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Abstract We present a detailed theoretical and experimen-
tal study on the optical control of a trapped-ion qubit sub-
ject to thermally induced fluctuations of the Rabi frequency.
The coupling fluctuations are caused by thermal excitation
on three harmonic oscillator modes. We develop an effec-
tive Maxwell–Boltzmann theory which leads to a replace-
ment of several quantized oscillator modes by an effective
continuous probability distribution function for the Rabi fre-
quency. The model is experimentally verified for driving the
quadrupole transition with resonant square pulses. This al-
lows for the determination of the ion temperature with an
accuracy of better than 2% of the temperature pertaining to
the Doppler cooling limit TD over a range from 0.5TD to
5TD . The theory is then applied successfully to model ex-
perimental data for rapid adiabatic passage (RAP) pulses.
We apply the model and the obtained experimental param-
eters to elucidate the robustness and efficiency of the RAP
process by means of numerical simulations.

1 Introduction

Ions trapped in linear Paul traps allow for near-perfect re-
alizations of qubits, which can be coherently controlled
by driving on long-lived transitions between internal elec-
tronic states with lasers. Important applications range from
quantum information and simulation experiments, quantum
metrology, or fundamental quantum optics. One of the most
prominent challenges is given by the requirement to keep
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one or more ions sufficiently well localized that sufficiently
high fidelities of coherent control operations are attained.
This is usually achieved by sideband cooling of the ions
close to the motional ground state of one or more vibra-
tional modes. For larger ion numbers, however, the num-
ber of motional modes increases so that complete ground
state cooling becomes inconvenient. Furthermore, with the
advent of segmented microtraps, it became possible to store
an increased number of qubits and shuttle the qubits be-
tween different trap sites. This advantage is bought at the
price of heating rates which can be larger by several orders
of magnitude compared to conventional linear Paul traps.
Furthermore, motional energy can be transferred during the
shuttling operations. Thus, one has to resort to coherent con-
trol operations which are inherently robust against residual
motion of the qubits. In order to characterize the depen-
dence of the fidelity of these operations and find possible
ways for improvement, a theoretical tool is required for sim-
ulating the coherent dynamics of the qubit under the con-
sideration of multiple excited motional modes. The motion
leads to fluctuations of the Rabi frequency, which represent
an inhomogeneous broadening effect when a set of individ-
ual experimental runs is considered; however, as trapped ion
qubit measurements are generally conducted by repeating a
given control sequence and averaging over the qubit readout
result, the fluctuations manifest themselves as an effective
homogeneous broadening. We have developed an effective
Maxwell–Boltzmann theory which enables us to precisely
and efficiently calculate the averaged dynamics of such a
system subject to control laser pulses that are shaped in am-
plitude and frequency. This theoretical tool might find fur-
ther applications for closed-loop quantum control experi-
ments with shaped laser pulses [1], especially for optimized
entangling gates working in the thermal regime [2].
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We present a case study where we use this theoreti-
cal approach to model electron shelving dynamics on a
quadrupole transition for a Doppler cooled ion. This has
direct experimental relevance, as we encode the qubit in-
formation in the Zeeman split sublevels of the S1/2 ground-
state of a 40Ca+ ion [3], and we employ electron shelving on
the electric quadrupole transition S1/2 → D5/2 near 729 nm
with a decay time of 1.17 s [4] for qubit readout. Population
from only one of the qubit levels is to be transferred to the
metastable state such that the occurrence of resonance fluo-
rescence on a cycling transition is conditional on the qubit
state. In order to realize a transfer process which is suffi-
ciently robust against experimental parameter fluctuations,
we make use of the rapid adiabatic transfer (RAP) process,
where the transfer pulses are adiabatically switched on and
off, and the laser frequency is swept (chirped) across the
atomic resonance [5]. This makes the transfer process in-
herently robust against fluctuations and drifts of the laser
frequency and power, as well as fluctuations of the Rabi fre-
quency arising from thermal motion of the trapped ion. For
the RAP readout, this method offers the possibility to make
a determined trade between robustness, efficiency, and du-
ration of the process for a given amount of maximum avail-
able laser power. This manuscript is organized as follows:
The Maxwell–Boltzmann theory for the laser driven qubit is
developed in Sect. 2. We then give a brief account on our ex-
perimental apparatus and the used techniques in Sect. 3. In
the following Sect. 4, we use the Maxwell–Boltzmann the-
ory to accurately model Rabi oscillations on the quadrupole
transition that are subject to thermally induced dephasing.
The temperature is inferred from the dephasing behavior.
We make use of the model and the obtained temperature to
reproduce experimental data for different RAP parameters
(amplitude and chirp range) without free fit parameters. This
allows us to use the model for the detailed numerical studies
presented in Sect. 5, where we investigate the dependence
of the robustness and maximum fidelity of the RAP process
on the control parameters.

