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Abstract An adaptive optics system utilizing a Shack–
Hartmann wavefront sensor and a deformable mirror can
successfully correct a distorted wavefront by the conjuga-
tion principle. However, if a wave propagates over such a
path that scintillation is not negligible, the appearance of
branch points makes least-squares reconstruction fail to esti-
mate the wavefront effectively. An adaptive optics technique
based on the stochastic parallel gradient descent (SPGD)
control algorithm is an alternative approach which does not
need wavefront information but optimizes the performance
metric directly. Performance was evaluated by simulating a
SPGD control system and conventional adaptive correction
with least-squares reconstruction in the context of a laser
beam projection system. We also examined the relative per-
formance of coping with branch points by the SPGD tech-
nique through an example. All studies were carried out un-
der the conditions of assuming the systems have noise-free
measurements and infinite time control bandwidth. Results
indicate that the SPGD adaptive system always performs
better than the system based on the least-squares wavefront
reconstruction technique in the presence of relatively serious
intensity scintillations. The reason is that the SPGD adap-
tive system has the ability of compensating a discontinuous
phase, although the phase is not detected and reconstructed.
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1 Introduction

The conventional adaptive optics compensation technique
based on the phase-conjugation principle has been success-
fully applied in many optical engineering fields [1, 2]. The
adaptive optics system is composed of three main parts [3]:
(i) a wavefront sensor for detecting the information of the
distorted wavefront induced by turbulence; (ii) a wavefront
corrector for correcting this aberration; and (iii) a wavefront
controller for processing the measurements of the wavefront
sensor and generating control commands for the wavefront
corrector. However, conventional compensation for propa-
gation through deep turbulence or over long distances is
quite poor because intensity scintillation in the receiver aper-
ture becomes a significant effect [4]. Theory and experimen-
tal results [5, 6] have shown that branch points occur in the
received optical-field phase plane in these propagation situa-
tions, so wavefront measurements and phase reconstruction
becomes quite challenging, which degrades the adaptive op-
tical system’s performance in some applications. Examples
of systems whose performance is degraded by this factor in-
clude laser weapon systems and laser communication sys-
tems [7, 8]. In these cases, scintillation induced by turbu-
lence can reduce the energy density at the target or reduce
the signal-to-noise ratio. Thus, recent interest is increasing
in the problem area of projecting a laser beam under con-
ditions where scintillation is not negligible, that is to say,
both phase and amplitude effects will corrupt the propagat-
ing wavefront in the receiver plane or at the target. Even
though aberration caused by amplitude fluctuation is not
considered, effective reconstruction of conjugated phase is
not yet easy to realize with the Shack–Hartmann wavefront
sensor.

The least-squares reconstruction regime is most widely
used in adaptive optics systems [2, 5]. The basic princi-
ple of least-squares reconstruction is given as follows. The
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phase gradient calculated from the Shack–Hartmann wave-
front sensor is related to the wavefront by the following ex-
pression:

g = Fφ, (1)

where g is a vector of x- and y-phase gradients denoted by
the wavefront φ to be reconstructed and F is a matrix which
relates the phase gradients, also referred to as the geometry
matrix. The least-squares estimate reconstruction wavefront
φLS can be expressed by [5, 9]

φLS = (
FTF

)−1FTg. (2)

Least-squares reconstructions are not sensitive to the pres-
ence of branch points, and as a result there is a component
of the incident phase that conventional reconstructions can-
not reconstruct, which is necessarily discontinuous [5].

The presence of branch points is necessarily associated
with amplitude fluctuation or scintillation in the optical field
[10]. The so-called Rytov variance σ 2

R is typically used as
a measure of the strength of the atmospheric scintillation,
which for spherical wave propagation through turbulence is
expressed as [11]

σ 2
R = 2.25k7/6

∫ L

0
C2

n(z)z5/6(1 − z/L)5/6 dz. (3)

where k = 2π/λ is the optical wave number, L is the propa-
gation length between transmitter and receiver, C2

n(z) is the
structure constant of the turbulence, and the integration is
along the path of propagation. When C2

n(z) is constant over
the path, we obtain

σ 2
R = 0496k7/6L11/6C2

n. (4)

The Rytov variance σ 2
R represents the variance of the

log-intensity fluctuations of the receiver plane arising from
an initially spherical wave that passed through a region of
length L characterized by turbulence of strength C2

n(z) as
predicted by the Rytov approximation. Generally, weak and
strong irradiance fluctuations are distinguished by the fol-
lowing expressions [11]:

σ 2
R < 1 (weak fluctuation conditions),

σ 2
R � 1 (strong fluctuation conditions).

