Output properties of diode-pumped passively Q-switched 1.06 µm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal

Y.F. Ma · X. Yu · F.K. Tittel · R.P. Yan · X.D. Li · C. Wang · J.H. Yu

Received: 8 February 2012 / Published online: 30 March 2012 © Springer-Verlag 2012

Abstract A passively Q-switched 1.06 μ m Nd:GdVO₄ laser with a [100]-cut Cr^{4+} :YAG saturable absorber was demonstrated. The output characteristics were investigated when the anisotropic transmission of Cr^{4+} : YAG crystal and the incident pump power level were considered. The experimental results showed that it was feasible to generate laser with narrower pulse width (τ_p) , higher pulse energy and peak power when the polarization direction of laser was parallel to the [001], [010], [00 $\overline{1}$], and [0 $\overline{1}$ 0] orientations of the Cr⁴⁺:YAG crystal. The different changes of τ_p as a function of incident pump power was observed due to the anisotropy of transmission of Cr^{4+} :YAG and the different gain levels (pump power levels). If the Cr^{4+} :YAG was fully bleached as a result of high cavity gain or due to the laser polarization direction was parallel to the [001], [010], [001], and [010] orientations, τ_p was constant, otherwise τ_p decreased when the gain increased.

1 Introduction

Q-switched lasers are used in many applications, such as laser lidar, remote sensing, micro-machining, and micro-surgery [[1,](#page-3-0) [2](#page-3-1)]. Compared with active Q-switching, the passive techniques have advantages such as lower cost, compactness, simplicity in set-up, and operation since they do

Y.F. Ma · F.K. Tittel

Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA

not require external control. Cr^{4+} : YAG crystal as a saturable absorber has advantages of improved thermo-mechanical properties, large absorption cross section, low saturable intensity, and high damage threshold [\[3](#page-3-2), [4](#page-3-3)].

The output performance, such as output energy, E_p , pulse duration, τ_p , pulse peak power, P_p , and pulse repetition rate, *f* , are important for passively Q-switched lasers. Many theoretical models and experimental results about passively Qswitched lasers have appeared in the literature [[5–](#page-3-4)[12\]](#page-3-5). But some of the theoretical opinions and experimental observations differed in these publications. For example, Degnan [[5\]](#page-3-4) reported that τ_p was not affected by the pump power level, but was determined by other parameters, such as the cavity length. This was confirmed by experimental results reported in [\[6](#page-3-6)[–8](#page-3-7)]. However, Lu et al. [\[9](#page-3-8)] reported that τ_p decreases when the incident pump power increases, which was supported by experimental investigations [[10–](#page-3-9)[12\]](#page-3-5). In our characterization studies of a Cr^{4+} :YAG passively O-switched Nd:GdVO4 laser, both these two different experimental phenomenon were observed for the first time in the same experimental configuration, which we attributed them to the anisotropy of the Cr^{4+} :YAG transmission and the different laser cavity gain. The anisotropic transmission of Cr^{4+} :YAG crystal was previously reported in [\[13](#page-3-10), [14\]](#page-3-11), but to the best of our knowledge, there was no researcher to report the above two changes of τ_p simultaneously, not to mention giving an explanation.

In this paper, we demonstrated a passively Q-switched 1.06 μ m Nd:GdVO₄ laser with a [100]-cut Cr⁴⁺:YAG crystal by 808 nm laser diode pumping. The output characteristics were investigated when the anisotropic transmission of Cr^{4+} :YAG crystal and the different gain levels were considered. The experimental results showed that we could obtain a pulsed laser output with narrower τ_p , higher E_p and P_p when the polarization direction of laser was paral-

Y.F. Ma $(\boxtimes) \cdot X$. Yu \cdot R.P. Yan \cdot X.D. Li \cdot C. Wang \cdot J.H. Yu National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China e-mail: Yufei.Ma@rice.edu

Fig. 1 Experimental setup of a passively Q-switched Nd:GdVO4 laser and the schematic of crystallographic axis of the Cr^{4+} : YAG, polarized laser, and a rotation angle *β*

lel to the [001], [010], [001], and [010] orientations of the Cr^{4+} :YAG crystal, respectively. The different changes of τ_p as a function of incident pump power were observed due to the anisotropic transmission of Cr^{4+} :YAG crystal and the different cavity gain levels.

