beam in off-
Bragg replay might be important for the implementation of
a novel beam coupling technique [29]. The latter is an im-
proved variant of the grating translation technique to deter-
mine the amplitudes and possible phases of mixed refractive
index/absorption gratings [30–32].

Finally, it is interesting to note that the kinematical theory
of diffraction—based on the first Born approximation and
hence neglecting the effect of multiple scattering—already
yields the correct direction of the diffracted beam, see e.g.
[26], and in this respect the KVCM was a step backwards.
We thus recommend using the BVM because it is as easy
to implement as the KVCM and gives overall correct re-
sults.

Let us pose a final question that might have been already
anticipated by the reader: Why did this—now obvious—
discrepancy between theory and experiment not limit the
popularity of the corresponding paper? One argument could
be that people just employ the theory to determine the
relevant materials parameters. In this case typically far
off-Bragg replay does not play a role. Another could be
the fact that Uchida in Ref. [8] focusses on attenuation
of the modulation along the thickness rather than on the
different choice of wavevector mismatch (‘no essential
difference’). As noted in Ref. [15], the differences be-
tween the exact and the approximate theory will be rec-
ognized only for ‘large deviations from the Bragg condi-
tion, namely, in the sidelobe structure for comparatively
thin holograms’. As our nanoparticle-polymer compos-
ites [18] have a large coupling strength one can reach
considerable diffraction efficiencies already at moderate
thickness in the range of 10 µm as opposed to the ex-
tensively investigated photorefractive electrooptic crystals
[11, 12].
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Fig. 8 Top: Comparison of the
normalized first order diffraction
efficiency upon off-Bragg replay
for Uchida’s method (BVM, red
solid) and Kogelnik’s method
(KVCM, green dashed), cf. also
Ref. [10]. Bottom: Difference of
the normalized first order
diffraction efficiency to the
two-wave rigorous coupled
wave analysis upon far
off-Bragg replay for Uchida’s
BVM (red solid line),
Kogelnik’s KVCM/approximate
DDT (green dashed line), and
the exact DDT without
approximation (blue dotted line)

5 Conclusion

It is known for decades that the amplitude of a beam
diffracted by a volume grating is usually well described by
the coupled wave theory using the KVCM (Kogelnik). The
less prevalent BVM (Uchida) was claimed to be superior for
off-Bragg replay but the diffraction efficiency does not allow
to discriminate easily between the two methods [10]. Here,
we investigated the direction of the diffracted beam which
impressively follows the behavior derived from the BVM
method—even without any free fitting parameter—and dis-
agrees with the KVCM.
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