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Abstract We investigate the two-dimensional atom local-
ization behaviors in a four-level atomic system via con-
trolled spontaneous emission in a single decay channel. It
is found that the detecting probability and precision of atom
localization behaviors can be significantly improved via ad-
justing the system parameters. More importantly, the two-
dimensional atom localization patterns reveal that the max-
imal probability of finding an atom within the sub-half-
wavelength domain of the standing waves can reach unity
when the corresponding conditions are satisfied. As a re-
sult, our scheme may be helpful in laser cooling or the atom
nano-lithography via atom localization.

1 Introduction

During the past few years, the precision position measure-
ment of an atom has been the subject of many recent stud-
ies because of its potential wide applications in trapping of
neutral atoms, laser cooling [1], atom nano-lithography [2,
3], Bose–Einstein condensation [4, 5], and measurement of
the center-of-mass wave function of moving atoms [6, 7].
Earlier studies for localization include the measurement
of the phase shift of either the standing wave [8, 9] or
the atomic dipole [10] due to the interaction of the atom
with the standing-wave field, the entanglement between the
atom’s position and its internal states [11], resonance imag-
ing methods [12], etc.
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Recently, it has been shown that quantum coherence
and interference can give rise to some interesting phenom-
ena, such as electromagnetically induced transparency [13,
14], spontaneously generated coherence [15, 16], multi-
wave mixing [17, 18], enhancing Kerr non-linearity [19,
20], optical soliton [21, 22], and so on. Based on atomic
coherence and quantum interference, many schemes have
been proposed for one-dimensional (1D) atom localization.
For example, Herkommer, Schleich, and Zubairy proposed
a scheme in which the Autler–Townes spontaneous spec-
trum is used [23]. Qamar et al. suggested atom localiza-
tion based on resonance fluorescence in a two-level sys-
tem driven by a strong standing-wave field [24], and later
Paspalakis and Knight proposed a quantum-interference-
induced sub-wavelength atomic localization in a three-level
Λ-type atom interacting with a classical standing-wave field
and a weak probe laser field, and they found that the atomic
position with high precision can be achieved via the mea-
surement of the upper-state population of the Λ-type atom
as the atom moves in the standing-wave field [25]. More
recently, in a four-level atomic system with a closed-loop
configuration, Zubairy and coworkers again showed that in
two 1D atom localization schemes [26, 27] the phase of
the standing-wave driving field played an important role in
reducing the number of localization peaks from the usual
four to two, leading to sub-half-wavelength localization. At
the same time, Gong et al. presented two schemes [28, 29]
based on double-dark resonance effects and demonstrated
that the atom can be localized at the nodes of the standing-
wave field, and the detecting probability can be increased to
1/2. Interestingly, instead of the measurement of the popu-
lation in the excited state, the detection of the population in
the ground state coupled to the standing-wave field leads to
only two localization peaks in a unit wavelength region. This
was shown by Agarwal and Kapale [30], who put emphasis
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on the momentum distribution and the role of the ratio of the
intensities of the coupling and probe fields. Of course, some
relative schemes for realizing 1D atom localization are also
studied [31–35]. On the other hand, two-dimensional (2D)
atom localization has also been extensively studied in the
multilevel atomic system. The studies show that one can
control 2D atom localization via the measurement of the
upper-state or any ground-state population [36], via interact-
ing double-dark resonances [37], via controlled spontaneous
emission [38–41], or via the probe absorption spectrum [42–
44].

