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Abstract Two multi-harmonic detection methods for wave-
length modulation spectroscopy (WMS) systems are pre-
sented and compared. The two possibilities discussed in
this paper are: simultaneous curve fitting of multiple har-
monic spectra, and reconstruction of the transmission from
harmonic coefficients. The optimum number of harmon-
ics is four and 25 harmonics, respectively. Compared with
standard single-harmonic curve fitting, the methods give
about a factor of 3 better performance than standard second-
harmonic curve fitting. Concluding, multi-harmonic detec-
tion is better than single-harmonic detection and should be
used if the system bandwidth is high enough to allow for
proper detection of the higher harmonics.

1 Introduction

Tunable diode laser spectroscopy (TDLS) is a method where
the absorption or transmission spectrum of a substance (usu-
ally a gas) is measured with a tunable diode laser for the
purpose of analysis of the specific substance. The emission
frequency of a spectrally single-mode laser is tuned, and the
power of the light that passes through the sample is deter-
mined with a photodetector. The characteristics of the mea-
sured transmission spectrum are analyzed to determine the
physical parameters, for example, concentration of specific
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gas components (volume mixing ratio), pressure, or temper-
ature.

For technical reasons a special method called wavelength
modulation spectroscopy (WMS) [1] is frequently utilized
to realize the TDLS measurement. Due to the additional si-
nusoidal wavelength or frequency modulation with repeti-
tion rates in the kHz range, harmonic spectra are obtained—
instead of the transmission spectrum—which also contain
the relevant information. It is a method for implementing an
effective noise suppression and partially removing the in-
fluence of the laser power variation during frequency scan-
ning. The light passes through the sample with transmission
T (ν) and is detected, and the photocurrent is fed to a lock-
in amplifier. The n-th harmonic component of the lock-in
amplifier of the relative light power variation is called the
harmonic coefficient Hn = Hn(ν;νa) (Fig. 1). If these har-
monic components are plotted against the slow sweep fre-
quency ν, the harmonic spectra Hn(ν) are obtained (Fig. 2).
The definition of the harmonic spectrum does not include
system parameters (except for modulation amplitude). More
details, mathematical definitions, and properties of WMS
are outlined in Appendix A.

Obviously, in a WMS system the harmonic spectra have
to be analyzed instead of the absorption spectrum itself.
This is done either by curve fitting to an appropriate spec-
tral model or a heuristic evaluation of the spectrum at a sin-
gle frequency point. The single point evaluation is, however,
only suitable for spectral models with a single parameter.
Nevertheless, it is employed as detection of the maximum
value of the second harmonic in a frequent number of ap-
plications due to its simple signal processing. For more re-
alistic spectral models that include, e.g., a variable spectral
baseline or laser emission frequency drift this is not suitable,
and such drifts can not be compensated, which is the reason
for employing curve fitting to measured spectra [3].
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Fig. 1 Generation of the harmonic components in wavelength modu-
lation spectroscopy. ν is the emission frequency of the slow sweep (not
illustrated here) and νA the frequency modulation amplitude

Fig. 2 The first four harmonic spectra (i.e., Hn(ν) with n = 0, . . . ,3)
(blue, solid) for a Lorentzian absorption line (red, dashed) computed
with theory from [2]. The wavelength modulation amplitude is νA, the
absorption line center position is νC , and the half-width is νA/3

As mentioned before, there are (theoretically) infinitely
many harmonic spectra or harmonic components which all
could be utilized to extract the wanted and extractable in-
formation or at least combined into one signal before data
evaluation. For single-harmonic detection the signal energy
that arrives at the photodetector is not fully utilized, whereas
theoretically complete utilization of the signal energy should
enable an improved sensing [4, Sect. 10.4]. Furthermore,
there is no or only very little additional effort to detect the
higher harmonic components if a digital lock-in technique
is utilized. This multi-harmonic detection should therefore
be a simple way to increase sensitivity or versatility for the
WMS technique. However, it is not a standard approach in
the literature. The analysis of suitable approaches will be
the scope of this paper. Note that this multi-harmonic de-
tection assumes a sufficiently wideband detection, which
standard photodetectors always provide. But systems with
an inherent resonant detection method like photoacoustic

spectroscopy may not benefit from multi-harmonic detec-
tion [5]. Also, optical systems like integrated cavity output
spectroscopy (ICOS) [6] have limited bandwidth since the
light buildup and decay in the optical cavity is not arbitrarily
fast. This sets limits on the maximum number of harmonics
that can be detected and/or the maximum modulation fre-
quency.