2 Effective Maxwell–Boltzmann theory for a laser
driven qubit

The interaction picture Hamilton operator of a coherently
and resonantly driven qubit, which is harmonically confined
in a trap, is given by

ĤI = 1

2
�Ω0σ̂

+
(

1 − η2
(

â†â + 1

2

)
+ O

(
η4)) + h.c., (1)

where Ω0 is the bare Rabi frequency, â† and â are the
raising and lowering operators for the harmonic oscilla-
tor describing the motion in the trap at frequency ω, and
η = cos(α)k

√
�/(2mω) is the Lamb–Dicke factor. Here, k is

the wavenumber of the driving laser beam which makes an
angle of α with the oscillation direction, and m is the ion
mass. The Hamiltonian equation (1) is a second-order ex-
pansion in terms of η, and the terms describing off-resonant
excitation of motional sidebands have been neglected, which
is justified for η

√
n̄ < 1. Depending on the laser beam ge-

ometry, the laser can couple to three oscillation modes with
different frequencies, Lamb–Dicke factors and population
distributions. This can be accounted for in the Hamiltonian
equation (1) by replacing the η2 term by a summation over
several modes. If the ion is initialized in the ground state
|S〉 and exposed to a resonant square pulse of duration t , the
probability of transferring the ion to the metastable state |D〉
is given by averaging the unitary dynamics over the vibra-
tional modes:

PD(t) =
∑
{ni }

(∏
i

pth(ni, n̄i )

)
1

2

(
1 − cos(Ω{ni }t)

)
, (2)

where the index i (i = 1,2,3 for a single ion) runs over the
motional modes such that a threefold summation over the vi-
brational quantum numbers ni = 0, . . . , nmax has to be car-
ried out. If we assume that the vibrational modes are ther-
mally occupied, the joint probability to find the ion with a
set of quantum numbers {ni} is given by the product of the
three respective Boltzmann distributions

pth(n, n̄) = n̄n

(n̄ + 1)n+1
, (3)

with the mean phonon numbers n̄n
i = kBT /(�ωi) pertaining

to the ith mode oscillating at the frequency ωi . The Rabi
frequency

Ω{ni } = Ω0

∏
i

Mcar
ni

(
η2

i

)
(4)

is determined by the matrix elements [6]

Mcar
ni

(
η2

i

) = 〈D,ni |eiηi (âi+â
†
i )|S,ni〉

= e−η2
i /2L0

ni

(
η2

i

)
, (5)

where the ηi are the Lamb–Dicke parameters for mode i,
and L0

n(η
2) is the associated Laguerre polynomial. The

triple sum in (2) is numerically very inconvenient, especially
if extensive simulations to arbitrary excitation pulse shapes
or fitting of experimental data for ion thermometry are to
be performed. Even more, in the case of multi-ion crystals,
since the number of relevant vibrational modes increases lin-
early with the ion number, the summation approach becomes
completely intractable. The problem of the time evolution on
the carrier for a multimode thermal distribution has already
been addressed in Ref. [7]; however, the approach is limited
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to resonant square excitation pulses. Thus, we use the alter-
native approach of averaging over a probability distribution
function of Rabi frequencies.

