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Abstract In this study, a precise method to evaluate non-
linear optical absorption and refraction of materials using
z-scan method based on Fresnel–Kirchhoff integral method
(FK method) has been offered. The real electric field of a
Gaussian beam passing through a nonlinear sample having
both nonlinear absorption and refraction has been investi-
gated using FK method. Subsequently, the z-scan curves
have been studied. This is the first time that FK method
has been used for calculating the nonlinear absorption coef-
ficient. Additionally, an appropriate numerical curve-fitting
method for calculating the nonlinear optical coefficients
based on z-scan method has been suggested. Z-scan curves
and nonlinear optical coefficients have been obtained for
TiO2 nanoparticles in CW irradiation regime with the par-
ticle size ranges from 70 to 90 nm. This is the first experi-
mental study which uses this analytical numerical method.
Finally, all calculated results extracted from this new method
have been compared with those of the previous methods.

1 Introduction

Firstly z-scan method was presented by M. Sheik Bahae et
al. in 1989 using Gaussian decomposition method [1] and
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developed in 1990 [2]. After that, it has been widely used
due to its appropriate properties regarding the measurement
of the nonlinear optical refraction and absorption of many
materials [3]. In 1994, Fresnel–Kirchhoff integral method
(Fk method) was applied because of its ability to evaluate
the electric field far from the exit plane of the sample [4] and
later it was used in some similar studies [5, 6]. In 2010, FK
method was used to calculate close-aperture z-scan [7]. One
of the virtues of this method is the ability of measuring high
nonlinear refractive index. This method is useful to evaluate
the electric field in any point of the far field.

In this study, the real electrical field of Gaussian beam
passing through a thin cubical nonlinear optical sample hav-
ing both nonlinear absorption and refraction indices has
been investigated. Also, Fresnel–Kirchhoff integral method
has been applied as a useful tool to obtain the electric field
in the far field. This expression merely could infer both
the open- and close-aperture z-scan curves. After that, this
method was used for TiO2 colloidal nanoparticles with the
particle size ranging from 70 to 90 nm. Finally, the calcu-
lated results have been compared with the previous formula-
tions and also a suitable curve-fitting method has been rec-
ommended to fit the experimental data to the appropriate
theoretical ones.

2 Theory

Assuming a TEM00 Gaussian beam of beam waist radius w0

traveling in the +z direction, we could write the electric field
as [8]

E(z, r) = E0
w0

w(z)
exp

{
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× exp
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−r2
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w2(z)
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2R(z)
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where E0, w(z) = w0

√
1 + z2

z2
0
, z0 = kw2

0
2 and R(z) = z(1 +

z2
0

z2 ) are the electric field at beam waist of the Gaussian beam,
the beam radius at z, the diffraction length of the beam and
the radius of curvature of the wavefront at z, respectively.
The beam waist (focal point) is located at z = 0. The pa-
rameters w and R of a Gaussian beam change during the
propagation of the beam along the z-axis.

The equations describing the propagation of the optical
field inside the nonlinear material take the form:

d�ϕ

dz′ = −�n(I)k (2)

and

dI

dz′ = −α(I)I. (3)

It can be considered that a Gaussian beam passes through
a thin third-order nonlinear optical sample with nonlinear
refraction γ (MKS) located at z [1, 2]. In the case of a cubic
nonlinearity and negligible nonlinear absorption, (2) and (3)
can be solved to give the phase shift �ϕ at the exit surface
of the sample which simply follows the radial variation of
the incident irradiance at a given position of the sample z.
Thus,

�ϕ(z, r) = �ϕ0

1 + ( z
z0

)2
exp

(−2r2/w2(z)
)

(4)

where �ϕ0 is defined as the on-axis nonlinear phase shift at
the beam focus, given by

�ϕ0 = kγ I0Leff = k�nLeff. (5)

Here z, Leff = (1−e−αL)
α

, α, L and �n = γ I0 are the distance
between the sample and the beam waist, the effective length
of the sample, the linear absorption coefficient, the sample
thickness and the refraction change, respectively. The sam-
ple can be assumed as a thin sample by the thickness (L)
significantly less than z0.

