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Abstract A Green’s function strategy first proposed by
Grosshans et al. is used to calculate the electric charges in-
duced by trapped ions on the 4-fold or 8-fold segmented
ring electrode of a cylindrical Penning trap. The ions are
assumed to move in the central region of the trap where
the harmonic approximation holds. The electric charges in-
duced on each detection segment of the ring electrode are
obtained in the form of a triple Fourier series with coeffi-
cients that describe the contribution of each frequency com-
bination m+ν+ +m−ν− +mzνz as a function of R+, R−, Z,
where ν+, ν−, νz are the characteristic frequencies and R+,
R−, Z the corresponding amplitudes of the ion motion. The
sideband structure is analyzed and the origin of the side-
bands is tracked. Finally, single-electrode, differential, and
additive detection are discussed.

1 Introduction

The Fourier transform ion cyclotron resonance (FT-ICR)
method was first demonstrated in 1974 by Comisarow and
Marshall [1] as a technique for the mass measurement of
trapped ions. An account of the early history of the method is
found in [2], and an introductory ‘primer’ in [3]. Recent de-
velopments have been extensively reviewed by Marshall [4]
and by Marshall and Hendrickso [5]. The method is based
on the measurement of electric image currents that are in-
duced by the orbiting ions in the conducting surfaces of
the trap electrodes. Contrary to time-of-flight methods [6],
ion detection by the FT-ICR method is non-destructive and
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therefore of great interest for many experimental purposes.
Whereas in past years mostly the collective FT-ICR signals
of ion ensembles have been investigated [7], more recently
interest has focussed also on the non-destructive detection
by FT-ICR of single ions in radioactive beams [8–10].

The interpretation of the observed FT-ICR signals re-
quires a sufficient theoretical background. A complete dy-
namical calculation is extremely complicated; however,
model calculations based on reasonable physical assump-
tions may prove to be very helpful and provide insight into
the structure of the observed FT-ICR signals. There is a
choice between numerical and analytical approaches. While
the former ones are very useful for practical laboratory
work, the latter ones, although possibly less general, pro-
vide insights into the working of the theoretical machinery.
A very general numerical model based on the reciprocity
principle and image charge calculation within the SIMION
modeling environment has been published by Hendrickson
et al. [11]. It provides accurate numerical data for Fourier
amplitudes in a wide class of trap geometries. Analytical ap-
proaches are possible only for a more limited class of prob-
lems because they require tools, such as explicit Green’s
functions, that are available only for a few specific trap ge-
ometries. On the other hand, where they are feasible they
can provide general insights and rules, how Fourier ampli-
tudes scale with the motional parameters of the ions, or how
certain sidebands come about.

A general strategy for analytical investigations was out-
lined by Grosshans et al. [12]. For a kinematical predic-
tion of FT-ICR signals they proposed a three-step procedure:
(a) the charge induced by an ion on each of the detection
electrodes must be calculated as a function of the ion posi-
tion. This can be done by standard Green’s function tech-
niques, provided the Green’s function with Dirichlet bound-
ary conditions on the surface of the trap volume is known.
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(b) From a known or assumed ion trajectory, the time de-
pendence of the charge induced on the detector electrodes
can then be found. (c) For a given geometrical arrangement
of electrically interconnected detection electrodes, the ex-
pected FT-ICR signal must be derived.

The present paper follows this general scheme. We start
by recalling some well-known facts about the calculation of
the surface charge density induced by a point charge located
at a fixed point inside the trap volume, using the Green’s
function of the Laplace equation with Dirichlet boundary
conditions on the trap surface. We study a cylindrical Pen-
ning trap with a central ring electrode that is divided into
four or eight segments serving as charge detectors or excita-
tion electrodes for the purpose of FT-ICR measurements.

The ion motion is modeled as a motion in an ideal Pen-
ning trap, characterized by a modified cyclotron frequency
ω+ = 2πν+, a magnetron frequency ω− = 2πν−, and an
axial frequency ωz = 2πνz, as well as the corresponding
phases χ+, χ−, and χz and amplitudes R+ (cyclotron ra-
dius), R− (magnetron radius), and Z. This assumption is
certainly valid as long as the ion orbits remain sufficiently
close to the trap center in the region where the harmonic ap-
proximation holds. Beyond that region, corrections due to
anharmonic potential terms must be taken into account.

This model calculation yields for the electric charges
Qi (t) induced on each of the four detection segments of the
ring electrode (i = 1, . . . ,4) expansions in a triple Fourier
series with respect to the fundamental frequencies ω+, ω−,
ωz of the orbiting ion,

Qi(t) = −q
∑

m+,m−,mz

W(i)
m+,m−,mz

(R+,R−,Z)

× cos
(
m+(ω+t + χ+) + m−(ω−t + χ−)

+ mz(ωzt + χz)
)
. (1)

We find explicit expressions for the Fourier coefficients
W

(i)
m+,m−,mz

as functions of the radii R+ and R− and the ax-
ial amplitude Z. They indicate the strength of the FT-ICR
signal expected at the frequency m+ω+ + m−ω− + mzωz

for the specified values of R+, R−, Z. The Fourier coeffi-
cients also contain information about the geometry of the
specific cylindrical Penning trap. The signal for the mod-
ified cyclotron frequency ω+ is discussed in greater detail
together with its axial and magnetron sidebands.