(5)

As interest increases in using adaptive optical systems to
propagate laser beams over long distances or strong turbu-
lence paths, understanding the opportunities for improving
adaptive optics systems’ performance is increasingly impor-
tant. Recently, an alternative adaptive optics system by using
stochastic optimization algorithms [14, 15] was developed.
This correction technique requires defining a system perfor-
mance metric that is optimized by the algorithm directly.

Superiorly, this adaptive optics correction system without
wavefront sensor involves simple components and low cost.
In addition, the selection of an appropriate and effective al-
gorithm is significant. So far, many research results indicate
that the stochastic parallel gradient descent (SPGD) algo-
rithm is the most efficient optimization algorithm in some
aspects [16], such as convergence rate, instability, the selec-
tion of control parameters and the probability of falling into
local extremes. As regards the developing of the adaptive
optical technique and the extending of its application field,
adaptive optical correction for laser propagation over long
distances is becoming quite meaningful.

In this paper we establish an adaptive optics correction
system simulation model based on SPGD for a laser beam
projecting system. An adaptive optics reference beam is pro-
vided as a point source located at the target. In order to find
whether the correction technique based on the SPGD algo-
rithm is more efficient than the conventional correction tech-
nique with least-squares reconstruction in the situation of
intensity scintillation, even the wavefront sensor with ideal
spatial resolution, we compare the two correction techniques
in the same atmospheric turbulence scenario. We also ex-
amine whether the SPGD technique has the compensation
ability for a discontinuous phase, and a simulation exam-
ple of compensating a discontinuous phase is also presented.
Specifically, the noise-free measurement and infinite tempo-
ral resolution are assumed for both simulation systems.

The following sections of this paper are organized as fol-
lows. The relevant theory of SPGD mathematical models
and algorithm is presented in Sect. 2. The simulation condi-
tions are described and results of the numerical simulations
performed are analyzed in Sect. 3. Conclusions are drawn in
Sect. 4.

2 Description of SPGD control model

In an adaptive optics correction system, the distorted phase
ϕ(r) is compensated by the phase ψc introduced by wave-
front correctors, so the residual phase is considered as

φ(r) = ϕ(r) + ψc(r), (6)

where r = (x, y) is a vector in the plane orthogonal to the
optical axis. Practically, the wavefront correction is real-
ized by a high-speed tip-tilt mirror and a deformable mirror.
Correspondingly, the corrected wavefront phase of the main
laser beam results in the following expression:

ψc = ψtm + ψdm, (7)

where ψtm and ψdm respectively represent the phases intro-
duced by the tip-tilt mirror and the deformable mirror. Con-
sidering the simulation system correcting the tip-tilt aberra-
tion, the phase introduced by the tip-tilt mirror is a function
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of the slope of the mirror’s surface and is simply expressed
in Cartesian coordinates as [17]

ψtm = uxx + uyy. (8)

The variables x and y represent the phase components in
the x- and y-directions, while the tip and tilt components
ux and uy are variables determining the slope of the mirror.
Changes in the tip and tilt components lead to a movement of
the centroid of the image. The simulation system generates
a small random perturbation δu = {δux, δuy} applied to x-
and y-direction control of the tip-tilt mirror simultaneously.

To simplify analysis of the complete adaptic optics sys-
tem, one normally considers each actuator to be indepen-
dent, so the linear sum of the influence function Sj (x, y)

would represent the mirror surface ψdm(x, y). The phase in-
troduced by the deformable mirror is [3]

ψdm(x, y) =
N∑

j=1

VjSj (x, y), (9)

where Vj represents the j th actuator amplitude and N is
the actuator number of the deformable mirror. Since the re-
sults of experiment [3] show that a Gaussian represents a
deformable mirror influence function quite well, the expres-
sion of the influence function Sj (x, y) is described as (10):

Sj (x, y) = exp

{
lnp

(x − xj )
2 + (y − yj )

2

r2
d

}
, (10)

where (xj , yj ) denotes the location coordinates of the j th
actuator, p represents the coupling factor between the adja-
cent actuators, and rd is the distance between the adjacent
actuators.

The general optical schematic of the SPGD compensa-
tion system is shown in Fig. 1. This system is composed of
a camera, an image quality analyzer that can calculate a per-
formance metric J , a SPGD algorithm control block, and a
wavefront corrector. For the SPGD correction block, it is as-
sumed that the optimized system performance metric J is a
function depending on the residual phase φ(r), that is to say
J = J [φ(r)], so J will approach the extreme value when
the aberration is completely removed (φ(r) = 0). Further,
it is considered that an objective function J depends on a
set of N parameters, J = J [u1, u2, . . . , uN ]. The stochastic
parallel perturbation technique requires a small random per-
turbation δu(n) = {δu1, δu2, . . . , δuj , . . . , δuN }(n). The per-
turbation δuj is a random number which has fixed ampli-
tude |δuj | = σ and equal probabilities for δuj = σ and
δuj = −σ [18, 19]. The performance metric change δJ

caused by the control perturbation δuj can be measured.
δJ (n)δu(n) is used as the gradient estimate components, so
the gradient descent iteration formula can be written as [15]

u(n+1) = u(n) + γ δJ (n)δu(n), (11)