Using the Fresnel–Kirchhoff diffraction theory, electric
field at the exit plane of the sample is obtained as [6, 7]

Ee(r, z) = E0
w0

w(z)
exp

(
−i

(
kz − Arctan

(
z

z0

)))

× exp

(−ikr2

2R(z)
− r2

w2(z)
− i�ϕ(z, r) − αL

2

)

(6)

The electric field in far field is obtained by means of free-
space Fresnel–Kirchhoff diffraction integral at the Fraun-
hofer approximation. For a radial symmetric field, it equals

a Hankell of Fourier–Bessel transform of the field, namely:

E(ρ, z) = 1

iλD

∫ ∞

0
J0(kθr)Ee(r, z)2πr dr (7)

where J0(x), θ and ρ are the zero-order Bessel function of
the first kind, the far-field diffraction angle and the radial
coordinate in the far-field observation plane, respectively. In
the paraxial approximation, distance from the exit plane of
the medium to the far-field observation plane (D) is related
to the radial coordinate and the diffraction angle by ρ = Dθ .
Therefore, we can write:

E(ρ, z)

=
(

2π

iλD

)
× E0

w0

w(z)

× exp

(
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(
kz − arctan

(
z

z0

)))
e
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2

×
∫ ∞

0
J0
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D

)
exp

(
− ikr2

2R
− r2

w2
− i�ϕ(z, r)

)
r dr

(8)

Using (8), we can write distribution pattern of irradiance as

I (q, z) = I ′
∣∣∣∣
∫ ∞

0
J0

(
kρr

D

)

× exp

(
− ikr2

2R(z)
− r2

w2
− i�ϕ(z, r)

)
r dr

∣∣∣∣
2

(9)

where

I ′ = cn0ε0

2
×

(
1

λD

)2

× (2πE0)
2
(

w0

w(z)

)2

e−αL (10)

The magnitude of E0 can be calculated simply through
2

w0

√
P0

cε0n0π
, where P0 is the laser output power.

This formulation is useful when the absorption effect is
reflected from close-aperture curve or at least the nonlin-
ear absorption is considered neglected and there is almost
a pure close-aperture curve. But when the nonlinear absorp-
tion is considered, the close-aperture curve includes both the
nonlinear absorption and refraction effects. Thus, for a more
real case, (2) and (3) will be reexamined after the following
substitution [2]:

α(I) = α + βI (11)

This yields the irradiance distribution and phase shift of the
beam at the exit surface of the sample as:

Ie(z, r) = I (z, r)e−αL

1 + q(z, r)
(12)
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and

�ϕ(z, r) = kγ

β
ln

(
1 + q(z, r)

)
(13)

where q(z, r) = βI (z, r)Leff. Combining (12) and (13), the
complex field at the exit surface of the sample can be ob-
tained as

Ee = E(z, r)e
−αL

2 (1 + q)
(− ikγ

β
− 1

2 ) (14)

By using (7):
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and
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(16)

where I ′ had been defined in (10). It is the most perfect re-
lation for electric field of a Gaussian beam passing through
a cubic nonlinear sample with some virtues. This technique
is based on the FK method and could evaluate the passing
electric far field. Furthermore, it is suitable for high opti-
cal nonlinearity cases which may include diffraction ring
patterns [7]. The main virtue that distinguishes this method
from other formulations is that the effect of all linear and
nonlinear optical coefficients of the sample is presented in
one formulation simultaneously.

Equation (16) could be utilized for simulation of both the
open- and close-aperture z-scan curves, perfectly.

