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Abstract Based on the Collins integral formula and the
Hermite–Gaussian expansion of a Lorentz function, an an-
alytical expression for the Wigner distribution function
(WDF) of Lorentz and Lorentz–Gauss beams through a
paraxial ABCD optical system is derived. The properties of
the WDF of Lorentz and Lorentz–Gauss beams propagat-
ing in free space are demonstrated. The normalized WDFs
of Lorentz and Lorentz–Gauss beams at the different spatial
points are depicted in the several observation planes. The
influences of the beam parameters on the WDF of Lorentz
and Lorentz–Gauss beams in free space are also analyzed
at different propagation distances. The special WDF of a
Lorentz beam results in its higher angular spreading than
the Gaussian beam.

1 Introduction

The Wigner distribution function (WDF) was first proposed
to account for quantum corrections to classical statistical
mechanics [1]. Now, the WDF provides a powerful tool in
the description of coherent and partially coherent beams and
their propagation in linear and nonlinear media [2]. The
properties of the WDF of an optical beam through first-order
optical systems have been investigated [3–5]. The WDF and
its applications to optical problems especially in the field of
partial coherence have been elaborated [6]. It is shown in [7]
that for a Gaussian–Schell beam passing through a complex
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optical system and its WDF distribution, ABCD transform
law holds. Based on the Wigner formalism for analyzing the
propagation of partially coherent beams, an exact solution
describing the self-similar dynamics of partially coherent
beams in nonlinear and noninstantaneous Kerr media has
been presented and analyzed [8]. The WDF has also been
applied to the partially coherent nonparaxial beams [9, 10].
The WDF of a circular or rectangular aperture has been
presented [11]. WDFs of Hermite–Gaussian and Laguerre–
Gaussian modes have been derived and expressed in terms of
Laguerre polynomials, respectively [12–14]. The WDF of an
Airy beam has been used to explain the intriguing features of
an Airy beam [15]. The WDF of Hermite–cosine-Gaussian
beams through an apertured optical system has been exam-
ined [16]. Based on a linear systems approach, the WDF
of volume holograms with arbitrary index modulation has
been obtained [17]. An iterative method for simulating beam
propagation in nonlinear media has been proposed by using
the Hamiltonian ray tracing and the WDF [18].

Lorentz–Gauss beams are introduced to describe the ra-
diation emitted by a single-mode diode laser [19, 20]. The
Lorentz beam is a special case of Lorentz–Gauss beams.
The properties of Lorentz and Lorentz–Gauss beams have
been extensively examined [21–30]. To further analyze the
properties of Lorentz and Lorentz–Gauss beams, in this pa-
per we investigate the WDF of Lorentz and Lorentz–Gauss
beams through a paraxial ABCD optical system. As the com-
plementary error function emerges in the optical field of
Lorentz and Lorentz–Gauss beams through a paraxial ABCD
optical system, it is difficult to further obtain the analytical
expression of the WDF. Therefore, the Hermite–Gaussian
expansion of a Lorentz function is used in the source plane,
which results in the outcome of an analytical expression of
the WDF.

mailto:zhouguoquan178@gmail.com


184 G. Zhou, R. Chen

2 WDF of Lorentz and Lorentz–Gauss beams through
a paraxial optical system

In the Cartesian coordinate system, the z-axis is taken to be
the propagation axis. The Lorentz–Gauss beam in the source
plane z = 0 takes the form

E(x,y,0) = E(x,0)E(y,0), (1)

with E(j,0) given by

E(j,0) = w0j

j2 + w2
0j

exp

(
− j2

w2
0

)
, (2)

where j = x or y (hereafter), w0x and w0y are the param-
eters related to the beam widths of the Lorentz part in the
x- and y-directions, respectively, and w0 is the waist of the
Gaussian part. The Lorentz distribution can be expanded
into the linear superposition of finite terms of Hermite–
Gaussian functions [31]:

1

j2 + w2
0j

=
√

π

2

1

w2
0j

N∑
m=0

σ2mH2m

(
j

w0j

)
exp

(
− j2

2w2
0j

)
,

(3)

where N is the number of terms in the expansion. The
weight coefficient σ2m is given by [31]
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where erfc(·) is the complementary error function. H2m(·)
is the 2mth-order Hermite polynomial. Therefore, (2) can
be rewritten as follows:
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√
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where