The probability for finding a specific Rabi frequency is
given by

w(Ω) =
∑
{ni }

δ(Ω − Ω{ni })
∏
i

pth(ni, n̄i). (6)

Practically, w(Ω) is characterized by a set of Rabi frequen-
cies Ω{ni } and their corresponding probabilities. These can
be evaluated numerically where the motional quantum num-
bers are taken into account up to a truncation limit. The in-
accuracy of this truncation can be estimated by summing
the calculated probabilities, which should lead to a value
slightly smaller than unity. We now assume that the differ-
ences between the contributing Rabi frequencies are smaller
than the inverse interaction time and the individual proba-
bilities are small due to the many contributing frequencies.
Then, the frequencies cannot be individually discerned, and
a description by a smooth continuous Rabi frequency proba-
bility distribution is justified. The probability for attaining a
Rabi frequency of Ω during one individual measurement is
then given by convolution of w(Ω) with a Gaussian smooth-
ing function:

w̃(Ω) = 1√
2πσ 2

∫ +∞

0
w(Ω ′)e− (Ω−Ω ′)2

2σ2 dΩ ′. (7)

Under the condition that the smoothing parameter σ is cho-
sen to be larger than the average spacing between two Rabi
frequencies and smaller than Rabi frequency differences that
are resolved on experimental timescales, w̃(Ω) is empiri-
cally found to be well described by

wb(Ω) = N
(

Ω0 − Ω

Ω

)4

e
−(

Ω0−Ω

b2Ω
)1/4

(8)

with the normalization factor N , which is to be determined
numerically for given parameters b and Ω0. The parameter b

directly determines the temperature T under the assumption
that the three motional modes are in thermal equilibrium.
The relation between T and b is determined empirically by
calculating wb(Ω) for a set of Ω values and for various tem-
peratures as shown in Fig. 1. We obtain the relation

T

TD

= cb2, (9)

where c is uniquely determined by the specific set of Lamb–
Dicke factors, i.e., by the laser geometry and the trap fre-
quencies. Since the model function in (8) does not per-
fectly match the actual probability distribution, systematic
errors in the determination of the temperature occur. This
leads to uncertainties in the determination of b and c. From
the numerical data shown in Fig. 1, for our specific set of

Fig. 1 Effective Rabi frequency distribution: The symbols show sam-
ple probability densities obtained from (7), and the solid lines result
from a fit of this data to (8). Data for different temperatures is shown,
where the temperature is given in terms of the Doppler cooling limit
TD , see text. The data set for T ≈ 2 · TD (red) corresponds to exper-
imental parameters which accurately reproduce the measurement re-
sults in Fig. 2. The inset shows the linear relation between b2 and the
ion temperature T

Lamb–Dicke parameters given below in Sect. 3, we find
c = 4.0(1)×106. An inaccuracy of the temperature of better
than 0.02TD over a temperature range from 0.5TD to 5TD

can be claimed.
The analogy to the Maxwell–Boltzmann velocity distri-

bution as used in kinetic gas theory becomes clear from the
distributions shown in Fig. 1: If more than one motional de-
gree of freedom is taken into account, a larger density of
states favors higher motional energies, which, together with
the monotonical decrease of the 1D Boltzmann distribution
with respect to energy, leads to a peaked probability distri-
bution. The excess energy translates into a Rabi frequency
reduction due to an average Doppler shift, broadening the
optical transition. Quantitative differences to kinetic gas the-
ory arise from the facts that (i) one is dealing with a harmon-
ically confined instead of a free particle, (ii) the spatial ex-
tent of the thermal motion is comparable to the wavelength
of the driving laser field (in the thermal regime), leading to
nonlinear coupling matrix elements in (5), and (iii) the con-
finement anisotropy and the laser geometry lead to differ-
ent coupling matrix elements for the vibrational modes. The
great simplification is that, instead of six parameters ηi, n̄i ,
the thermal motion is characterized by only one parameter,
and the three-fold summation in (6) is replaced by a single
integral,

PD(t) = 1

2

∫ Ω0

0
wb(Ω)

(
1 − cos(Ωt)

)
dΩ. (10)

The relation between the bare Rabi frequency Ω0 and the
experimentally determined pulse time when the first excita-
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tion maximum occurs τmax is given by