3 Experimental results and discussion

In the close-aperture z-scan study, a finite aperture of lin-

ear transmittance S = 1 − exp(− 2r2
a

w2
a
) (ra and wa being the

aperture radius and the beam radius at the aperture plane,
respectively) has been assumed which is placed at the far
field so that the center of the aperture is located at the beam
center. The transmitted power through the aperture can be
simply calculated by

P(z) =
∫ ra

0
I (ρ, z)2πρ dp (17)

In open-aperture setup it is sufficient when ra → ∞. The
normalized transmittance could be calculated as well:

Tnorm(z) = P(z,�ϕ0)

P (z,�ϕ0 = 0)
(18)

Equations 17 and 18 could be used for I (ρ, z) obtained from
either (9) or (16) and could yield theoretical curves of open-
(with ra → ∞) and close-aperture (with a finite ra) z-scan
curves.

Now a suitable curve-fitting method to fit normalized ex-
perimental transmittance curves (T exp

norm(z)) and theoretical
ones (T the

norm(z)) could be presented. For example, to find the
best value of γ (β is considered known), the following pro-
cedures should be considered. First, T

exp
norm(z) is represented

to the system as a one-dimensional array. Then, γ can be
estimated in the range of γmin to γmax. After that, γmin is put
in (16). Next, by using (17), (18), T the

norm(z) can be obtained.
After that, the residual sum of squares (SSE) is used) [9]:

SSE =
∑

z

[
T

exp
norm(z) − T the

norm(z)
]2 (19)

This process is repeated for the next values of γ . Finally,
the minimum value of SSE gives the best value of γ . Re-
placing this value in (16)–(18) gives the best fitted curve.
This process could be performed in other similar fitting pro-
cesses.

In this study, a simple chemical procedure is used for
the synthesis of TiO2 nanoparticles. At first, titanium iso-
propoxide Ti{OCH(CH3)2}4 solution (Merck, Purity 99 %)
is dissolved in a mixture of methanol and ethanol (absolute
grade) with molar ratio (1:1:10). Then, the solvent is stirred
at 70 °C for 6 hours. Double-distilled water is drop-wise
added into the solution at this temperature. The formation
of TiO2 nanoparticles can be indicated by the color change
of the solvent. After that, the obtained precipitate powder is
filtered and washed several times with double-distilled wa-
ter and ethanol to remove by-products. Finally, the sample
is dried at 200 °C for 4 hours.

The origins of optical nonlinearities in materials and
nanoparticles are different [10, 11]. The optical nonlinear-
ity of aqua samples applied with continued wave laser beam
with low intensity irradiation is usually contributed from
two mechanisms: thermo-optical (thermal) effect and re-
orientation of Kerr effect in liquids [11]. In thermo-optical
effect, as the energy of a collection of particles or molecules
increases, their macroscopic optical properties will be al-
tered. For example, the refractive index reduces because of
the thermal expansion and density decrease. When there
is a linear relationship between laser irradiance and the
refractive index, effective third-order nonlinearity will re-
sult. There is a relaxation time for this mechanism such
that after it the system reaches the steady state and be-
comes time-independent [12]. In these conditions, all the
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Fig. 1 (a) SEM image of TiO2 nanoparticles; (b) EDX analysis of
TiO2 nanoparticles (98 % purity)

time-independent relations that have been offered here are
valid. The re-orientation of Kerr effect involves transitions
between rotational energy level of a particle or molecule. It
is non-resonant and therefore associated with the real part of
susceptibility. This mechanism occurs in molecules or parti-
cles with different polarizabilities along their principle axes.
Colloidal solution of nanoparticles in liquid solutions could
exhibit either each of these behaviors or both of them. But
for spherical nanoparticles such as TiO2 nanoparticles with
considerable absorption coefficient, thermal effect is consid-
erable.

Fig. 2 Calculated SSE curve (using (20)) versus β

In this experiment, a colloidal solution containing 2.36 g/l
of TiO2 nanoparticles in Ethanol (Merck, purity 99.6 %)
was used. The average diameter of nanoparticles was 70–
90 nm (Fig. 1). The solution was poured in a 1-mm quartz
cell and radiated with a 48-mW He–Ne laser beam passing
through the lens with wavelength of 633 nm, at room tem-
perature. The waist of the beam at focus (z = 0) became
30 µm (z0 = 0.446 cm), while the light intensity was about
3397 W/cm2. In the close-aperture setup, an aperture with
S = 0.087 linear transition was used. The linear absorption
of the sample was about α = 1 cm−1.