In this work, we investigate the 2D atom localization be-
haviors in a four-level atomic system via controlled spon-
taneous emission in a single decay channel. It is found that
the precision and resolution of the 2D atom localization can
be significantly improved due to the quantum interference
effects. Our work is mainly based on the [36–44], how-
ever, which is drastically different from those works. The
major differences are obtained as follows. (i) The 2D atom
localization patterns reveal that the maximal probability of
finding an atom within the sub-half-wavelength domain of
the standing waves can reach unity, which is increased by
a factor of 2 or 4 compared with the previous proposed
schemes for realizing 2D atom localization via controlled
spontaneous emission in a single decay channel [38, 39] or
from two coherent decay channels [40]. (ii) A few works
have discussed efficient 2D atom localization behaviors via
phase-dependent probe absorption spectrum [42, 43] or via
phase-dependent spontaneous emission spectrum from two
coherent decay channels [41], however, four or five fields are
used to controlling the 2D atom localization behaviors. It is
well known that the external fields are less convenient for
experimental realization, which may be the serious reason
to sophisticate the experimental setup. Unlike those works,
only three fields are applied in present scheme, which make
our scheme much more convenient in experimental realiza-
tion. (iii) Because of the spatial-position-dependent atom-
field interaction, the spontaneously emitted photon carries
information about the position probability distribution. As a
result, the atom can be localized when the spontaneously
emitted photon is detected. The schemes [40, 41] for 2D
atom localization via two spontaneous emission channels
may bring some difficulties to photo-detection, while our
work is also different from those investigations as we in-
vestigate the 2D atom localization behaviors via sponta-
neous emission in a single decay channel. This advantage
also makes the present scheme much easier to carry out in
experimental arrangements. Our paper is organized as fol-
lows: In Sect. 2, we present the theoretical model and estab-
lish the corresponding equations. The numerical results are
shown in Sect. 3. In Sect. 4, some simple conclusions are
given.

Fig. 1 Schematic diagram of a four-level atomic system

2 Model and dynamic equations

We consider the four-level atomic system as shown in Fig. 1.
This system has one ground level |1〉 and three excited lev-
els |2〉, |3〉, and |4〉. A probe field with Rabi frequency 2Ωp

(frequency ωp) is applied to the transition |2〉 ↔ |1〉, while
the transition |3〉 ↔ |2〉 is driven by a composition of two or-
thogonal standing-wave fields Sxy with position-dependent
Rabi frequency 2Ω(x,y) = 2Ωxy[sin(kx) + sin(ky)] (fre-
quency ωxy ). The transition from the level |3〉 to the level
|4〉 is assumed to be coupled by the vacuum modes in the
free space.

Under the Hamiltonian in the Raman–Nath, the electric-
dipole and rotating-wave approximations, the interaction
Hamiltonian for the system is (� = 1)

HI = �p|2〉〈2| + (�p + �xy)|3〉〈3| + (�p − δk)|4〉〈4|

+
(

Ωp|2〉〈1| + Ω(x,y)|3〉〈2|

+
∑

k

gkbk|3〉〈4| + h.c.

)
, (1)

where �p = ω2 −ωp , �xy = ω32 −ωxy , and δk = ω34 −ωk

are the detunings of the probe field, the standing-wave
fields Sxy , and the vacuum modes, respectively. 2Ωxy =
Exyμ32/� and 2Ωp = Epμ21/� are the Rabi frequencies
for the relevant laser transitions. μmn (m,n = 1,2,3) are the
dipole matrix elements and Ej (j = p,xy) are the slowly
varying amplitudes of the optical fields. bk is the annihila-
tion operator for the kth vacuum mode with frequency ωk .
gk stands for the coupling constant between the kth vacuum
mode and the atomic transition |3〉 ↔ |4〉.

The dynamics of this system can be described by using
the probability amplitude equations. Then the wave function
of the system at time t can be expressed in terms of the state
vectors as

∣∣Ψ (t)
〉 =

∫
dx dy f (x, y)|x〉|y〉

[
A1,0k

(x, y; t)|1,0k〉

+ A2,0k
(x, y; t)|2,0k〉
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+ A3,0k
(x, y; t)|3,0k〉

+
∑

k

A4,1k
(x, y; t)|4,1k〉

]
, (2)

where the probability amplitude Ai,0k
(x, y; t) (i = 1–3)

represents the state of atom at time t when there is no
spontaneously emitted photon in the kth vacuum mode,
A4,1k

(x, y; t) is the probability amplitude that the atom is
in level |4〉 with one photon emitted spontaneously in the
kth vacuum mode, and f (x, y) is the center-of-mass wave
function of the atom.