τmax = π

Ω0

(
1 + 216b2), (11)

as obtained from dwb/dΩ|Ω̄ = 0, corresponding to the ef-
fective Rabi frequency Ω̄ = π/τmax with the largest proba-
bility. The practical application of our model is as follows:
For a given laser-ion interaction setting (beam geometry, ion
number, trap frequencies), one has to calculate the data char-
acterizing the w(Ω) in (6) for a set of example temperatures
as shown in Fig. 1. Then, the smoothed probability distribu-
tion (8) is to be determined at sample points such that the
b parameter can be extracted from a nonlinear regression.
Once the relation between T and b is established and the
bare Rabi frequency is calculated from (11), the model can
be applied, e.g., as in (10) to simple Rabi oscillations.

3 Experimental apparatus

In our experiment, we keep a single 40Ca+ ion in a mi-
crostructured linear Paul trap [8, 9]. The oscillation fre-
quency pertaining to the axial mode of vibration is ωax =
2π · 1.35 MHz, while the radial modes oscillate at ωrad =
2π · {2.4,3.0} MHz. A quantizing magnetic field at 45◦
to the trap axis provides a Zeeman splitting of 
Z ≈ 2π ·
18 MHz between the mJ = ±1/2 levels of the S1/2 ground
state, which are henceforth denoted as |↓〉 and |↑〉. The ion is
Doppler cooled on the S1/2 → P1/2 cycling transition near
397 nm, while resonance fluorescence from this transition
is monitored both on an EMCCD camera and a photomul-
tiplier tube (PMT). Coherent dynamics are driven on the
S1/2 → D5/2 E2 quadrupole transition near 729 nm, where
laser light from an amplified diode laser system is switched
and modulated by a double-pass acousto-optical modula-
tor (AOM) running at frequencies around 80 MHz. Up to
100 mW of laser light is focused onto the trapping site with a
lens of 200-mm focal length, resulting in spot size at the fo-
cus of about 30 µm FWHM. The propagation axis is aligned
to be at 45◦ to the trap axis and orthogonal to the quan-
tizing magnetic field. This leads to Lamb–Dicke factors for
the three vibrational modes of {ηi} = {0.059,0.031,0.028}.
The polarization of this laser is chosen to be at an an-
gle of 45◦ to the plane defined by the propagation direc-
tion and the magnetic field. According to the selection rules
for E2 transitions, this allows for driving of the transitions
|↑〉 → |D5/2,mJ = +5/2〉 and |↑〉 → |D5/2,mJ = +3/2〉.
The AOM is supplied with r.f. signals from a DDS-based
synthesizer,1 which enables shaping of the laser pulses in
frequency, phase, and amplitude.

1VFG-150, Toptica Photonics, Graefelfing, Germany.

The experiments are carried out as follows: the ion is
Doppler cooled on the cycling transition and initialized in
|↑〉 by optical pumping on the same transition. Then, the
729-nm excitation pulse is irradiated onto the ion, after
which the readout is performed by irradiation on the cy-
cling transition. If the ion was excited to the metastable
state, fluorescence rates of typically about 30× 103 counts/s
are observed, whereas background count rates of about
4 × 103 counts/s are measured if the ion resides in the
metastable state. After the readout, the ion is reset by
quenching the metastable state by irradiation of laser light
near 854 nm driving the D5/2 → P3/2 dipole transition. For
a given set of excitation pulse parameters, the sequence is
repeated 200 times such that the excitation probability is de-
termined with a shot noise limited inaccuracy of at maxi-
mum 3.5%.