Two different multi-harmonic detection methods have to
be distinguished: the simultaneous curve fitting of harmonic
spectra, or the evaluation of several harmonic components at
a single spectral frequency. The harmonics Hn(ν0) at a sin-
gle frequency ν0 contain all information about the shape of
the absorption line (see Fig. 1), so in principle these should
allow for extraction of all extractable parameters and not
only for the peak absorbance with single-harmonic detec-
tion. This multi-harmonic detection at a single frequency
was first proposed in Ref. [7], where an empirical approach
that relates the ratios of the n-th harmonic components to
the absorption line parameters, like half-width, center wave-
length, or peak absorbance, is proposed. This method has
the drawback that it requires an empirical calibration. This
will be improved by the authors of this paper to an exact
method where the full absorption line profile can be recov-
ered. This method is exact and therefore allows for curve
fitting to an arbitrary spectral model which is used for di-
rect spectroscopy. Both methods are also suitable for satu-
rated lines, i.e., thick optical sample conditions where the
linearization of the Lambert-Beer law does not hold any-
more. These methods will be presented, analyzed, and com-
pared.

In the sections below the following questions will be an-
swered:

– How should one implement multi-harmonic detection?
– How many harmonics are needed?
– Performance difference to single-harmonic detection?
– Performance difference to direct spectroscopy?

2 Multi-harmonic detection: reconstruction
of the transmission

A reconstruction method that combines the harmonics at a
single frequency ν0 (i.e., no spectral scanning) can be de-
rived as follows.

2.1 Theoretical background

After renaming ν to ν0 and then substituting 2πf t with
arccos((ν − ν0)/νA) on both sides of Eq. (6), we obtain a
reconstruction formula for the transmission function from
harmonic coefficients,

T (ν) =
∞∑

n=0

Hn(ν0)Tn

(
(ν − ν0)/νA

)
(1)
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with Tn(x) = cos(n arccos(x)) the n-th Chebyshev polyno-
mial [8, Chap. 22]. This reconstruction formula will serve
as a multi-harmonic detection scheme. Practically, the right-
hand side of Eq. (1) is evaluated with a finite number of
measured harmonic coefficients Hn(ν0) at the central laser
emission frequency ν0 (mostly close to the absorption line
center). Equation (1) predicts that the obtained reconstructed
data T (ν) must be the same as the transmission function,
as if it had been measured by direct spectroscopy. This is
also true if the laser changes its intensity during tuning.
The signal model for the reconstruction method then has
to include the proper baseline due to varying laser inten-
sity.

Because the substitution made to derive Eq. (1) is only
valid for |ν − ν0| ≤ νA, this determines the range in which
the reconstruction can be done. This is also clear from a
physical point of view: since the frequency modulation only
covers the range ν0 − νA to ν0 + νA, actually no measure-
ment is performed outside this spectral interval, and it can-
not be expected to obtain information that is not measured.
Practically, the method can be seen as an implementation of
direct spectroscopy with sinusoidal frequency scanning in-
stead of linear scanning.

2.2 Fitting model for reconstructed transmission and
implementation

Since the frequency offset ν0 and frequency modulation am-
plitude νA are generally unknown, it is convenient to use the
normalized emission frequency coordinate x = (ν − ν0)/νA

for evaluation of the right-hand side of Eq. (1) and spec-
tral fitting. For this the spectral model does not need to be
changed; all determined frequency parameters like Gaussian
or Lorentzian absorption line half-width or line position will
be obtained in these normalized units (relative to scanning
range, multiples of νA with a zero point at ν0). Only if these
obtained frequency parameters are compared with an abso-
lute frequency, do the quantities νA and ν0 need to be de-
termined with a frequency calibration scheme (e.g., with a
reference etalon or using the method described in Ref. [9]).
If only a single Lorentzian line and a linear laser power
characteristic are considered, the model has the following
form:

N∑

n=0

Hn(ν0)Tn(x)