2 Cylindrical Penning traps

This study assumes a cylindrical Penning trap of length L

and radius a. A schematic view is shown in Fig. 1. The
trap is assumed to be perfectly aligned with the homoge-
neous magnetic field; the trap axis is chosen as the z-axis
of a coordinate system. The trap consists of two circular
disks of radius a at the axial positions z = 0 and z = L,

Fig. 1 Schematic view of a cylindrical Penning trap. The axial coor-
dinate is ζ = z − L/2. The central segmented ring electrode of length
d serves for excitation and detection

Fig. 2 Cut through an 8-fold segmented ring electrode. Dark shaded
segments are detection electrodes Si (opening angles 2α and 2α′, re-
spectively), lighter shaded segments are excitation electrodes S ′

i

respectively, forming the end caps, and a number of cylin-
drical rings of radius a, forming the cylindrical main body
of the trap, which extends over the interval 0 ≤ z ≤ L or,
with ζ = z − L/2, over −L/2 ≤ ζ ≤ L/2. All components
are assumed to be perfect electrical conductors. The central
ring of length d , at the axial position −d/2 ≤ ζ ≤ +d/2, is
of special interest, because it is 4-fold or 8-fold segmented,
the segments serving as excitation and detection electrodes.
The trap center is located in the plane z = L/2 or ζ = 0.
A cut through the central ring electrode, perpendicular to
the z-axis, is shown in Fig. 2.

Let us first define four detection segments Si , each de-
fined by a given range of the azimuthal angle ϕ (angles are
counted counterclockwise starting at the x-axis),

Si : αi,0 < ϕ < αi,1 (i = 1,2,3,4), (2)

with

α1,0 = −α, α1,1 = α, (3)

α2,0 = π/2 − α′, α2,1 = π/2 + α′, (4)

α3,0 = π − α, α3,1 = π + α, (5)

α4,0 = 3π/2 − α′, α4,1 = 3π/2 + α′. (6)
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By this definition, opposite segments are supposed to have
the same opening angle, 2α in the case of S1 and S3, analo-
gously 2α′ in the case of S2 and S4.

If α + α′ = π/2, the four ‘detection’ segments Si make
up the complete ring electrode, which is then 4-fold seg-
mented. However, if α + α′ < π/2, there is room also for
four ‘excitation’ electrodes S ′

i ,

S ′
i : αi,1 < ϕ < αi+1,0 (α4+1,0 = α1,0), (7)

so that the ring electrode is now 8-fold segmented. For the
following calculations, only the ‘detection’ segments shall
be of interest.

Recent examples of cylindrical Penning traps with FT-
ICR detection systems are the TRIGA trap at the University
of Mainz [9], SHIPTRAP at GSI Darmstadt [10], and the
KATRIN trap at Forschungszentrum Karlsruhe [13].

Many cylindrical traps used in actual experiments are
open, i.e. there are no metallic surfaces at the ends to close
the volume, the confining axial electric field being intro-
duced via end rings at positive potential. Strictly speaking,
the Green’s function used in this paper would have to be
modified for the open geometry. However, open cylindri-
cal traps in actual use generally have large aspect ratios
r = L/2a in the range r ≈ 3 or even larger. It has been
shown by Grosshans et al. (see Fig. 8 in [12]), in agreement
with our own calculations, that for aspect ratios r ≥ 2 the
difference between the open and the closed geometries be-
comes negligible. This argument applies even more when
the detection segments, as is assumed in this paper, are part
of the central ring electrode.

3 Surface charge density induced by a charge at a fixed
position

3.1 General aspects

Consider a volume V enclosed by a grounded conducting
surface Σ . The calculation of the surface charge density σ

induced on Σ by a point charge q located at some point x0

in the interior of V is a well-known problem in electrostatics
[14]. On account of Gauss’s law, the total charge induced on
Σ must equal −q; the induced charge density σ is, however,
non-uniformly distributed, depending on the shape of the
surface Σ and the location of q . The problem can be solved
in a very general way by constructing the Green’s function
with Dirichlet boundary conditions on the surface Σ . These
boundary conditions require GD(x;x′) = 0 for x ∈ Σ and
for x′ ∈ Σ . When GD is known, the electric potential which
is generated inside V by the charge q at x0 is given by

Φ(x,x0) = qGD(x;x0). (8)

The potential is vanishing on the surface Σ , and its deriva-
tive normal to the surface yields the surface charge on S,
which is induced by the point charge q at x0:

σ(x,x0) = q

4π

∂Φ

∂n
|x∈S = q

4π

∂

∂n
GD(x;x0)|x∈S. (9)

Here the normal derivative ∂/∂n has been taken positive in
the outward direction.

3.2 Implementation for a cylindrical geometry

The volume V is now specified to be a cylinder of radius
a and length L. We define Cartesian (x, y, z) and cylindri-
cal (ρ,ϕ, z) coordinates x = ρ cosϕ and y = ρ sinϕ. The
cylinder axis is the z-axis; the end faces are supposed to
be located at z = 0 and z = L, the center of the cylinder
is thus found at z = L/2. For this closed cylinder geometry,
the Dirichlet Green’s function is given in the literature (see
[14], p. 134, Problem 3.21) as

GD
(
ρ, z,ϕ;ρ′, z′, ϕ′)

=
+∞∑

m=−∞
e−im(ϕ−ϕ′)G|m|

(
ρ, z;ρ′, z′), (10)

with

G|m|
(
ρ, z;ρ′, z′)

= 4

L

∞∑

n=1

sin

(
nπz

L

)
sin

(
nπz′

L

)
I|m|( nπρ<

L
)

I|m|( nπa
L

)

×
[

I|m|
(

nπa

L

)
K|m|

(
nπρ>

L

)

− K|m|
(

nπa

L

)
I|m|

(
nπρ>

L

)]
. (11)