At first, the normalized experimental open-aperture curve
was fitted with the theoretical curve and the nonlinear ab-
sorption coefficient was evaluated. The transmitted power
Pe(z) was obtained by integrating (12) at z over r as fol-
lows:

Pe(z) = Pie
−αL ln[1 + q(z, r = 0)]

q(z, r = 0)
(20)

where Pi and Pe(z) are the initial power to and the exit
power from the sample, respectively.

Using the represented curve-fitting method with (20), β

was calculated as 1.5×10−4 cm/W (Fig. 2). Substituting the
β value in (20), the theoretical curve was obtained (Fig. 3b).

To evaluate the nonlinear refraction coefficient (γ ), the
β value was put in (16) and fitted by experimental re-
sults. Consequently, γ = −1.44 × 10−8 W/cm2 was ob-
tained (�ϕ0 = −0.464) (Fig. 4). Experimental and theoreti-
cal close-aperture curves are presented in Fig. 5.

In the next step, these calculated results from (16) were
compared with results obtained from (9). Dividing the nor-
malized close-aperture curve having nonlinear absorption
by the normalized open-aperture curve reflects the effect
of nonlinear absorption and gives pure close-aperture curve
(Fig. 6c). A close-aperture curve was obtained by putting
γ = −1.44 × 10−8 W/cm2 in (9). Results are shown in
Fig. 6(d). As can be observed, both obtained results are sim-
ilar. This indicates that both of the methods (dividing the
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Fig. 3 (a) Experimental data of open aperture z-scan; (b) theoretical
fitted curve using (20); (c) theoretical fitted curve using (16)

Fig. 4 Calculated SSE curve (using (16)) versus γ

Fig. 5 (a) Experimental close-aperture z-scan data of TiO2 nanoparti-
cles; (b) fitted theoretical curve using (16)

experimental normalized close-aperture curve by the open-
aperture curve using (9), and application of (16) for experi-
mental close-aperture curve) give the same result.

Not only is (16) useful to evaluate nonlinear refraction in-
dex but also it could be utilized to interpret the open-aperture
curves. The open curve can be obtained by using this equa-
tion and substituting the above nonlinear absorption and re-

Fig. 6 (a) Theoretical real close-aperture curve using (16); (b) the-
oretical open-aperture curve using (20); (c) pure close-aperture curve
obtained by dividing curve (a) by (b); (d) pure close-aperture curve
using (9)

fraction indices for an open aperture (S = 0.99) replaced at
z = 55 cm (Fig. 3c). This curve is similar to the case when
the power is instantly detected at the exit surface of the sam-
ple (Fig. 3b).

In the case of open-aperture z-scan, some researchers
prefer to detect the transmitted power in far field due to
avoid beam reflectance in the sample from the surface of
the detector. If the feedback of the passing beam retransmits
through the sample, lateral phenomena such as resonant ef-
fect and optical bistability effect would be inevitable [11].
This is why the surface of the detector is placed perpendicu-
larly to the beam axis in the far field with a little invert angle
in such a way that the reflected beam does not return through
the sample.

It is of note that all the measurements have been per-
formed in the steady-state conditions after passing the re-
laxation time.

4 Conclusions

Here, a diffraction model of nonlinear optical media inter-
acting with a Gaussian beam by both the nonlinear refrac-
tion and absorption has been suggested based on Fresnel–
Kirchhoff diffraction theory. This theory could explain the
z-scan phenomenon in a new way. Numerical computations
indicate that the shapes of the experimental z-scan curves
could greatly be explained by this method. Because the exact
nonlinear optical indices could be obtained, a proper curve-
fitting method has been offered. By using this new method
the calculated curves obtained from z-scan experiment of
TiO2 nanoparticles colloidal solution in ethanol host with
the particle size ranging from 70 to 90 nm have been ana-
lyzed. Also, the accuracy of this new method has been inves-
tigated by comparing the calculated results with the previous
methods.
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