= exp

( −ax2
γ

x2
γ + (x − xC)2

)
(yo + ysx) + ε (2)

The five unknown fit parameters are line position xC , line
half-width xγ , both in normalized frequency coordinates
(x = (ν − ν0)/νA), peak absorbance a and yo and ys for
the y-offset and y-slope representing the laser amplitude

Fig. 3 The upper plot shows the harmonic coefficients Hn(ν0) for the
O2 detection (different symbols for positive and negative values) and
the corresponding noise level (black). The bottom plot shows the corre-
sponding reconstructed transmission (using H0, . . . ,H20 with Eq. (2))
(blue) and the corresponding Lorentz fit (green) with residual (red)

modulation, respectively. The normalized frequency vari-
able x lies between −1 to 1 and ε is a random variable
that represents the noise on the reconstructed spectrum.
The numerically stable evaluation of the sum of the left-
hand side of Eq. (2) is preferably done using the Clen-
shaw algorithm [10, Sect. 3.11], and then the least-squares
curve fit to the given model is carried out (for both see
Fig. 3(bottom)). For the reconstruction and subsequent fit
the variable x was discretized with 64 equidistant values
from −1 to 1. The actual number of points is irrelevant if
it is high enough so that the reconstructed spectrum is ade-
quately sampled.

2.3 Required number of harmonics

Due to the increasing oscillating behavior it is clear that each
term in Eq. (1) adds more detail to the result with a magni-
tude corresponding to the amplitude of the harmonic coeffi-
cient Hn. This happens because the values of the Chebyshev
polynomials all lie in the range of −1 to 1. Since the har-
monic coefficients typically show an exponential decay with
order n, the sum in Eq. (1) can indeed be truncated when the
desired accuracy is reached. The first few Chebyshev poly-
nomials are shown in Fig. 4. The minimum number N of
harmonics depends on the system noise level. The error by
including the harmonic in the reconstruction is higher than
the error by its omission if the noise amplitude in the har-
monic is higher than the signal amplitude. The reconstruc-
tion thus should include all harmonics with a signal-to-noise
ratio higher than one. Using a typical modulation amplitude



180 A. Hangauer et al.

Fig. 4 The Chebyshev polynomials T0(x) to T3(x), T10(x), and
T20(x)

νA = 3γ (γ : half-width at half-maximum of the absorption
line) and a system noise level of 1 × 10−5 to 1 × 10−6 a
full reconstruction can be obtained with N = 20 to N = 25
harmonics, when the peak absorbance is around 1 %. This
can be seen in Fig. 3(top), where the signal level of the har-
monics drops below the noise level at approximately n = 20.
Note that using more harmonics than necessary should not
affect the overall precision of the parameters that the curve
fits extract. The reason is that the contribution of the higher
harmonics to the reconstructed transmission is of increasing
detail (this is a property of the Chebyshev polynomials, cf.
Fig. 4), so the fit will filter the added high frequency noise
on the reconstructed transmission.

3 Multi-harmonic detection: fitting multiple spectra

As mentioned earlier, simultaneous curve fitting of multiple
harmonic spectra is the other alternative to multi-harmonic
detection.

3.1 Fitting model and implementation

Since the different harmonics all originate from a measure-
ment of the same physical system (gas transmission, laser,
and detector), a curve fit with a shared set of parameters to
all harmonics has to be carried out. Note that this is dif-
ferent from the approach in Ref. [11], where several higher
harmonics have been fitted, but separately with individual
parameter sets and subsequent averaging. Note that this ap-
proach cannot be expected to have the highest precision, be-
cause a least-squares curve fit is the optimum method for es-
timation of parameters from noisy data. This holds exactly
for linear models and is asymptotically true (for low noise)
for nonlinear models.

The model used for fitting the unsaturated O2 absorption
line around 763 nm is the following:

H1(νi) = −a · S1
(
(xi − xC)/xγ , xA/xγ

) + yo,1 + ε1

H2(νi) = −a · S2
(
(xi − xC)/xγ , xA/xγ

) + yo,2 + ε2

H3(νi) = −a · S3
(
(xi − xC)/xγ , xA/xγ

) + ε3

...