Here the functions I|m|(x) and K|m|(x) are modified Bessel
functions with non-negative integer index. We also need the
normal derivative of the Green’s function on the cylinder
surface ρ = a. This derivative can be simplified by making
use of the Wronski determinant of the modified Bessel func-
tions (see [14], p. 118). With

∂

∂ρ>

[
I|m|

(
nπa

L

)
K|m|

(
nπρ>

L

)

− K|m|
(

nπa

L

)
I|m|

(
nπρ>

L

)]∣∣∣∣
ρ>=a

= −1

a
, (12)

we find

∂

∂ρ
G|m|

(
ρ, z;ρ′, z′)

∣∣∣∣
ρ=a

= − 4

aL

∞∑

n=1

sin

(
nπz

L

)
sin

(
nπz′

L

)
I|m|( nπρ′

L
)

I|m|( nπa
L

)
. (13)

In the next step, the coordinates are adapted to the calcu-
lation of the charges induced on the detection segments Si .
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Let the primed coordinates signify the position of the ion:
ρ′ = ρ0, ϕ′ = ϕ0, z′ = z0. The other set of coordinates refers
to the cylinder surface, ρ = a, while ϕ and z vary over the
cylinder surface.

3.3 Total surface charge induced on a detection segment Si

In this section, we consider an ion at the position x0 inside
the trap and calculate the total electric charge Qi (x0) in-
duced on one of the detection segments Si . For this purpose,
we integrate the charge density, (9), over the surface of the
detection segment, using the Green’s function (10)

Qi (x0) =
∫

Si

dAσ(x,x0) (i = 1, . . . ,4), (14)

with the surface element dA = adϕdz.
The normal derivative in (9) does not involve the angular

coordinate ϕ; therefore, the integral (14) can be factorized
as

Qi (x0) =
∞∑

m=0

φi,m(ϕ0)Qm(ρ0, z0), (15)

with

φi,m(ϕ0) =
∫ αi1

αi0

dϕ = αi,1 − αi,0 for m = 0, (16)

φi,m(ϕ0) =
∫ αi1

αi0

dϕ2 cos
(
m(ϕ − ϕ0)

)
for m > 0, (17)

and

Qm(ρ0, z0) = qa

4π

∫ (L+d)/2

(L−d)/2
dz

∂

∂n
Gm(a, z;ρ0, z0). (18)

From here on, m will always be a non-negative integer, so
that we can simplify the notation by writing |m| = m.

3.4 Angular integration

The angular integrals can be carried out immediately. For
m = 0,

φ1,0(ϕ0) = φ3,0(ϕ0) = c1,0 = c3,0 = 2α, (19)

φ2,0(ϕ0) = φ4,0(ϕ0) = c3,0 = c4,0 = 2α′ (20)

and, for m > 0,

φ1,m(ϕ0) = c1,m cosmϕ0, (21)

φ2,m(ϕ0) = c2,m cosm(ϕ0 − π/2), (22)

φ3,m(ϕ0) = c3,m cosm(ϕ0 − π) = (−1)mφ1,m(ϕ0), (23)

φ4,m(ϕ0) = c4,m cosm(ϕ0 − 3π/2)

= (−1)mφ2,m(ϕ0), (24)

with

c1,m = c3,m = 4

m
sin(mα), (25)

c2,m = c4,m = 4

m
sin

(
mα′). (26)

Hence, we can state

φ1,m(ϕ0) + φ3,m(ϕ0)

{ �= 0 for even m,

= 0 for odd m,
(27)

φ2,m(ϕ0) + φ4,m(ϕ0)

{ �= 0 for even m,

= 0 for odd m,
(28)

φ1,m(ϕ0) − φ3,m(ϕ0)

{= 0 for even m,

�= 0 for odd m,
(29)

φ2,m(ϕ0) − φ4,m(ϕ0)

{= 0 for even m,

�= 0 for odd m.
(30)

In Sect. 6, these results will be used to discuss the differen-
tial and additive detection of induced charges and currents.

3.5 Axial integration

As explained above, the charge detecting segments Si are
parts of the central cylindrical ring (see Fig. 1), having open-
ing angles 2α and 2α′, respectively, and a total length d

(L/2 − d/2 ≤ z ≤ L/2 + d/2). The integration over this
length is independent of other operations and requires the
integral

∫ L/2+d/2
L/2−d/2 dz sin(nπz/L). It is easily seen that the in-

tegral vanishes for even n, while for odd values n = 2j + 1
we obtain
∫ L/2+d/2

L/2−d/2
dz sin

(
(2j + 1)πz

L

)

= (−1)j 2L

(2j + 1)π
sin

(
(2j + 1)πd

2L

)
. (31)

On the other hand, writing the axial position of the ion as
z0 = L/2 + ζ0, where ζ0 denotes the axial deviation of the
ion from the trap center, we find for odd n = 2j + 1

sin

(
nπz0

L

)
= (−1)j cos

(
(2j + 1)π

L
ζ0

)
. (32)

Inserting these results into (18), we obtain

Qm(ρ0, z0) = − q

4π

8

π

∞∑

j=0

1

2j + 1
sin

(
(2j + 1)π

2

d

L

)

× cos

(
(2j + 1)π

L
ζ0

)
Im((2j + 1)πρ0/L)

Im((2j + 1)πa/L)
.