LD

2 Experimental setup

The experimental configurations of a [100]-cut Cr^{4+} :YAG passively Q-switched Nd:GdVO4 laser using 808 nm laserdiode end-pumping is shown in Fig. [1.](#page-1-0)

The 808 nm pump source was a fiber coupled laser diode. L_1 and L_2 were a set of collimating and focusing lenses. The a-cut Nd:GdVO₄ crystal with a 0.3 at.% Nd³⁺ concentration had dimensions of $3 \times 3 \times 8$ mm³. The crystal was wrapped with indium foil and placed into water-cooled copper heat sink. The input mirror M_1 was a flat mirror with an antireflection coating at 808 nm and a high reflectivity at 1063 nm. The output coupler M_2 had a transmission of 30 % at 1063 nm. The $[100]$ -cut Cr⁴⁺: YAG crystal with initial transmission T_0 of 90 % acted as a saturable absorber. The cavity length was about 160 mm.

3 Experimental results and discussions

The dependence of energy transmission T_i of the Cr^{4+} :YAG crystal with the angle between the crystallographic axis and the polarization direction of laser was investigated firstly. The crystal was excited with a linearly polarized, AO Qswitched 1063 nm Nd:GdVO₄ laser propagating along its growth direction. The schematic of crystallographic axis of Cr^{4+} :YAG, polarized laser and rotation angle β is same as shown in Fig. [1.](#page-1-0) The laser was focused by a lens to increase the power density *IL*. The crystal was fixed on a precise rotatable mount in order to measure the rotation dependent *Ti*. The experimental results are shown in Fig. [2](#page-1-1).

From Fig. [2,](#page-1-1) we can see that at a power density of I_L = 4×10^5 W/cm², there is an obvious anisotropic energy transmission. T_i varied with the angle β , and the almost same T_i

Fig. 2 T_i of the [100]-cut Cr⁴⁺:YAG crystal as a function of rotation angle

peaks appeared every 90◦. When *β* was 0◦, 90◦, 180◦, and 270°, the polarization direction of laser was parallel to the [001], [010], [001], and [010] orientations of Cr^{4+} : YAG, respectively, and T_i had the maximum value. When the polarization direction of laser was parallel to the [011], [01 $\overline{1}$], [011], [011], orientations ($\beta = 45^{\circ}$, 135°, 225°, and 275°, respectively), *Ti* was minimum.

The output characteristics of passively Q-switched Nd:GdVO₄ laser with the [100]-cut Cr^{4+} :YAG crystal were investigated. The experimental configuration is shown in Fig. [1](#page-1-0). The incident pump power was 7.5 W and the Cr4+:YAG crystal was rotated in a full 360◦. The measured results are shown in Figs. [3–](#page-2-0)[7.](#page-2-1)

From Fig. [3](#page-2-0), we can see that the maximum average output power was obtained when $β$ was $0°$, $90°$, $180°$, and $270°$, respectively. This is because of when the polarization direction of laser was parallel to the [001], [010], [00 $\overline{1}$], and [0 $\overline{1}$ 0] orientations, the T_i of Cr^{4+} :YAG crystal had a maximum value. The loss was smaller and the laser was easier to oscillate compared with the directions of [011], [011], [011], and $[0\overline{1}1]$.

Fig. 3 Relation between the average output power and the rotation angle *β*

Fig. 4 Relation between the repetition rate and the rotation angle *β*

Fig. 5 Relation between the pulse width and the rotation angle *β*

The modulation depth Q_0 of Cr^{4+} :YAG crystal is approximately directly proportional to the difference of *Ti* and *T*0. *Qo* peaks emerged when *β* was 0◦, 90◦, 180◦, and 270◦,

Fig. 6 Relation between the pulse energy and the rotation angle *β*

Fig. 7 Relation between the pulse peak power and the rotation angle *β*

respectively. Therefore, at these β values, the repetition rate and the pulse width were at a minimum and the pulse energy and the pulse peak power were maximum, as shown in Figs. [4,](#page-2-2) [5,](#page-2-3) [6](#page-2-4) and [7](#page-2-1).

There are four sinusoidal modulations of T_i in a full 360[°]. We studied the pulse width as a function of incident pump power at different rotation degree within 45◦ to illustrate the law of the full 360◦. The measured results are depicted in Fig. [8](#page-3-12).