The atom localization in our scheme is based on the fact
that the spontaneously emitted photon carries information
about the position of atom in the x–y plane as a result of
the spatial position-dependent atom-field interaction. When
we have detected at time t a spontaneously emitted photon
in the vacuum mode of wave vector k, the atom is in its
internal state |4〉 and the state vector of the system, after
making appropriate projection over |Ψ (t)〉, is reduced to

|ψ4,1k
〉 = N

〈
4,1k|Ψ (t)

〉

= N

∫
dx dy f (x, y)A4,1k

(x, y; t)|x〉|y〉, (3)

where N is a normalization factor. Thus, the conditional po-
sition probability distribution, i.e. the probability of finding
the atom in the (x, y) position at time t is

W(x,y, ; t |4,1k) = |N|2∣∣〈x|〈y|ψ4,1k
〉∣∣2

= |N|2∣∣f (x, y)
∣∣2∣∣A4,1k

(x, y; t)∣∣2
, (4)

which follows from the probability amplitude A4,1k
(x, y; t).

Making use of the Schrödinger equation in the interaction
picture, the dynamical equations for the atomic probability
amplitudes are given by

i
∂A1,0k

(x, y; t)
∂t

= ΩpA2,0k
(x, y; t), (5a)

i
∂A2,0k

(x, y; t)
∂t

= �pA2,0k
(x, y; t)

+ Ω(x,y)A3,0k
(x, y; t)

+ ΩpA1,0k
(x, y; t), (5b)

i
∂A3,0k

(x, y; t)
∂t

=
(

�p + �xy − i
Γ

2

)
A3,0k

(x, y; t)

+ Ω(x,y)A2,0k
(x, y; t), (5c)

i
∂A4,1k

(x, y; t)
∂t

= g∗
k exp

[
i(�p + �xy − δk)t

]
× A3,0k

(x, y; t), (5d)

where Γ = 2π |gk|2D(ωk) is the spontaneous decay rate
from level |3〉 to level |4〉 and D(ωk) is the density of mode
at frequency ωk in the vacuum.

Carrying out the Laplace transformations Ã(x, y; s) =∫ ∞
0 e−stA(x, y; t) dt (s is the time Laplace transform vari-

able) for (5a)–(5d), we have the results

iÃ1,0k
(x, y; s)s = ΩpÃ2,0k

(x, y; s) + iA1(0), (6a)

iÃ2,0k
(x, y; s)s = �pÃ2,0k

(x, y; s)
+ Ω(x,y)Ã3,0k

(x, y; s)
+ ΩpÃ1,0k

(x, y; s) + iA2(0), (6b)

iÃ3,0k
(x, y; s)s = f3Ã3,0k

(x, y; t) + Ω(x,y)Ã2,0k
(x, y; t)

+ iA3(0), (6c)

iA4,1k
(x, y; t) = g∗

k

∫ t

0
exp

[
if4t

′]A3,0k

(
x, y; t ′)dt ′, (6d)

where f3 = �p +�xy − i Γ
2 and f4 = �p +�xy −δk . Ai(0)

(i = 1–3) represents the probability amplitude at the initial
time t = 0. Finally, the conditional probability of finding the
atom in level |4〉 with a spontaneously emitted photon of
frequency ωk in the vacuum mode k is then given by

W(x,y, ; t → ∞|4,1k) = |N|2∣∣f (x, y)
∣∣2∣∣A4,1k

(x, y; t → ∞)
∣∣2 = |N|2∣∣f (x, y)

∣∣2|gk|2
∣∣Ã4,1k

(x, y; s = −if4)
∣∣2

= |N|2∣∣f (x, y)
∣∣2|gk|2

∣∣∣∣ΩpΩ(x,y)A1(0) + f4Ω(x,y)A2(0) + [f4(f4 − �p) − |Ωp|2]A3(0)

f4(f4 − �p)(f4 − f3) − |Ωp|2(f4 − f3) − |Ωc|2f4

∣∣∣∣
2

. (7)

As the center-of-mass wave function of the atom f (x, y)

is assumed to be nearly constant over many wavelengths of
the standing-wave fields, the conditional position probabil-

ity distribution W(x,y, ; t → ∞|4,1k) is determined by the
filter function defined as