(33)

The total charge induced on segment Si can now be calcu-
lated from (15),
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Qi (x0) = − q

4π

8

π

∞∑

j=0

1

2j + 1
sin

(
(2j + 1)π

2

d

L

)

× cos

(
(2j + 1)π

L
ζ0

)

×
∞∑

m=0

φi,m(ϕ0)
Im((2j + 1)πρ0/L)

Im((2j + 1)πa/L)
. (34)

This is a rigorous result; no approximations have been in-
troduced. Note that for a 4-fold segmented ring electrode
(α + α′ = π/2) with d = L and L → ∞ we obtain for a
charge at the trap center

∑4
i=1 Qi (0,0,L/2) = −q , as ex-

pected.

4 Charges and currents induced by ions moving
in a cylindrical Penning trap

The FT-ICR method is based on detecting electric charges
on the trap electrodes that are induced by the orbiting
trapped ions. The charges, or more precisely the electric cur-
rents due to the flow of these charges, are recorded as func-
tions of time and are subsequently Fourier analyzed to reveal
information on the ion motion.

So far, we have studied the surface charges induced on
the detection segments Si by an ion at a fixed position x0

inside the trap. Now we let the ion move along a trajectory
x0(t) inside the trap. As the position of the ion relative to
the detector segments Si changes, the induced charges will
change correspondingly, and currents will flow between the
detector segments and the ground. Since the mass of an ion
of mass number A ≈ 50 corresponds to 105 electron masses,
we expect that the electrons in the metal surface reflect mo-
tions of the ion almost instantaneously and without notice-
able back reaction on the ion, at least for short observation
times.

4.1 Ion orbits

We assume that the ions perform a motion as is typical
for Penning traps, with three fundamental frequencies ν+ =
ω+/(2π), ν− = ω−/(2P i), and νz = ωz/(2P i), and with
corresponding phase angles ϕ+(t) = ω+t + χ+, ϕ−(t) =
ω−t + χ−, and ϕz(t) = ωzt + χz [15, 16]. The modified
cyclotron frequency ν+ is usually in the MHz range or
above, while the axial frequency νz and the magnetron fre-
quency ν− are smaller by one or several orders of magni-
tude.

x(t) = R+ cosϕ+(t) + R− cosϕ−(t),

y(t) = −R+ sinϕ+(t) − R− sinϕ−(t), (35)

z(t) = L/2 + Z cosϕz(t).

This assumption certainly holds near the center of the trap,
where the harmonic approximation is valid. For larger or-
bits, one may try to apply corrections that take into account
the anharmonic terms in the electrostatic potential and the
corresponding shifts in the fundamental frequencies. Un-
fortunately, no analytic solutions are available; already the
treatment of the lowest (quartic or octupolar) anharmonic
term presents enormous difficulties [17, 18]. For this rea-
son, (35) will be used in the subsequent calculations for lack
of better alternatives.

The Cartesian relations (35) imply for the cylindrical co-
ordinates ρ and ϕ

ρ(t) =
√

R2+ + R2− + 2R+R− cos
(
ϕ+(t) − ϕ−(t)

)
, (36)

ϕ(t) = arctan

[
− R+ sinϕ+(t) + R− sinϕ−(t)

R+ cosϕ+(t) + R− cosϕ−(t)

]
. (37)

In complex notation, we can write

u(t) = x(t) + iy(t) = ρ(t)eiϕ(t)

= R+ exp
[−iϕ+(t)

] + R− exp
[−iϕ−(t)

]
. (38)

4.2 Series expansions

The ion trajectory (35) will now be inserted into (34), so
that the charges Qi induced on the detection segments be-
come time-dependent functions. In order to represent them
as Fourier expansions, we use series expansions of cosx and
of the modified Bessel function Im(x) to extract and com-
bine the time-dependent factors.

Beginning with the axial coordinate, we use (10.12.3) in
[19] and find

cos

(
(2j + 1)πZ

L
cosϕz(t)

)

= J0

(
(2j + 1)π

Z

L

)

+ 2
∞∑

�=1

(−1)mzJ2�

(
(2j + 1)π

Z

L

)
cos

(
2�ϕz(t)

)
, (39)

where the Jn(x) are ordinary Bessel functions with integer
index.

The radial coordinate occurs in the argument of the mod-
ified Bessel function Im. The power series expansion of Im
yields

Im

(
(2j + 1)πρ(t)

L

)
=

∞∑

k=0

((2j + 1)π)m+2k

2m+2kk!(m + k)!
(

ρ(t)

L

)m+2k

.

(40)

The time dependence due to the radial coordinate ρ is en-
coded in the powers ρ(t)m+2k . Finally, the time dependence
due to the angular coordinate enters via φi,m(t).
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Fig. 3 Some coefficients Am,k,0(Z) calculated for the KATRIN trap.
Dashed line m = 0, solid line m = 1, dotted line m = 2, dot-dashed
line m = 3

Collecting these results, we obtain the series expansion

Qi (t) =
∞∑

m=0

φi,m

(
ϕ(t)

)
Qm

(
ρ(t), z(t)

)

= −q

∞∑

m=0

∞∑

k=0

∞∑

�=0

Am,k,�(Z,a,L,d)

× cos
(
2�ϕz(t)

)
φi,m

(
ϕ(t)

)(ρ(t)

a

)m+2k

, (41)

with coefficients Am,k,� that depend on the axial amplitude
Z and on the geometry of the cylindrical trap, i.e. on the
parameters a, d , and L.

Am,k,�(Z) = (2 − δ0,�)
(−1)�

π2

(πa/L)m+2k

k!(m + k)!

×
∞∑

j=0

J2�

(
(2j + 1)πZ

L

)

× sin

(
(2j + 1)πd

2L

)

× (j + 1
2 )m+2k−1

Im((2j + 1)πa/L)
. (42)

The Kronecker symbol δ0,� equals 1 for � = 0 and is zero
otherwise. The remaining task is to represent the last line of
(41) in the form of a Fourier series.