(3)

The Hn(νi) represent the measured harmonic spectra at fre-
quency νi with i = 1, . . . ,N points per scan. The actual fre-
quency points νi are unknown but assumed to be linearly

increasing. The variable x = ν−(νN+ν1)/2
(νN−ν1)/2 is defined as the

normalized frequency scale. It runs from −1 to 1 and cov-
ers exactly one spectral scan. If the slow laser tuning is car-
ried out linearly, the N spectral samplings correspond to

the points xi = 2(i−1)
N−1 − 1. The line center xC is the in-

dex of the absorption line center, xγ the line half-width, and
xA the frequency modulation amplitude, all in the relative
units. yo,1 and yo,2 model the laser AM induced offset on
the first and second harmonic spectrum. The laser AM ef-
fects are modeled in the same way as for single-harmonic
detection. For a vertical-cavity surface-emitting laser (VC-
SEL) the simple approximation by variable offsets is suffi-
cient (as the experiment shows). The exact model without
approximations is described in Ref. [4].

The parameter a is the desired peak absorbance value
and Sn(x,m) the formula by Arndt [2, Eq. (12)], which is
the harmonic spectrum of a peak normalized unsaturated
Lorentzian function. The εn are random variables represent-
ing the measurement noise. The parameters describing the
relationship between index x and ν (i.e., offset and pro-
portionality factor) cannot be determined from the fit when
only a single absorption line with unknown line width is
scanned.

In the curve fit the six parameters a, xC , xγ , xA, yo,1, and
yo,2 are determined. Note that although the frequency pa-
rameters xC , xγ , and xA are in nonstandard units, the model
is formally the same as for absolute units. Ratios are inde-
pendent of the units, i.e.,

ν − νC

γ
= x − xC

xγ

and
ν − νC

νA

= x − xC

xA

(4)

Hence, (ν − νC)/νA can be chosen as the plot x-axis. In
Fig. 5 the simultaneous fit of the first four harmonic spectra
is shown.

3.2 Required number of harmonics

Since the amplitude of the harmonic spectra decreases with
increasing order, it is expected that there is an optimum
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Fig. 5 Measurement (blue) and simultaneous curve fit to the first four
harmonic spectra (green) and the residual (red)

Fig. 6 The Allan plots for multi-harmonic detection with a variable
number of spectra that are simultaneously fitted. The measurement data
is the same for all curves. Fitting more than four harmonic spectra gives
a saturation behavior, whereas including the third harmonic gives the
highest improvement

number of harmonics for simultaneous curve fitting. Then
using more harmonics than this optimum value will not fur-
ther improve the noise on the extracted parameters.

It turned out experimentally that fitting of the first four
harmonic spectra is optimum in the sense that using more
does not give any further improvement (Fig. 6). This is
also independent of the system noise level and peak ab-
sorbance value, as the relative improvement becomes neg-
ligible. This number will, however, depend on the modu-
lation index νA/γ , because for higher modulation indices
the signal energy is shifted to higher orders of the harmonic
spectra. The same is true if a thick optical sample (i.e., ab-
sorbance >0.1) is measured.

Fig. 7 Top: The total noise spectral density of the measurement sys-
tem (blue) and the contribution of receiver (black) and intrinsic laser
intensity noise (blue dashed). Bottom: the noise level (standard devi-
ation) on the harmonic components for spectral scanning (blue) and
single-point detection (red). The dashed lines indicate the noise level
from the intrinsic laser noise

4 Experimental results and comparison of methods

4.1 Experimental setup and system noise analysis

For experimental verification both methods were tested us-
ing an O2 absorption line probed with a 763 nm VCSEL.
A 20 cm double pass gas cell exposed to laboratory air was
used with neither temperature nor pressure stabilization. The
line generates a peak absorbance of around 9×10−3. A cus-
tom built electronics for laser and detector control as well as
data processing served as a platform to record the harmonic
spectra or harmonic coefficients, whereas the curve fitting
was done off-line on a PC. The modulation frequency was
set to 3 kHz and the sinusoidal laser modulation amplitude
was set close to three times the absorption line width, so that
the typical modulation index of around 3 was realized.