4 Experimental results

The measured excitation probability on the transition |↑〉 →
|D5/2,mJ = +5/2〉 versus pulse duration for square pulses
is shown in Fig. 2 along with the fit to the model (10). The
period allows for a direct extraction of τmax = 4.93(5) µs
and therefore allows for the determination of the bare Rabi
frequency according to (11), which is found to be Ω̄ =
2π · 105(1) kHz for the shown data. With this knowledge,
the parameter b, characterizing the distribution of the Rabi
frequencies, can be fixed from a fit of the signal to the
model (10). We find b = 7.1 × 10−4, which is consistent

Fig. 2 Coherent dynamics on the quadrupole transition: The frac-
tion of population in the metastable state is plotted against the dura-
tion of a square excitation pulse with the laser frequency tuned to the
|↑〉 → |D5/2,mJ = +5/2〉 transition. One can clearly see a very rapid
dephasing, which is due to the interaction with three thermally excited
vibrational modes. Note that the dephasing behavior, i.e., the envelope
of the oscillations, cannot be described by a Gaussian or exponential
decay
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with T ≈ 2.0 · TD if we assume that all modes are cooled
to the same temperature, leading to mean phonon num-
bers of {ni} = {16.9,9.5,7.6}. The temperature is found
to be two times larger than the theoretical Doppler cool-
ing limit of TD ≈ 0.55 mK for an ideal two-level system.
This discrepancy is attributed to a competing micromotion-
induced Doppler heating effect. Further reasons for de-
creased Doppler cooling efficiency are the invalidity of the
two-level approximation due to the presence of the Zeeman
splitting (which is comparable to the linewidth of the cool-
ing transition) and the additional decay channel to the D3/2

state.
For the detailed evaluation of the RAP pulses, we first

gauged the bare Rabi frequency Ω0 versus the precisely
controllable r.f. voltage which is supplied to the AOM. The
maximum excitation time is measured by recording the first
oscillation period of a signal such as the one shown in Fig. 2
for a set of different r.f. amplitudes. Ω0 is then determined
by extracting the effective Rabi frequency Ω̄ , as explained
above, and making use of (11). The resulting Rabi frequen-
cies are used for a fit to a third-order polynomial function
such that the Rabi frequency for any r.f. amplitude can be
obtained. In the experiment, we use RAP pulses with tem-
porally varying Rabi frequency Ω(t) and detuning δ(t) ac-
cording to

Ω(t) = Ω
(cal)
0 e

− t2

2τ2
σ ,

δ(t) = πrct/τσ ,

(12)

where Ω
(cal)
0 the peak amplitude known from the power cali-

bration, τσ determines the duration of the pulse, which has a
Gaussian envelope, and the linear frequency chirp across the
resonance is determined by the chirp range rc . The pulses
are truncated in time at t ± 2τσ , and both frequency and
amplitude are changed in 50 discrete time steps. Figure 3
shows the excitation probability, i.e., the probability to find
the ion in the metastable state, versus peak Rabi frequency
for different chirp ranges and fixed τσ = 50 µs, resulting in
a 4-µs sample duration. It is important to note that a phase-
continuous frequency switching mode of the r.f. synthesizer
is used, where the phase of each r.f. sample is chosen such
that the output signal is continuous. One clearly observes
the transition from a Rabi-oscillation behavior to a mono-
tonic increase in excitation with the amplitude as the chirp
range becomes larger and adiabatic following conditions are
attained at rc = 100 kHz. For larger chirp ranges, higher am-
plitudes are needed to attain maximum excitation, as the ef-
fective time on resonance is decreased. Figure 3 also dis-
plays the results of simulations for each chirp range, where
the time-dependent Schrödinger equation is solved numeri-
cally for the excitation pulse (12), while the averaging over
the thermal Rabi frequency distribution (8) is done. The pa-
rameter b = 7.1×10−4 is chosen according to measurement

Fig. 3 RAP efficiency versus peak Rabi frequency for different chirp
ranges: The plot shows resulting transfer efficiencies while the peak
amplitude is scanned. The solid lines are obtained from a numerical
solution of the time-dependent Schrödinger equation for the qubit,
including thermal effects by averaging over a distribution Rabi fre-
quencies (see text). For small chirp ranges, one observes a Rabi
oscillation-like behavior, while adiabaticity is attained for chirp ranges
of 100 kHz or larger. For even larger chirp ranges, the increase in ro-
bustness is bought at the expense of a higher power requirement. Note
that no free parameters were used for the simulation, as all parameters
were inferred from the pulse width scan measurement of Fig. 2 and the
power gauge measurement

results from Fig. 2 such that no free fit parameter is occur-
ring.