As an example, we display in Fig. 3 the Z-dependence
of some coefficients Am,k,l(Z) calculated for the cylindrical
trap at the KATRIN experiment [13]. The trap parameters
are a = 35.5 mm, L = 236 mm, d = 56 mm, and α = 45◦.
The coefficients depend strongly on the parameter d , the
width of the detection segments.

4.3 The leading terms

At this point, we take a look at the leading terms in our series
expansion; more precisely, we keep only the first term in
the series expansion of the modified Bessel functions and
disregard terms with k �= 0. Equation (41) then reduces to

Qi (t) = −q

∞∑

m=0

∞∑

�=0

ci,mAm,0,�(Z) cos
(
2�ϕz(t)

)

×
(

ρ(t)

a

)m

cos
(
m

[
ϕ(t) − (i − 1)π/2

])
. (43)

We wish to write the induced charge in the form of a Fourier
series. To this end, we raise (38) to the mth power to obtain

ρm(t)eimϕ(t) = (
ρ(t)eiϕ(t)

)m

= (
R+ exp

[−iϕ+(t)
] + R− exp

[−iϕ−(t)
])m

=
m∑

j=0

(
m

j

)
R

m−j
+ R

j
−

× exp
[−i

(
(m − j)ϕ+(t) + jϕ−(t)

)]
. (44)

In view of (21)–(24), we generalize this result by performing
a shift ϕ(t) → ϕ(t) − (i − 1)π/2 (i = 1, . . . ,4). Taking the
real part of the generalized (44), we then obtain

ρm(t) cos
[
m

(
ϕ(t) − (i − 1)π/2

)]

=
m∑

j=0

(
m

j

)
R

m−j
+ R

j
− cos

[
(m − j)ϕ+(t) + jϕ−(t)

+ m(i − 1)π/2
]
. (45)

Using (21)–(24) and inserting (45), we find

Qi (t) = −q

∞∑

m=0

∞∑

�=0

ci,mAm,0,�(Z)

m∑

j=0

(
m

j

)
R

m−j
+ R

j
−

× cos
[
2�ϕz(t)

]

× cos
[
(m − j)ϕ+(t) + jϕ−(t) + m(i − 1)π/2

]
.

(46)
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We use the identity

cosϕ1 cosϕ2 = (1/2)
(
cos(ϕ1 + ϕ2) + cos(ϕ1 − ϕ2)

)
(47)

to combine the two cosine functions. The induced charge
can then be written in the form of a Fourier series

Qi (t) = −q
∑

m+

∑

m−

∑

mz

W(i)
m+,m−,mz

(R+,R−,Z)

× cos
(
m+ϕ+(t) + m−ϕ−(t) + mzϕz(t)

+ χm+,m−,i

)
, (48)

with χm+,m−,i = (m++m−)(i−1)π/2. The m+ and m− are
non-negative integers, the mz are positive or negative even
integers. The Fourier amplitudes are

W(i)
m+,m−,mz

= 1

2
(1 + δ0,�)ci,mAm,0,�(Z)

×
(

m+ + m−
m−

)(
R+
a

)m+(
R−
a

)m−
, (49)

with m = m+ + m− and � = |mz|/2. Remember that the Z-
dependence of Am,0,� originates from the Bessel function
J2�, so that Am,0,�(Z) ∝ Z2� = Z|mz|.

We thus conclude that in leading order for all frequency
combinations m+ω+ + m−ω− + mzωz, the Fourier ampli-
tude is proportional to the monomial R

m++ R
m−− Z|mz|.

4.4 Higher corrections

The discussion must be completed by considering also the
terms with k �= 0. These terms are generally smaller than
the leading terms by additional factors (ρ(t)/a)2k . Equation
(41) requires the calculation of ρ(t)m+2k cosmϕ(t). With
(36), (44), and (47), one derives

ρ(t)m+2k cosmϕ(t) =
∑

m+

∑

m−
P

m+,m−
m,k (R+,R−)

× cos
(
m+ϕ+(t) + m−ϕ−(t)

)
, (50)

where the P
m+,m−
m,k (R+,R−) are uniquely determined homo-

geneous polynomials of degree m + 2k in the variables R+
and R−, with m = m++m− ≥ 0. In the previous subsection,
we encountered the special case

P
m+,m−
m,0 (R+,R−) =

(
m+ + m−

m−

)
R

m++ R
m−− . (51)

Similarly as for (45), we must generalize (50) by per-
forming a shift ϕ(t) → ϕ(t) − (i − 1)π/2 (i = 1, . . . ,4) to
take into account all four detection electrodes.

Instead of deriving a general formula for the polynomials
P

m+,m−
m,k (R+,R−), it is more convenient to illustrate their

calculation by an example, say for m = 3 and k = 2. In that
case, we have

ρ3 cos 3ϕρ4 = 1

2

[(
ρeiϕ)3 + (

ρe−iϕ)3]

× [
R2+ + R2− + 2R+R− cos(ϕ+ − ϕ−)

]2

= [
R3+ cos 3ϕ+ + 3R2+R− cos(2ϕ+ + ϕ−)

+ 3R+R2− cos(ϕ+ + 2ϕ−) + R3− cos 3ϕ−
]

× [
R4+ + 4R2+R2− + R4− + 2R2+R2−

× cos(2ϕ+ − 2ϕ−)

+ 4R+R−
(
R2+ + R2−

)
cos(ϕ+ − ϕ−)