1

u2
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= 1

w2
0

+ 1

2w2
0j

. (6)

Since the two-dimensional Lorentz–Gauss beam is the prod-
uct of two one-dimensional Lorentz–Gauss beams, we con-
sider the WDF of a one-dimensional Lorentz–Gauss beam
hereafter. The WDF that corresponds to a one-dimensional
optical field in an observation plane is defined by [1]

W(x,vx) =
∫ ∞

−∞
E

(
x + x′

2
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E∗
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2

)

× exp(−i2πvxx
′) dx′, (7)

where vx denotes the spatial-frequency variable in the phase
space, and the asterisk means the complex conjugation. Sub-
stituting (5) into (7) and using the integral formulas [32]:
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one can obtain the WDF of a Lorentz–Gauss beam in the
j -direction of the source plane:
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where [(s1 + s2)/2] gives the greatest integer less than or
equal to (s1 + s2)/2. If w0 tends to infinity, the Lorentz–
Gauss beam reduces to be a Lorentz beam. In this case,
we insert (3) into (7) and use the following integral for-
mula [32]:∫ ∞

−∞
exp
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= 2m2
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The WDF of a Lorentz beam in the j -direction of the source
plane yields
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where L
2m2−2m1
2m1

(·) is the associated Laguerre polynomial.
The propagation of a Lorentz–Gauss beam through a

paraxial ABCD optical system is described by the Collins
integral formula

E(j, z) =
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where A,B,C, and D are the transfer matrix elements of the
paraxial optical system. By using the integral formula [32]∫ ∞
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the propagation of a Lorentz–Gauss beam through a paraxial
ABCD optical system turns out to be
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where αj is defined by
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Substituting (17) into (7), we can obtain the WDF of a
Lorentz–Gauss beam through a paraxial ABCD optical sys-
tem,
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where the auxiliary parameters are defined as follows:

βj = − ikw0j

2B(α2
j − αj )1/2

, (19)

ξ1j = k2w2
0j

16αjB2
+ k2w2

0j

16α∗
j B2

, (20)

η1j = k2w2
0j j

8α∗
j B2

− k2w2
0j j

8αjB2
+ ikDj

2B
− iπvj . (21)

B = 0 corresponds to an image-forming system. In this case,
the output field of a Lorentz–Gauss beam yields
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The corresponding WDF of a Lorentz–Gauss beam through
an image-forming system is found to be
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where the auxiliary parameters are defined by



186 G. Zhou, R. Chen

Fig. 1 Contour graph of
normalized WDF in the
x-direction of a Lorentz beam at
different observation planes in
free space. ex = 0. (a) z = 0.
(b) z = w2

0x/λ. (c) z = 5w2
0x/λ.

(d) z = 10w2
0x/λ

ξ2j = 1

2Au2
j

, (24)

η2j = ikCj

2A
− iπvj . (25)

We note that the value of σ2m dramatically decreases
with increasing the even number 2m: σ0 = 0.7399, σ2 =
0.9298 × 10−2, and σ10 = 0.3008 × 10−6. Therefore, (11),
(13), (18), and (23) converge quickly. The WDF of two-
dimensional Lorentz and Lorentz–Gauss beams through a
paraxial ABCD optical system can be readily obtained by
virtue of the above results:

W(x,y, vx, vy) = W(x,vx)W(y, vy). (26)

3 Numerical calculations and analysis

Now, the WDFs of Lorentz and Lorentz–Gauss beams prop-
agating in free space are calculated by using the formu-
lae derived above. As the WDFs in the x- and y-directions
have the same variational law, we first only consider the
WDF in the x-direction. Figures 1, 2, 3, and 4 represent
the normalized WDFs of Lorentz and Lorentz–Gauss beams
at several different observation planes in free space. The
normalized WDF is given by W(x,vx)/Wmax(x, vx), where
the subscript denotes taking the maximum value. To conve-
niently describe the Lorentz–Gauss beam, a new parameter
ej = w0j /w0 is introduced. If w0 tends to infinity, ej trends

to zero. In this case, the Lorentz–Gauss beam reduces to be
a Lorentz beam. ex = 0,0.5,1, and 3 in Figs. 1, 2, 3, and
4, respectively. In Figs. 1, 2, 3, and 4, the transversal spa-
tial coordinate, the spatial frequency variable, and the axial
propagation distance are scaled in proportion to 1/w0x,w0x ,
and w2