Fig. 1 Schematic of SPGD correction system

where n is the iteration number and γ is a gain coefficient.
In the application, δJ (n) is achieved by measurement and
calculated as follows:

δJ (n)=J
(
u(n) + δu(n)

) − J
(
u(n) − δu(n)

)
. (12)

The tip-tilt mirror and deformable mirror are controlled
by SPGD respectively through optimizing the system per-
formance metrics J1 and J2. We define J1 as the distance
between the points (x0, y0) and (xc, yc),

J1 =
√

(x0 − xc)2 + (y0 − yc)2, (13)

where (xc, yc) and (x0, y0) are respectively the centroid of
the image while the laser travels in vacuum and in atmo-
sphere. J2 is considered as the mean radius, and the calcula-
tion formula is as follows:

J2 =
∫∫

D

√
(x − x0)2 + (y − y0)2I (x, y)dx dy

∫∫
D

I (x, y)dx dy
, (14)

where D is the area occupied by the laser intensity distribu-
tion, (x0, y0) are the centroid coordinates of the image, and
I (x, y) is the far-field light intensity in position (x, y).

3 Numerical results and analysis

3.1 Simulation description

The schematic of the simulation projection system follows
the basic concept as shown in Fig. 3. An adaptive optics ref-
erence beam is provided as a point-source beacon located
at the target. The outgoing laser beam was focused with a
transmitting telescope to where the target was located. The
main parameters used in the simulation are presented in Ta-
ble 1. We modeled propagation of the laser beam through
turbulence as a sequence of two-dimensional wave propa-
gations from one thin phase screen to another using scalar
diffraction theory [12]. The fields propagating between the
phase screens were calculated by a sequence of numerically
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efficient fast-Fourier-transform (FFT) operations. The ran-
dom phase screens were generated with von Karman spec-
trum distributions by white-noise filtering in the Fourier do-
main [20]. Forty independent statistical turbulence-induced
phase screens were laid over the propagation path. A non-
adaptive transformation [13] was adopted in the propagation
calculation, so the speed and the accuracy of computation
are ensured. Besides, it is assumed that the propagation path
is near horizontal and the turbulence distribution is uniform.

A 61-element deformable mirror was utilized in the sim-
ulation. The deformable mirror configurations are shown in

Fig. 2 Location of 61-element deformable mirror

Fig. 3 Schematic of laser projection system

Fig. 2. The value of the coupling factor p and the distance
between the adjacent actuators rd are given in Table 1. In
the simulation, we fix the ratio D/r0 = 7 and adjust the
Rytov variance by changing the strength of the turbulence
and the propagation length. Knowing that a mechanically
deformable mirror surface cannot exactly match the aberra-
tion patterns of the eddies of atmospheric turbulence, Hud-
gin developed an expression of the fitting error to show the
wavefront error that resulted after a least-squares fit between
the surface and the atmosphere [3],

σ 2
fit = κ(rd/r0)

5/3, (15)

where the parameter κ is set to 0.23 for Gaussian influence.
The performance of an adaptive optics system is usu-

ally characterized by the Strehl ratio. Results of a long-
exposure average help to reveal the statistical average ef-
fects of spot position wandering and spreading on the over-
all energy spread. The Strehl ratio is defined as the ratio of
the axis intensity of a long-exposure image after propaga-
tion through turbulence and through a vacuum. The long-
exposure results were averaged over an ensemble of 60 sta-
tistically independent random realizations.

3.2 Simulation results

The study of the obtained character in various scintillation
conditions is important for understanding the SPGD com-
pensation system’s challenges and performance. The results
presented provide the very first direct comparison of these
two wavefront control approaches in various atmospheric
scintillation conditions with the main emphasis on compen-
sation of volume turbulence effects. We implement the simu-
lation as Sect. 3.1 described. There are three obtained Strehl
ratio results in Fig. 4: curve (a) represents ideal phase com-
pensation results considering the fitting error given in (15)
of a 61-element deformable mirror. They are obtained by