]

= R3+
(
R4+ + 10R2+R2− + 10R4−

)
cos 3ϕ+

+ R3−
(
R4− + 10R2+R2− + 10R4+

)
cos 3ϕ−

+ R2+R−
(
5R4+ + 20R2+R2− + 10R4−

)

× cos(2ϕ+ + ϕ−)

+ R2−R+
(
5R4− + 20R2+R2− + 10R4+

)

× cos(2ϕ− + ϕ+)

+ R4+R−
(
2R2+ + 5R2−

)
cos(4ϕ+ − ϕ−)

+ R4−R+
(
2R2− + 5R2+

)
cos(4ϕ− − ϕ+)

+ R5+R2− cos(5ϕ+ − 2ϕ−) + R5−R2+
× cos(5ϕ− − 2ϕ+). (52)

This expression represents the desired double Fourier de-
composition of ρ3 cos 3ϕρ4 with respect to the frequencies
ω+ and ω−. The polynomials P

m+,m−
3,2 (R+,R−) can now be

read off from this result as follows:

P
3,0
3,2 (R+,R−) = R3+

(
R4+ + 10R2+R2− + 10R4−

)
,

P
0,3
3,2 (R+,R−) = R3−

(
R4− + 10R2+R2− + 10R4+

)
,

P
2,1
3,2 (R+,R−) = R2+R−

(
5R4+ + 20R2+R2− + 10R4−

)
,

P
1,2
3,2 (R+,R−) = R2−R+

(
5R4− + 20R2+R2− + 10R4+

)
,

P
4,−1
3,2 (R+,R−) = R4+R−

(
2R2+ + 5R2−

)
,

P
−1,4
3,2 (R+,R−) = R4−R+

(
2R2− + 5R2+

)
,

P
5,−2
3,2 (R+,R−) = R5+R2−,

P
−2,5
3,2 (R+,R−) = R5−R2+.

Having explained the computational method, we display in
Table 1 a number of low-degree polynomials for use in prac-
tical applications.

5 Detailed results

In this section, we classify and overview the expected detec-
tion signals. We first deal with the main signals, namely the
multiples of the modified cyclotron frequency and the mag-
netron frequency. Thereafter magnetron and axial sidebands
are discussed.
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Table 1 The lowest polynomials P
m+,m−
m,k (R+,R−)

m k m+ m− P
m+,m−
m,k (R+,R−)

0 0 0 0 1

0 1 0 0 R2+ + R2−
0 1 1 −1 2R+R−

0 2 0 0 R4+ + 2R2+R2− + R4−
0 2 1 −1 4R+R−(R2+ + R2−)

0 2 2 −2 2R2+R2−

1 0 1 0 R+
1 0 0 1 R−

1 1 1 0 R+(R2+ + 2R2−)

1 1 0 1 R−(R2− + 2R2+)

1 1 2 −1 R2+R−
1 1 −1 2 R2−R+

1 2 1 0 R+(R4+ + 6R2+R2− + 3R4−)

1 2 0 1 R−(R4− + 6R2+R2− + 3R4+)

1 2 2 −1 R2+R−(R2+ + 3R2−)

1 2 −1 2 R2−R+(R2− + 3R2+)

1 2 3 −2 R3+R2−
1 2 −2 3 R3−R2+

2 0 2 0 R2+
2 0 0 2 R2−
2 0 1 1 2R+R−

2 1 2 0 R2+(R2+ + 3R2−)

2 1 0 2 R2−(R2− + 3R2+)

2 1 1 1 3R+R−(R2+ + R2−)

2 1 3 −1 R3+R−
2 1 −1 3 R3−R+

The general Fourier series for the detection signal at the
detection segment Si has been stated in (48). Including cor-
rections with k �= 0, the Fourier amplitude for the signal at
the frequency m+ω+ + m−ω− + mzωz can now be written
as

W(i)
m+,m−,mz

(R+,R−,Z)

=
∞∑

m=0

∞∑

k=0

∞∑

�=0

1

2
(1 + δ0,�)δm,m++m−δ2�,mz

× ci,mAm,k,�(Z)
1

am+2k
P

m+,m−
m,k (R+,R−). (53)

After evaluation of the Kronecker symbols in (53), the for-
mal triple summation reduces to a single summation over k.

5.1 Signal at the modified cyclotron frequency ω+:
m = m+ = 1, m− = mz = 0

This signal is the most important one for applications of FT-
ICR spectrometry. In our theoretical model, its amplitude is
given by

W
(i)
1,0,0 = R+

a

(
ci,1A1,0,0(Z) + ci,1

a2
A1,1.0(Z)

(
R2+ + 2R2−

)

+ ci,1

a4
A1,2,0(Z)

(
R4+ + 6R2+R2− + 3R4−

) + · · ·
)

.

(54)

For values (R±/a)2 � 1, the first term dominates and the
signal rises linearly with R+. For larger values of R±, the
correction terms for k = 1,2, . . . must be taken into account.

5.2 Signal at the magnetron frequency ω−: m = m− = 1,
m+ = mz = 0

This signal is less important for practical applications. The
theoretical analysis is analogous to the preceding case, but
with the roles of modified cyclotron and magnetron oscilla-
tors interchanged.

W
(i)
0,1,0 = R−

a

(
ci,1A1,0,0(Z) + ci,1

a2
A1,1.0(Z)

(
R2− + 2R2+

)

+ ci,1

a4
A1,2,0(Z)

(
R4− + 6R2+R2− + 3R4+

) + · · ·
)

.