0x/λ. The Lorentz–Gauss beam is predominated by
the smaller one of the Lorentz and Gaussian parts. In the
source plane, therefore, the pattern of WDF of a Lorentz–
Gauss beam with small ex is similar to a Lorentz profile. The
pattern of WDF of a Lorentz–Gauss beam with large ex in
the source plane is similar to a Gaussian profile. When w0x

is equal to w0, the pattern of WDF of a Lorentz–Gauss beam
in the source plane is the modulation of the Gaussian profile
by a Lorentz distribution. Upon propagation in free space,
the pattern of WDF of a Lorentz–Gauss beam twists clock-
wise. Moreover, the pattern of WDF shrinks in the direction
of the spatial frequency variable and elongates in the direc-
tion of the transversal spatial coordinate. With the increase
of the parameter ex , the angle that the pattern of WDF ro-
tates upon propagation also increases. For comparison, the
normalized WDF of a Gaussian beam at several different
observation planes in free space is also shown in Fig. 5.
Comparing Fig. 3 with Fig. 5, we can find that the spatial
extension of the Lorentz–Gauss beam is higher than that of
the Gaussian beam. Normalized WDF in the x-direction of
a Lorentz beam in the point x = 0 of different observation
planes of free space is shown in Fig. 6. Upon propagation
in free space, the normalized WDF in the x-direction of a
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Fig. 2 Contour graph of
normalized WDF in the
x-direction of a Lorentz–Gauss
beam at different observation
planes in free space. ex = 0.5.
(a) z = 0. (b) z = w2

0x/λ.
(c) z = 5w2

0x/λ.
(d) z = 10w2

0x/λ

Fig. 3 Contour graph of
normalized WDF in the
x-direction of a Lorentz–Gauss
beam at different observation
planes in free space. ex = 1.
(a) z = 0. (b) z = w2

0x/λ.
(c) z = 5w2

0x/λ.
(d) z = 10w2

0x/λ



188 G. Zhou, R. Chen

Fig. 4 Contour graph of
normalized WDF in the
x-direction of a Lorentz–Gauss
beam at different observation
planes in free space. ex = 3.
(a) z = 0. (b) z = 0.4w2

0x/λ.
(c) z = w2

0x/λ. (d) z = 2w2
0x/λ

Fig. 5 Contour graph of
normalized WDF in the
x-direction of a Gaussian beam
at different observation planes
in free space. (a) z = 0.
(b) z = w2

0/λ. (c) z = 5w2
0/λ.

(d) z = 10w2
0/λ
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Fig. 6 Normalized WDF in the x-direction of a Lorentz beam at the point x = 0 of different observation planes in free space

Fig. 7 Normalized WDF in the x-direction of a Lorentz–Gauss beam at the point x = 0 of different observation planes in free space. ex = 1
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Fig. 8 Contour graph of
normalized WDF of a Lorentz
beam at several different points
in the source plane.
(a) x = y = 0. (b) x = 0 and
y = w0y . (c) x = −w0x and
y = −3w0y . (d) x = 3w0x and
y = 3w0y

Fig. 9 Contour graph of
normalized WDF of a Lorentz
beam at several points in the
observation plane of
z = 5w2

0x/λ. (a) x = y = 0.
(b) x = 0 and y = w0y .
(c) x = −w0x and y = −3w0y .
(d) x = 3w0x and y = 3w0y
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Fig. 10 Contour graph of
normalized WDF of a
Lorentz–Gauss beam at several
different points in the source
plane. ex = ey = 1.
(a) x = y = 0. (b) x = 0 and
y = 0.5w0y . (c) x = −0.5w0x

and y = −0.75w0y .
(d) x = 0.75w0x and
y = 0.75w0y

Lorentz beam in the point x = 0 steepens. WDF offers the
properties of optical beams both in the spatial domain and
the frequency domain. Upon propagation, a Lorentz beam
expands in the spatial domain. As a result, the normalized
WDF in the x-direction becomes narrower as z is increased.
Figure 7 represents normalized WDF in the x-direction of a
Lorentz–Gauss beam at the point x = 0 of different obser-
vation planes of free space; ex = 1 in Fig. 7. Also, the nor-
malized WDF of a Lorentz–Gauss beam in the point x = 0
steepens upon propagation.