F(x, y)2D =
∣∣∣∣ΩpΩ(x,y)A1(0) + f4Ω(x,y)A2(0) + [f4(f4 − �p) − |Ωp|2]A3(0)

f4(f4 − �p)(f4 − f3) − |Ωp|2(f4 − f3) − |Ωc|2f4

∣∣∣∣
2

. (8)
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Fig. 2 Filter function F(x, y)2D versus positions (kx, ky) = (−π ≤ kx ≤ π , −π ≤ ky ≤ π ) for different values of δk . (a) δk = 5γ ; (b) δk = 10γ ;
(c) δk = 15γ ; and (d) δk = 20γ . The other parameters are �p = �xy = 0, A1(0) = A3(0) = 1/

√
2, A2(0) = 0, Ωxy = 10γ , Ωp = γ , and Γ = 3γ

3 Results and discussion

In this section, we analyze the conditional position proba-
bility distribution of the atom via a few numerical calcula-
tions based on the filter function F(x, y)2D in (8), and then
address how the system parameters can be used to achieve
2D atom localization by controlled spontaneous emission.
In the following numerical calculations we chose are set in
units of constant γ , which should be in the order of MHz for
rubidium or sodium atoms.

Filter function F(x, y)2D versus the positions (kx, ky) =
(−π ≤ kx ≤ π , −π ≤ ky ≤ π ) for different values of the de-
tuning of spontaneously emitted photon is plotted in Fig. 2.
As can be seen, the conditional position probability distri-
bution depends strongly on the detuning of spontaneously
emitted photon. For the case δk = 5γ , the peak maxima,
which represent the most probable positions of the atom, are
distributed in all four different quadrants of the x–y plane
[see Fig. 2(a)]. When the detuning is tuned to δk = 10γ , the
atom is mainly localized in quadrants I and III, and the peaks

of the F(x, y)2D show crater-like patterns [see Fig. 2(b)].
On the condition of δk = 15γ , the localization peaks display
a small-caliber crater-like pattern and a large-caliber crater-
like pattern with different localization precision in quad-
rants I and III, and the atom localized at these circles [see
Fig. 2(c)]. With the increase of the detuning to further higher
values [i.e. δk = 20γ in Fig. 2(d)], the spatial distribution of
the atom localization exhibits a spike-like pattern. From the
above discussions, it is obvious that there is a strong corre-
lation between the frequency detuning of the spontaneously
emitted photon and the position of the atom. The measure-
ment of a particular frequency corresponds to the localiza-
tion of the atom within a sub-half-wavelength region of the
standing-wave field.

In Fig. 3, we study the effect of the intensity of the probe
field on the spatial distributions of the 2D atom localization.
For a small intensity of the probe field, i.e. Ωp = 2γ , the
filter function shows two spike-like patterns in quadrants I
and III [see Fig. 3(a)]. When the probe field is adjusted to
Ωp = 4γ , the two spike-like patterns become two crater-like
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Fig. 3 Filter function F(x, y)2D versus positions (kx, ky) = (−π ≤
kx ≤ π , −π ≤ ky ≤ π ) for different intensity of the probe field.
(a) Ωp = 2γ ; (b) Ωp = 4γ ; (c) Ωp = 6γ ; and (d) Ωp = 10γ .

The other parameters are �p = �xy = 0, A1(0) = A3(0) = 1/
√

2,
A2(0) = 0, Ωxy = 10γ , δk = 20γ , and Γ = 3γ

patterns, as shown in Fig. 3(b). With a further increase of Ωp

(Ωp = 6γ ), the spatial distributions of the filter function do
not change, but the caliber of every crater-like pattern be-
comes wider. Simultaneously, the height of the small crater-
like pattern in quadrant III becomes lower [see Fig. 3(c)].
However, when the intensity of the probe field reaches at
an appropriate value [i.e. Ωp = 10γ , in Fig. 3(d)], the lo-
calization peak in quadrant III has completely disappeared.
In such a case, we can obtain a high-precision and high-
resolution 2D atom localization, which can be attributed to
the quantum interference effect induced by the probe field.