(55)

5.3 Signal at higher harmonics of the modified cyclotron
frequency m+ω+: m = m+ ≥ 1, m− = mz = 0

Higher harmonics of ω+ are observed and used in experi-
ments. Equation (53) predicts the amplitude to be propor-
tional to (R+/a)m+ :

W
(i)
m+,0,0 =

(
R+
a

)m+(
ci,m+Am+,0,0(Z)

+ ci,m+
a2

Am+,1,0(Z)

× (
R2+ + (m+ + 1)R2−

) + · · ·
)

. (56)

5.4 Signal at higher harmonics of the magnetron frequency
m−ω−: m = m− ≥ 1, m+ = mz = 0

The theoretical expectation is analogous to the previous
case,

W
(i)
0,m−,0 =

(
R−
a

)m−(
ci,m−Am−,0,0(Z) + ci,m−

a2
Am−,1,0(Z)

× (
R2− + (m− + 1)R2+

) + · · ·
)

. (57)
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5.5 Signal at higher harmonics of the axial frequency
mzωz: |mz| = 2� �= 0, m = m+ = m− = 0

Our model calculation assumes a cylindrical Penning trap
that is perfectly aligned with the magnetic field and that
has a geometry symmetric with respect to the substitution
ζ ↔ −ζ , i.e. a reflection at the central plane of the trap
(ζ = 0 or z = L/2). As a consequence, we encounter only
even functions of ζ = Z cos(ωzt + χz). There is no room in
the model for odd functions of ζ and thus for odd multiples
of ωz. For even |mz| = 2� �= 0, we find from (53)

W
(i)
0,0,mz

=
∞∑

k=0

1

2
ci,0A0,k,�(Z)a−2kP

0,0
0,k (R+,R−)

= 1

2
ci,0

(
A0,0,�(Z) + A0,1,�(Z)

R2+ + R2−
a2

+ · · ·
)

.

(58)

5.6 Magnetron sidebands

Magnetron sidebands of the modified cyclotron frequency
ω+ are signals at frequencies ω++m−ω− differing from ω+
by multiples of the magnetron frequency ω−. For m− > 0
we speak of a ‘blue’ sideband, for m− < 0 of a ‘red’ side-
band. The concept is extended in an obvious fashion to mul-
tiples of the modified cyclotron frequency m+ω+. It is inter-
esting to note that blue and red magnetron sidebands arise
by different mechanisms and therefore are not expected to
be symmetric. In fact, the blue sideband m+ω+ + m−ω−
(m− > 0) originates in the expansion of ρm(t) cos[mϕ(t)],
(45) with m = m+ + m−. The Fourier amplitude for a blue
magnetron sideband follows from (53) to be

W
(i)
m+,m−,0 = R

m++ R
m−−

am++m−

[
ci,mAm,0,0(Z)

(
m

m−

)

+ ci,mAm,1,0(Z)

[(
m + 1

m−

)
R2+
a2

+
(

m + 1

m+

)
R2−
a2

]
+ · · ·

]
. (59)

On the other hand, the red magnetron sidebands arise from
higher terms in the expansion of the modified Bessel func-
tions, (40),

ρ2k(t) = (
R2+ + R2− + 2R+R− cos

(
ϕ+(t) − ϕ−(t)

))k

= 2kRk+Rk− cos
[
k
(
ϕ+(t) − ϕ−(t)

)] + · · · . (60)

Consider for example the red magnetron sideband m+ω+ −
kω− (k > 0). Its leading term arises from
(
ρ(t)

)m+−k cos
[
(m+ − k)ϕ(t)

]
ρ2k(t)

= 2kR
m++ Rk− cos

[
(m+ − k)ϕ+(t)

]

× cos
[
k
(
ϕ+(t) − ϕ−(t)

)] + · · · . (61)

Applying the identity (47) to the product of the cosines, the
right-hand side supplies the leading term for the red side-
band m+ω+ − kω− and a correction term for the blue side-
band (m+ − 2k)ω+ + kω−. Thus, the leading contribution
for the red sideband m+ω+ − kω− is found to be

W
(i)
m+,−k,0 = ci,mAm,k,0(Z)

1

2

R
m++ Rk−

am++k
+ · · · , (62)

with m = m+ − k.

5.7 Axial sidebands

All signals at the multiples of the modified cyclotron fre-
quency m+ω+ and their magnetron sidebands m+ω+ +
m−ω− are accompanied by ‘blue’ and ‘red’ axial side-
bands at frequencies m+ω+ + m−ω− + 2�ωz and m+ω+ +
m−ω− − 2�ωz (� = 1,2,3, . . .). This follows from (41)
when we apply the identity (47) to the product
cos(2�ϕz) cos(m+ϕ+ + m−ϕ−). It follows that the ampli-
tudes at the blue axial sidebands must have the same magni-
tudes as at the corresponding red sidebands.

6 Detection schemes

In the preceding sections, we have calculated the electric
charge Qi (t) induced on the single detection segment Si

by the moving ions. Measuring and Fourier analyzing the
currents flowing between the ground and detection segment
Si represents the basic detection procedure. All results dis-
cussed above refer to this case (single-electrode detection).

Stronger signals are obtained by the use of two op-
posite detection electrodes, S1, S3 or S2, S4, either sub-
tracting (differential or dipole detection) or adding (sum
or quadrupole detection) the corresponding signals [20–23].
Here we wish to remark that on account of (27)–(30) the two
detection schemes discriminate between m = m+ +m− odd
and even. Dipole detection selects odd m, we see Fourier
signals at ω±, 3ω±, ω+ ± 2ω−, and so on, while quadrupole
detection selects even m, we see Fourier signals at 2ω±,
4ω±, ω+ ± ω−, ω+ ± 3ω−, and so on.