Regarding the ideality of the realization of the electron-
ics, the noise on the harmonic spectra or harmonic coeffi-
cients is a factor 1.2 to 2 higher than the noise that would
be expected from the intrinsic noise by the laser diode
(Fig. 7(bottom)). This is a technical issue attributed to strong
receiver noise above 55 kHz (Fig. 7(top)) and the frequency
response of the applied filtering during detection of the har-
monics. It indicates that in a better realization of the elec-
tronics the absolute noise performance could be a factor of
1.2 to 2.0 lower with the same laser. Comparison of the
methods is, however, not affected.

In Fig. 8 the Allan plot of the two multi-harmonic de-
tection methods, the corresponding single-harmonic detec-
tion, and the extrapolated direct spectroscopy detection are
shown. For the latter a spectral noise density of 1.2 × 3.5 ×
10−7/

√
Hz was assumed (this is the receiver noise density

at 3 kHz times a non-ideality factor 1.2). For conversion to
noise density on the fitted absorbance a conversion factor of
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3.4 was computed. It is obtained from the covariance matrix
calculated with linearization of the spectral model for direct
spectroscopy (right-hand side of Eq. (2)) [12].

These results are also summarized in Table 1 together
with relevant system parameters. The column “scanning
range” specifies the range of the slow frequency sweep of
ν and hence is zero for the single spectral frequency detec-
tion.

4.2 Comparing both multi-harmonic detection methods

It can be seen that the reconstruction method has a slightly
better noise performance than multi-harmonic curve fitting
but is more sensitive to drift, as the relatively worse min-
imum of the Allan deviation shows. However, the behav-
ior with respect to noise and drift performance of the re-
construction method is better than that for second-harmonic
single-point detection. Although second-harmonic curve fit-

Fig. 8 Comparison between single-harmonic detection (single-point
and spectral fitting) and the corresponding multi-harmonic detection
(single-point reconstruction and simultaneous spectral fitting). The
multi-harmonic detection methods lie close to what direct absorption
spectroscopy could theoretically achieve (white noise only, no drifts)

ting shows a slightly better performance in terms of drift
sensitivity than multi-harmonic detection, this is probably
not a generic property of multi-harmonic curve fitting, be-
cause it is seemingly caused by the more drift affected con-
tribution of the first harmonic in the multi-harmonic detec-
tion. This can be seen in Fig. 6 where the minimum of the
Allan plot for second-harmonic detection is better compared
to first-harmonic detection.

4.3 Comparing single- and multi-harmonic detection

If only white noise performance is considered (the region of
the Allan plot with low averaging times where the slope is
−1/2), both multi-harmonic detection methods give a factor
of approximately 3 performance increase (2.7 for simultane-
ous curve fitting) to second-harmonic curve fitting.

The improvement is less compared to single-harmonic
center point detection, which however is an unfair compari-
son because the numbers of determined parameters are dif-
ferent. For spectral scanning the noise on the harmonic spec-
tra is higher than for single-harmonic center point detec-
tion, because a higher bandwidth around each harmonic fre-
quency is required. Theoretically a

√
N fold increase of the

noise standard deviation is expected (N : number of scanned
spectral points). This is partly compensated again by the fil-
tering of the curve fit, however, because the curve fit has to
extract other parameters than absorbance, so the noise im-
provement is a certain factor less than

√
N . The reason does

not lie in the curve fit itself, but is fundamental. The informa-
tion content about peak absorbance is less in a scanned spec-
trum than for the single spectral frequency detection [12].
This explains that second-harmonic peak detection has a
better white noise performance than second-harmonic curve
fitting (cf. Fig. 8). The ability to determine more than one
parameter and obtain better stability or calibration-free op-
eration is payed off by a worse white noise performance.
This is also indicated in Fig. 8, where the minimum of the
Allan deviation is much worse for the single-harmonic cen-
ter detection than for second-harmonic curve fitting, despite

Table 1 Overview and comparison of WMS detection methods. All measurements were taken with an identical experimental setup and identical
settings