Table 1 Parameters used in the
simulation Parameter Value

Receive or transmit aperture diameter, D 60 cm

Wavelength, λmain = λbeacon 1.315 µm

Propagation length, L 2 km to 50 km

Turbulence structure constant, C2
n 1.78 × 10−14 m−2/3 to 3.55 × 10−16 m−2/3

Fried parameter, r0 8.57 cm

Grid number, Ng 256 × 256

Grid sampling interval, �x 1 cm

Number of phase screen, Nps 40

Number of turbulence realizations, Ntr 60

Number of deformable mirror actuators, N 61

Distance of adjacent actuators rd 7.5 cm

Actuators’ coupling factor p 15%
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multiplying a factor of exp(−σ 2
fit) and the compensation re-

sults of the perfect conjugate phase calculated directly from
the distortion. Curve (b) describes the results of SPGD com-
pensation with 500 iteration steps for each frame turbulence
realization. The Strehl ratio of the conventional compensa-
tion with ideal wavefront detecting is shown with curve (c).
We can see that the efficiency of the ideal phase correction
is not as insensitive to the value of the intensity scintilla-
tion. As the strength of the scintillation increases, the perfor-
mances of both approaches are degraded, but SPGD always
performs better than the conventional technique.

Figure 5 presents the number of branch-point pairs that
were found in the receiver plane to which a beacon wave
from a point source located at the target propagates as a
function of σ 2

R for the same turbulence realizations as in
Fig. 4. Comparing Fig. 4 and Fig. 5, it indicates that the re-
sults of both the SPGD correction and the conventional cor-
rection are very dependent on the number of branch points.

Fig. 4 Strehl ratio results versus Rytov variance: (a) ideal phase com-
pensation considering 61-element deformable fitting error, (b) SPGD
compensation with driven 61-element deformable mirror, (c) conven-
tional compensation with ideal wavefront detecting and least-squares
reconstruction and 61-element deformable mirror

Fig. 5 Number of branch-point pairs versus Rytov variance for the
same turbulence realizations as in Fig. 4

When there are few branch points, both correction curves
(b) and (c) show a good agreement with curve (a). For val-
ues of σ 2

R above approximately 1.0, the number of branch
points is increasing lineally, and both correction results are
degrading. Until the value of σ 2

R reaches 3.0, the number of
branch points does not increase yet, and simultaneously both
correction results nearly tend to invariableness.

Accordingly, there is no phase information detected for
branch points when the SPGD adaptive system works, so it
is necessary to know whether the SPGD system can effec-
tively cope with branch points in order to understand the rea-
son for the improvement of the performance with the SPGD
technique. In Fig. 6, we present an example of compensation
of a discontinuous phase by SPGD and by the least-squares
technique. The optical field with the complex light ampli-
tude is given by

U(x,y) = (x + iy) exp
(−x2 − y2), (16)

where (x, y) represents the spatial location in some plane.
The original phase is calculated by ψ(x, y) =
tan−1(Im[U(x,y)]/Re[U(x,y)]), where Re[U(x,y)] and
Im[U(x,y)] represent the real and imaginary parts of the
complex field. As Fig. 6a shows, the original phase is a dis-
continuity, and there is a branch point in the centre. The fit-
ting phase by the 61-element deformable mirror of the ideal
conjugated phase ψ∗(x, y) is given in Fig. 6b. Figure 6c
shows the compensation phase, which is the surface of the
deformable mirror driven by the SPGD algorithm after 500
iterations. Figure 6d shows that the reconstructed phase by
the least-squares estimation that obviously performs very
poorly compared with the initial phase. From the figures,
we find that the SPGD compensation technique works much
more perfectly with this example than least-squares recon-
struction. From the figures, we can indicate that the SPGD
technique can compensate a discontinuous phase without a
detection and reconstruction process.

4 Conclusions

We have implemented a SPGD adaptive compensation nu-
merical experiment for a laser beam projection system in
different scintillation conditions induced by laser propaga-
tion over a near-horizontal atmospheric path in which the
propagation distance is long or the turbulence is deep. The
performance of the SPGD correction system has been stud-
ied by comparing that with a conventional adaptive system
which is utilizing an ideal-detecting Shack–Hartmann wave-
front sensor. We have also examined the ability of compen-
sating a discontinuous phase by the SPGD control algorithm
through an example comparing that with the least-squares
reconstruction technique. Numerical results demonstrated
that the SPGD adaptive optics technique was more efficient
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Fig. 6 (a) Original phase, (b) fitting phase by 61-element deformable mirror for ideal conjugate phase of original phase, (c) compensation phase
by SPGD technique, (d) reconstruction phase by the least-squares algorithm

than the conventional adaptive optics technique in the pres-
ence of relatively serious intensity scintillations. That is be-
cause the discontinuous phase could be compensated by a
deformable mirror driven by the SPGD control block, al-
though there is no wavefront detection or special reconstruc-
tion algorithm for branch phase. Specifically, measurement
noise, effects of finite spatial resolution of the deformable
mirror, anisoplanatic effects, effects of time delays between
wavefront sensing and correction, and SPGD iteration time
delays are not addressed here. However, the results pre-
sented here may motivate future further studies of these mat-
ters.
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