Consider specifically the modified cyclotron frequen-
cy ω+. In dipole detection, we expect to see the even mag-
netron sidebands ω+ ±2kω−, while in quadrupole detection
the odd sidebands ω+ ± (2k + 1)ω− are seen.

For an overview of experimental work and numeri-
cal modeling relating to sidebands and various detection
schemes, see Grosshans et al. [12] and Hendrickson et
al. [11]. Our analytical results corroborate their findings.

7 Application to ion cyclotron resonance

In recent experimental work, Heck et al. [24] have inves-
tigated by the FT-ICR method the interconversion between
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Fig. 4 Conversion line shape for quadrupole excitation with pulse du-
ration τ = τc (i.e. complete conversion at frequency νc = ν+ + ν−).
Thick solid line: conversion profile as measured with ToF-ICR mass
spectrometry and predicted for FT-ICR mass spectrometry at fre-
quency 2ν+. Thin solid line: conversion profile predicted for FT-ICR
mass spectrometry at frequency νc = ν+ +ν−. Dashed line: conversion
profile predicted for FT-ICR mass spectrometry at frequency ν+

the magnetron and the cyclotron motional modes in a Pen-
ning trap due to a quadrupolar rf field with a frequency near
the cyclotron frequency.1 The height of the FT-ICR sig-
nal at the modified cyclotron frequency ν+ was monitored
while the frequency of the rf field was scanned over an in-
terval about the true cyclotron frequency νc. According to
the model calculation developed in this paper, this signal
should be proportional to the cyclotron radius of the ions
at the end of the rf pulse, R+(τ ; δ), where δ denotes the
detuning of the quadrupolar rf field (see (54)). For compar-
ison, conversion profiles obtained by the time-of-flight ion-
cyclotron-resonance (ToF-ICR) method are proportional to
n+(τ, δ) = R2+(τ ; δ)/R2−(0). Thus, FT-ICR profiles taken at
frequency ν+ must be squared for comparison with the ToF-
ICR profiles. On the other hand, according to (56), FT-ICR
profiles taken at frequency 2ν+ should be proportional to
R2+(τ ; δ) and thus proportional to the ToF-ICR profiles.

A very different conversion profile is obtained when data
are taken at the true cyclotron frequency νc = ν+ + ν−. The
FT-ICR amplitude is now expected to be proportional to
R+(τ ; δ)R−(τ ; δ) according to (59). Starting with ions in
pure magnetron motion, we expect complete conversion into
cyclotron motion after a quadrupolar excitation of duration
τc and with detuning δ = 0. This means R−(τc; δ = 0) = 0;
thus, we expect a zero in the FT-ICR conversion profile at
the resonance frequency νc.

This has been illustrated in Figs. 4 and 5, where we com-
pare FT-ICR conversion profiles taken at the modified cy-
clotron frequency ν+ (dashed line), at 2ν+ (thick solid line),
and at the true cyclotron frequency νc = ν+ + ν− (thin solid
line). Figure 4 shows FT-ICR profiles after a pulse duration
τc, when we expect complete conversion for δ = 0. Figure 5

1For a more detailed theoretical discussion, see [24].

Fig. 5 Same as Fig. 4, but with pulse duration τ = 0.5τc

shows the expected FT-ICR profiles after a duration of the
quadrupole excitation of only 0.5 τc.

8 Conclusions

In this work, we have theoretically investigated the Fourier
amplitudes relevant for FT-ICR ion detection in a cylin-
drical Penning trap with a 4-fold or 8-fold segmented ring
electrode. Using a Green’s function strategy proposed by
Grosshans et al. [12], explicit expressions were obtained
for the electric charge induced on the detection segments of
the ring electrode. Ion orbits were assumed to remain suffi-
ciently close to the trap center in a region where anharmonic
potential terms do not yet play a significant role. The expres-
sion for the induced charge could then be written as a triple
Fourier series

Qi(t) =
∑

W(i)
m+,m−,mz

(R+,R−,Z)

× cos
[
(m+ω+ + m−ω− + mzωz)t

]
, (63)

where m+, m−, mz are integers 0,±1,±2, . . . , and where
R± and Z are the cyclotron and magnetron radii and
the axial amplitude, respectively. The coefficients
Wm+,m−,mz(i)(R+,R−,Z) indicate the strength of the FT-
ICR signal at the frequency combination m+ω+ + m−ω− +
mzωz and its dependence on R+, R−, and Z. The mathe-
matical derivation shows that

W(i)
m+,m−,mz

(R+,R−,Z)

∝ (R+/a)|m+|(R−/a)|m−|(Z/L)|mz|. (64)

The fact that R±/a < 1 and Z/L � 1 establishes a hier-
archy of detection frequencies, with the modified cyclotron
frequency ω+ and the magnetron frequency ω− taking the
leading positions. Higher harmonics as well as magnetron
and axial sidebands of these frequencies were discussed.
In all cases, analytic expressions for the magnitudes of the
Fourier amplitudes were worked out. The theory provides
insight into the different origins of ‘blue’ and ‘red’ mag-
netron sidebands, which give rise to an asymmetry, and into
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why the blue sidebands may be expected to be more promi-
nent than the red sidebands. Similarly, it is made clear why
blue and red axial sidebands occur only at even multiples
of the axial frequency and why corresponding blue and red
axial sidebands must have amplitudes of equal magnitude.
These results are in agreement with the findings of var-
ious experiments and numerical [11] and analytical stud-
ies [12].
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