Description Harmonics n Scanning
range

Modulation
amplitude νA

Evaluation σAllan @ τ = 1 s

1st harm. fit 1 8.9νγ 3.2νγ Fit to Eq. (3) 6.1 × 10−6

2nd harm. fit 2 8.9νγ 3.2νγ Fit to Eq. (3) 4.8 × 10−6

1st & 2nd harm. fit 1,2 8.9νγ 3.2νγ Fit to Eq. (3) 4.2 × 10−6

2nd harm. center detection 2 0 3.3νγ Multiply with factor 2.6 × 10−6

1st to 3rd harm. fit 1,2,3 8.9νγ 3.2νγ Fit to Eq. (3) 2.5 × 10−6

1st to 4th harm. fit 1,2,3,4 8.9νγ 3.2νγ Fit to Eq. (3) 2.0 × 10−6

1st to 5th harm. fit 1,2,3,4,5 8.9νγ 3.2νγ Fit to Eq. (3) 1.9 × 10−6

Multi-harm. reconstruction & fit 0, . . . ,20 0 3.3νγ Fit to Eq. (2) 1.6 × 10−6
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the better white noise performance. This is attributed to the
higher sensitivity to fringes and laser wavelength instability,
which are better compensated by the curve fit.

4.4 Comparing multi-harmonic detection and ideal direct
spectroscopy

Both multi-harmonic detection methods have white noise
performances in the order of what an estimated (white
noise limited) realization of direct absorption spectroscopy
with the sensor electronics would achieve (pink curve in
Fig. 8). Theoretically, multi-harmonic WMS and direct
spectroscopy should achieve both the same precision, be-
cause the overall frequency scanning range and relative
distribution of time the laser spends on different spectral
frequency regions during one scan are (approximately) the
same (see Appendix B). The slightly lower white noise per-
formance of the multi-harmonic curve fit may be explained
by the missing zeroth-harmonic spectrum in the fit. It has
been excluded, because the necessary weighting to equalize
noise among all harmonic spectra (cf. Fig. 7) would greatly
damp the zeroth harmonic, and so the benefit of its inclusion
is negligible.

4.5 Differences in receiver and transmitter bandwidth
requirement

Since the multi-harmonic detection methods theoretically
should achieve the same precision than direct absorption
spectroscopy operated at the same modulation or repetition
frequency, the question is: Are there any differences be-
tween these two methods? One difference lies in the mod-
ulation bandwidth requirement on the transmitter side, for
which multi-harmonic detection is advantageous. Direct ab-
sorption spectroscopy relies on the fact that the laser is
able to emit fast and precise frequency sweeps, i.e., saw-
tooth or triangular-shaped emission frequency variations.
Therefore the laser tuning bandwidth needs to be high, i.e.,
higher than the basic modulation frequency or repetition
rate, since many higher harmonics have to be passed unat-
tenuated through the transmitter including the tunable laser.
For WMS only a sine wave frequency modulation is needed,
so the bandwidth requirement is low (only a certain band-
width around the modulation frequency is required). This
is advantageous for lasers with low tuning bandwidth or a
non-flat FM response [13].

Similar considerations can be made for the receiver side.
The methods are summarized in Table 2, and a selection of
the proper detection scheme can be made according to the
bandwidth limitations of the system. One may ask what a
fourth entry to the table might be (i.e., low receiver band-
width but high transmitter bandwidth). It is a non-sinewave
single-harmonic WMS (see, e.g., Refs. [14, 15]). Since this

Table 2 Comparison of bandwidth requirements for different meth-
ods. If a wide receiver bandwidth is available, either direct spec-
troscopy or multi-harmonic WMS should be selected, since both meth-
ods have similar and better performance than single-harmonic WMS

Method Requirement
on transmitter
bandwidth

Requirement
on receiver
bandwidth

Direct absorption wide wide

Single-harmonic WMS narrow narrow

Multi-harmonic WMS narrow wide

realizes a very non-uniform emission frequency scanning
coverage, the noise performance is not necessarily like di-
rect spectroscopy with its uniform scanning; it depends on
the system model.

5 Conclusion

It is shown that multi-harmonic detection gives an approxi-
mately factor of 3 noise improvement comparable to single-
harmonic curve fitting. The overall performance is close to
the theoretical performance of direct spectroscopy with its
typically factor of 3 or more larger spectral amplitude for
the same conditions. For simultaneous curve fitting the in-
clusion of the first to fourth harmonic spectrum is sufficient
to achieve optimum performance. For the reconstruction of
the transmission all harmonics above the noise level have
to be included; this was 20 in our case. For systems with
spectral scanning the simultaneous curve-fitting approach is
probably more promising due to its lower drift sensitivity
and the lower number of required harmonics.