Finally, two interesting ways for realizing 100 % proba-
bility of finding an atom within the sub-wavelength domain
of the standing waves are exhibited in Figs. 4 and 5, respec-
tively. From Figs. 4(a)–4(c), one can find that via adjusting
the detunings of the probe and standing-wave fields, the fil-
ter function F(x, y)2D displays a crater-like pattern and the
position of the localization peak changes obviously. Interest-
ingly, when �p = 15γ and �xy = −2γ , spatial distribution

of the filter function shows a spike-like pattern in quadrant
I. In such a condition, the probability of finding the atom
in one period of the standing-wave fields is increased to 1,
that is to say, the atom can be localized at a particular po-
sition and the 2D atom localization is indeed achieved effi-
ciently. Therefore, the probability of finding the atom at a
particular position is increased by a factor of 2 or 4 com-
pared with the previous proposed schemes [36–40, 44]. The
influences of the initial probability amplitudes on the spa-
tial distributions of the 2D atom localization are depicted in
Fig. 5. Clearly, the spatial distributions of the filter function
F(x, y)2D are very sensitive to the initial probability am-
plitudes. The 100 % probability of finding an atom within
the sub-half-wavelength domain of the standing waves can
also be achieved for the case A2(0) = A3(0) = 1/

√
2 and

A1(0) = 0 [see Fig. 5(d)]. According to the above discus-
sions, one can realize that the detunings of the probe and
standing-wave fields and initial probability amplitudes play
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Fig. 4 Filter function F(x, y)2D versus positions (kx, ky) = (−π ≤
kx ≤ π , −π ≤ ky ≤ π ) for different values of �p and �xy . (a) �p =
15γ , �xy = 0; (b) �p = 0, �xy = 10γ ; (c) �p = 15γ , �xy = 10γ ;

and (d) �p = 15γ , �xy = −2γ . The other parameters are Ωp = 4γ ,
A1(0) = A3(0) = 1/

√
2, A2(0) = 0, Ωxy = 10γ , δk = 20γ , and Γ =

3γ

important roles in the precision and spatial distribution of
2D atom localization.

Before concluding, let us briefly discuss the possible
experimental realization of our proposed scheme for the
present study. We consider, for instance, the cold atoms
87Rb (nuclear spin I = 3/2) on the 5S-5P-5D transitions
as a possible candidate [45]. The experimental system for
this atomic scheme can be realized by the 87Rb atom with
|5S1/2,F = 2〉, |5S1/2,F = 2〉, |5P3/2,F = 3〉, |5D5/2,F =
4〉, and |6P3/2,F = 3〉 behaving the |1〉, |2〉, |3〉, and |4〉
state labels, respectively. In this scheme, the atom, also mov-
ing in the z-direction, passes through the intersectant region
of two orthogonal standing-wave laser fields, which are re-
spectively aligned along the x and the y axes. The weak
probe field propagates along the positive z direction. The
composition of two orthogonal standing waves can be ob-
tained by combining four identical beams, where a pair of
identical beams propagate along the positive and negative x

directions in the x–y plane while another pair of identical

beams propagate along the positive and negative y direc-
tions in the x–y plane. The probe and control beams can be
obtained from external cavity diode lasers. According to the
above conditions, our scheme may be realized via the exper-
iment proposed in [35].

4 Conclusions

To sum up, we have investigated the two-dimensional atom
localization behaviors in a four-level atomic system via con-
trolled spontaneous emission in a single decay channel. It is
found that the precision and resolution of the 2D atom lo-
calization can be significantly improved due to the quantum
interference effects. More importantly, the 2D atom local-
ization patterns reveal that the maximal probability of find-
ing an atom within the sub-half-wavelength domain of the
standing waves can reach unity, which is increased by a fac-
tor of 2 or 4 compared with the previous proposed schemes



Efficient two-dimensional atom localization via spontaneous emission in a single decay channel 485

Fig. 5 Filter function F(x, y)2D versus positions (kx, ky) = (−π ≤
kx ≤ π , −π ≤ ky ≤ π ) for different values of initial probability ampli-
tudes. (a) A1(0) = 1, A2(0) = A3(0) = 0; (b) A1(0) = A3(0) = 1/

√
2,

A2(0) = 0; (c) A1(0) = A2(0) = 1/
√

2, A3(0) = 0; and (d) A2(0) =
A3(0) = 1/

√
2, A1(0) = 0. The other parameters are �p = �xy = 0,

δk = 20γ , Ωxy = 10γ , Ωp = 2γ , and Γ = 3γ

[36–40, 44]. As a result, our scheme may be helpful in laser
cooling or the atom nano-lithography via atom localization
[46].
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