As the WDF represents the energy of a ray at a given
space position (x, y) with an angle (vx, vy ) [3, 33], we now
analyze the novel properties of Lorentz and Lorentz–Gauss
beams by their WDFs at different space positions at different
propagation distances. The normalized WDFs of the Lorentz
beam as functions of vx and vy at several different positions
(x, y) are depicted in Figs. 8 and 9 for the source plane z = 0
and the observation plane z = 5w2

0x/λ, respectively. The
WDF of the Lorentz beam at the origin (0,0) of the source
plane is just a Lorentz-type profile. The WDF of the Lorentz
beam at other points of the source plane is composed of
a central dominant lobe and some side lobes. With the in-
crease of the departure distance from the origin, the number
of the side lobes also augments, and the pattern size of the
central dominant lobe decreases. The WDF of the Lorentz
beam at the origin of the observation plane z = 5w2

0x/λ is

a rotated Lorentz distribution. With varying the point (x, y),
the shape of the central dominant lobe of the WDF in the ob-
servation plane z = 5w2

0x/λ also changes. Compared Fig. 9
with Fig. 8, the angular extension of the Lorentz beam in
the observation plane z = 5w2

0x/λ is smaller than that in the
source plane. Secondly, the number of the side lobes of the
WDF in the observation plane z = 5w2

0x/λ is also smaller
than that in the source plane.

Figures 10 and 11 show the normalized WDFs of a
Lorentz–Gauss beam with ex = ey = 1 at different points
in the source plane z = 0 and in the observation plane
z = 5w2

0x/λ, respectively. ex and ey of the Lorentz beam
are equal to zero. With increasing the parameters ex and
ey , the number of side lobes at the point other than the ori-
gin decreases. In the case of ex = ey = 1, the side lobes in
the WDF of the Lorentz–Gauss beam completely disappear.
Moreover, the central lobe in the WDF of the Lorentz–Gauss
beam tends to a Gaussian-type profile. The distinction of
the Lorentz beam from the Gaussian beam is its high an-
gular spreading. The above research denotes that the high
angular spreading of Lorentz beam maybe caused by the
side lobes in the WDFs. Also, the side lobe existing in the
WDF of Lorentz beams results in the diffraction-free ranges
of this kind of beams in the x- and y-directions 2πw2

0x/λ

and 2πw2
0y/λ, which are longer than that of the Gaussian

beam.
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Fig. 11 Contour graph of
normalized WDF of a
Lorentz–Gauss beam at several
different points in the
observation plane of
z = 5w2

0x/λ. ex = ey = 1.
(a) x = y = 0. (b) x = 0 and
y = 0.5w0y . (c) x = −0.5w0x

and y = −0.75w0y .
(d) x = 0.75w0x and
y = 0.75w0y

4 Conclusions

Based on the Collins integral formula and the expansion of
Lorentz distribution, an analytical expression for the WDF
of Lorentz and Lorentz–Gauss beams through a paraxial
ABCD optical system is derived. The properties of the WDF
of Lorentz and Lorentz–Gauss beams propagating in free
space are demonstrated. The normalized WDFs of one-
dimensional Lorentz and Lorentz–Gauss beams are plot-
ted at several different observation planes. The normal-
ized WDFs of two-dimensional Lorentz and Lorentz–Gauss
beams at different spatial points are also depicted in sev-
eral observation planes. The influences of the beam parame-
ters on the WDF of Lorentz and Lorentz–Gauss beams in
free space are also analyzed at different propagation dis-
tances. When ex and ey of the Lorentz–Gauss beam are
far small, the side lobes exist in the WDF of the Lorentz–
Gauss beam at the point other than the origin. With increas-
ing the parameters ex and ey , the side lobes in the WDF of
the Lorentz–Gauss beam at the point other than the origin
gradually decrease and eventually disappear. The side lobes
in the WDF of Lorentz beam result in its different proper-
ties from the Gaussian beam. This research is beneficial to
the practical applications involving in the single-mode diode
laser. Though here we only consider the coherent Lorentz
and Lorentz–Gauss beams, the approach used here can also
be extended to the partially coherent Lorentz and Lorentz–
Gauss beams.
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