Finally, we conclude that multi-harmonic detection can
be regarded as a technical implementation method of TDLS
with similar performance which would be expected from di-
rect spectroscopy and the advantage that no requirement on
the bandwidth of the laser tuning behavior is necessary.

The first author wishes to thank C. Smith, R. Lewicki,
and M. Witinski for valuable discussions and for pointing
out the limitations of multi-harmonic detection with QEPAS
and cavity enhanced methods.

Appendix A: Wavelength modulation spectroscopy

Let ν denote the wavenumber or frequency of the central
laser emission (without the sinusoidal modulation) which
implements the slow (discrete) laser emission frequency
sweep. The sweep is discrete, because ultimately the spectra
are sampled at distinct frequency points and also ν has to be
constant during at least one sinusoidal modulation period, so
that the harmonic coefficients can be properly determined by
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the lock-in amplifier. The instantaneous laser emission fre-
quency νL(t) is given by

νL(t) = ν + νa cos(2πfmt) (5)

with νa the frequency modulation amplitude and fm the
modulation or repetition frequency (typically in the kHz
range). The n-th harmonic output of the lock-in amplifier of
the normalized light power variation T (νL(t)) after passing
through the sample with transmission T (ν) is called the har-
monic coefficient Hn = Hn(ν;νa) (Fig. 1). Mathematically,
the Fourier series decomposition

T
(
ν + νa cos(2πfmt)

) =
∞∑

n=0

Hn(ν;νa) cos(2πnfmt) (6)

is computed (by solving for Hn(ν;νa)). Note that the defini-
tion of harmonic spectra only requires knowledge of the nor-
malized detector signal during one modulation period. The
same is true for a practical realization of a digital lock-in.
But for optimum noise performance all periods between two
sampling points of ν should be averaged before Fourier de-
composition is carried out. Also note that the Fourier decom-
position is done in phase with the frequency modulation.
The proper detection phase setting in a real lock-in amplifier
is thus to compensate for the phase shift of the laser driver
and the intrinsic phase shift between laser current and emis-
sion frequency [13]. Ideal harmonic spectra have no out-of-
phase component. Out-of-phase components encountered in
experimental systems may occur despite proper adjustment
of the detection phase if there is additional laser amplitude
modulation with an AM-FM phase shift. These out-of-phase
components, however, contain no or only very little informa-
tion about the gas spectrum, so only the in-phase component
undergoes further signal processing.

Due to the inherent linearity of the signal processing,
there is also an ideally linear relationship between the trans-
mission spectrum and the corresponding harmonic spectra.
It is linear in the sense that scaling and summation in the
transmission also results in scaling and summation of the
corresponding harmonic spectra. As a consequence, the re-
lationship can be modeled as a convolution, and general
closed-form expressions for the convolution kernel as well
as for its Fourier transform can be derived [16]. The linear-
ity of the relationship essentially means that, for unsaturated
absorption lines, the individual lines simply add in both the
transmission and the harmonic spectra. The concentration or
peak absorbance scales the harmonic spectrum, whereas for
orders n greater than zero additionally the large offset is re-
moved. This is due to linearity of the relationship and the
fact that the harmonic spectrum of a flat transmission is zero
for higher orders. This offset removal property of WMS is
usually considered as one of its advantages, because detec-
tion of a small signal on a large offset is not needed. Further-
more, it can be shown that the n-th harmonic spectrum has

the polynomial components of n-th degree in the transmis-
sion removed, i.e., the second harmonic spectrum is insen-
sitive to linear slopes and the third harmonic insensitive to
linear and quadratic components in the transmission, and so
on. However, when the computation of the harmonic spectra
is done by digital signal processing, one could also devise
filtering methods to direct transmission spectra which have
the same or possibly even better properties.