From Fig. [8](#page-3-12), we can see that at the same incident pump power, the narrowest τ_p was achieved when β was 0° and the largest could be obtained when β was 45[°]. Due to the anisotropic transmission, at β of 0 \degree and in the investigated pump power range (from 7.5 W to 13.7 W), the Cr^{4+} :YAG crystal was fully bleached, and the pulse width was constant and ∼76 ns. At other angles (*β* = 10◦, 22*.*5◦, 35◦, and 45◦, respectively), τ_p was a decreasing function of the incident pump power, and it would decrease to a constant value of 76 ns ($\beta = 0^\circ$) when the incident pump power increased. Because the gain of the laser oscillator is a function of the incident pump power level, as shown in Fig. [8,](#page-3-12) the gain impacts

Fig. 8 Pulse width as a function of incident pump power at different rotation degree

the pulse duration. If the Cr^{4+} :YAG was fully bleached as the result of high gain or due to the laser polarization direction was parallel to the [001], [010], [001], and [010] orientations, τ_p was constant, otherwise τ_p decreased when the gain increased.

4 Conclusions

In conclusion, we have demonstrated a passively Q-switched 1.06 μ m Nd:GdVO₄ laser with a [100]-cut Cr⁴⁺:YAG saturable absorber by 808 nm laser diode pumping. The output characteristics were investigated when the anisotropic transmission of Cr^{4+} :YAG crystal and the different gain levels were considered. The experimental results showed that a pulsed laser output with narrower τ_p , higher E_p and P_p

can be achieved when the laser polarization direction was parallel to the [001], [010], [001], and [010] orientations of Cr4+:YAG, respectively. Two different effects of constant τ_p and varying τ_p were observed due to the anisotropy of transmission of Cr^{4+} :YAG crystal and the gain level. If the Cr^{4+} :YAG was fully bleached as the result of high gain or due to the laser polarization direction was parallel to the [001], [010], [001], and [010] orientations of Cr^{4+} :YAG, which was more easily to be complete bleached, τ_p was constant, otherwise τ_p decreased when the gain increased.

References

- 1. H.-H. Wu, S.-F. Chen, C.-H. Cheng, J. Opt. A, Pure Appl. Opt. **9**, 376 (2007)
- 2. Y. Ma, Y. Zhang, X. Yu, X. Li, F. Chen, R. Yan, Opt. Commun. **284**, 2569 (2011)
- 3. J. Liu, C. Wang, S. Liu, W. Tian, L. Li, S. Liu, M. Liu, J. Mod. Opt. **55**, 1971 (2008)
- 4. Y. Ma, X. Yu, X. Li, R. Fan, J. Yu, Appl. Opt. **50**, 3854 (2011)
- 5. J.J. Degnan, IEEE J. Quantum Electron. **31**, 1890 (1995)
- 6. F.Q. Liu, H.R. Xia, S.D. Pan, W.L. Gao, D.G. Ran, S.Q. Sun, Z.C. Ling, H.J. Zhang, S.R. Zhao, J.Y. Wang, Opt. Laser Technol. **39**, 1449 (2007)
- 7. G. Xiao, M. Bass, IEEE J. Quantum Electron. **33**, 41 (1997)
- 8. M. Montes, C. delas Heras, D. Jaque, Opt. Mater. **28**, 408 (2006)
- 9. M. Lu, C.R. Chatwin, R.C.D. Young, P.M. Birch, Opt. Lasers Eng. **47**, 617 (2009)
- 10. J. Liu, J. Yang, J. He, Opt. Laser Technol. **35**, 4314 (2003)
- 11. C. Du, J. Liu, Z. Wang, G. Xu, X. Xu, K. Fu, X. Meng, Z. Shao, Opt. Laser Technol. **34**, 699 (2002)
- 12. Y.F. Ma, R.W. Fan, X. Yu, X.D. Li, D.Y. Chen, J.H. Yu, Laser Phys. **21**, 1570 (2011)
- 13. H. Eilers, K.R. Hoffman, W.M. Dennis, S.M. Jacobsen, W.M. Yen, Appl. Phys. Lett. **61**, 2958 (1992)
- 14. X. Zhang, S. Zhao, Q. Wang, S. Zhang, L. Sun, X. Liu, S. Zhang, H. Chen, J. Opt. Soc. Am. B **18**, 770 (2001)