If the width of a line in the transmission changes, gener-
ally a complex change of the shape of the harmonic spectra
is observed. Both the width and amplitude of the harmonic
spectrum change. The overall shape of the harmonic spec-
trum generally depends on the modulation index, the ratio of
line width and frequency modulation amplitude. The width
of the harmonic spectrum is also generally much larger than
the width of the absorption line, since the “broadening” is
dominated by the frequency modulation amplitude, which is
usually a factor of 2 to 3 larger than the absorption line half-
width (see also Fig. 2). A more detailed and accurate de-
scription of the generation of harmonic spectra, which is not
further relevant in this paper, can be found in Refs. [4, 16]
or [17].

An interesting analogy between the Taylor series and
harmonic spectra becomes evident from the reconstruction
method in Sect. 2. In the case where all derivatives of the
transmission T (ν) at a certain point ν0 are known, then T (ν)

can be reconstructed in a certain range around ν0. This is a
consequence of the Taylor theorem:

T (ν) =
∞∑

n=0

dnT (ν0)

dνn

(ν − ν0)
n

n! (7)

If we insert the asymptotic expression for harmonic spectra
[17]

Hn(ν;νA) → εn(νA/2)n

n!
dnT (ν)

dνn
for νA → 0 (8)

with ε0 = 1 and εn = 2, for n �= 0, we obtain

T (ν) ≈
∞∑

n=0

Hn(ν0;νA)
2n

εn

(
ν − ν0

νA

)n

(9)

However, this would only be valid for low values of νA

where the signal-to-noise ratio is non-optimum. On the other
hand the formula derived for the multi-harmonic detection
scheme Eq. (1) has no such limitation, but has a very similar
structure. For the convenience of the reader, Eq. (1) is stated
again:

T (ν) =
∞∑

n=0

Hn(ν0;νA)Tn

(
ν − ν0

νA

)
(10)

The functions in Eq. (9) are 1, x, 2x2, 4x3, 8x4, . . . , whereas
in the exact case the Chebyshev polynomials are given by
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1, x, 2x2 − 1, 4x3 − 3x, 8x4 − 8x2 + 1, . . . with x =
(ν − ν0)/νA as a shorthand notation. By comparison we see
that the approximate formula Eq. (9) only contains the lead-
ing coefficients of the Chebyshev polynomials in the exact
formula Eq. (1).

Appendix B: Theoretical noise performance

The (theoretical) overall white noise performance of any
tunable diode laser absorption spectroscopy (TDLAS)
method only depends on the system model, the total spec-
tral frequency coverage during one scan (“which wave-
lengths/frequencies”), and the relative distribution of time
the laser spends on different frequency regions during one
scan (“how long?”). The system model is independent of the
specific detection method; it essentially describes the behav-
ior of the black-box containing the optical system with laser
and detector. This system has just an electrical input (laser
control) and electrical output (detector current or preampli-
fier output). From Table 1 it can be seen that the covered
wavelength range is approximately the same for direct spec-
troscopy and WMS. Hence, only the distribution of time
(as a fraction of total time per scan) that the laser dwells
on the individual frequencies of one spectral scan can in-
fluence noise performance. The specific variation in time of
the frequency is not important, as long as the distribution of
the dwelling time is the same. If “important” regions of the
transmission (i.e., those which are more sensitive to changes
in parameters we are interested in) are measured over longer
time fractions than other frequency regions, we can expect
a better quality of extraction of wanted parameters from the
measurement. Vice versa, if less important regions of the
transmission are sampled over relatively long fractions of
time, the extraction will be of lower quality. For example,
this may be illustrated in a very simplified model, where we
scan over a single absorption line and are only interested in
the peak absorbance. If in this case the measurement of the
baseline consumes far more time than measurement of the
absorption line peak, the performance will be non-optimum.
The reason is that the peak absorbance is the difference be-
tween both values, and we should measure them with the

same accuracy, i.e., spend the same amount of time on both
measurements. So even if it is fixed which wavelengths are
to be sampled, the length of time that they are sampled also
affects performance [12].

WMS with spectral frequency scanning and direct spec-
troscopy both realize an (approximately) uniform coverage
of the wavelength during one scan. For WMS at a sin-
gle point the absence of scanning gives a non-uniform fre-
quency (sinusoidal) coverage over time. However, the devi-
ation to uniform (linear) variation is not great, and numeri-
cal simulations have shown that the overall effect on noise
performance is only on the order of 10 % (at least for the
spectral model used in this paper).
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