The fidelity of readout process can also be deteriorated
if population is excited from the wrong qubit state, i.e., |↓〉
in our case. Conceivable mechanisms for this transfer are
off-resonant excitation on parasitic transitions, resonant ex-
citation of motional sidebands of these transitions, or res-
onant excitations by frequency components of the excita-
tions pulse which arise from the discrete sampling. Fig-
ure 4 shows the population transferred to the metastable
D5/2 state by similar pulses as in Fig. 3, but for initializa-
tion in the |↓〉 level. One can see that an error of about
1% is present at a peak Rabi frequency of 200 kHz, and
the excitation is independent of the chirp range. The transi-
tion connecting to |↓〉 with the lowest frequency offset is the
|↓〉 → |D5/2,mJ + 3/2〉 transition, which is separated from
the driven |↑〉 → |D5/2,mJ = +5/2〉 by about 8 MHz. This
is far beyond the used chirp ranges, i.e., out of the band-
width of the excitation pulses. The simulation yields only
population transfer values up to 10−5 for the maximum am-
plitude, where the values are strongly increasing with the
chirp range. Thus, the excitation mechanisms via resonant
frequency components and resonant excitation of motional
sidebands can therefore be excluded. It can therefore be con-
cluded that the parasitic transition is excited by incoherent
amplified spontaneous emission (ASE) background from the
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Fig. 4 Parasitic shelving: The figure shows the shelved population ver-
sus peak Rabi frequency for the same parameters as in Fig. 3. The
central frequency is resonant with the |↑〉 → |D5/2,mj = +5/2〉 tran-
sition, but the ion was initialized in |↓〉 such that no population should
be transferred under ideal conditions. Data for different chirp ranges is
shown. It can be seen that population transfer is insensitive to the chirp
range, which suggests a completely incoherent transfer mechanism

amplified laser. Thus, this is a purely technical artifact which
can be overcome by employing a filter cavity.

5 Numerical study of fidelity and robustness

The RAP pulses are characterized by the parameters du-
ration, amplitude and chirp range, and a quantitative un-
derstanding of the role of these parameters is required to
achieve predetermined fidelity and robustness values. As the
situation is complicated due to the presence of thermal fluc-
tuations, the Maxwell–Boltzmann model proves to be a use-
ful tool for a precise numerical characterization of the dy-
namics. For a given thermal Rabi frequency reduction fac-
tor x, we numerically solve the Schrödinger equation for the
qubit in ODE form:

ċ(x)
g = i

2

((
δ(t) + δ′)c(x)

g + xyΩ(t)c(x)
e

)
,

ċ(x)
e = i

2

(−(
δ(t) + δ′)c(x)

e + xyΩ(t)c(x)
g

)
.

(13)

Here, cg(t) and ce(t) are the amplitudes of the ground and
excited state, respectively, and the system is assumed to be
perfectly prepared in the electronic ground state prior to
the excitation pulse. δ′ represents an additional offset de-
tuning arising from possible drifts of the laser frequency,
and y is an additional constant scaling factor for the Rabi
frequency from laser intensity drifts. For a given parame-
ter set δ′, y, (13) are numerically solved for 0 ≤ x ≤ 1 in
steps of 
x = 0.01, and the resulting transfer efficiency

p
(x)
D (te) = |c(x)

e (te)|2 after the pulse is averaged according
to

pD(te) =
∑
x


xwb(xΩ0)p
(x)
D (te) (14)

with wb(Ω) from (8).
Figure 5 shows the resulting logarithmic infidelity, i.e.,

the population residing in the initial state after the transfer
pulse, versus the frequency and amplitude error parameters
for three different chirp ranges. The duration of τσ = 50 µs,
the b parameter, and the sample number are chosen to be
constant and identical to the experimental parameters from
Fig. 3. Dephasing Rabi oscillation behavior is seen for zero
chirp range, and it becomes clear that the frequency and am-
plitude have to be rather precisely calibrated and stabilized
in order to keep the transfer efficiency sufficiently high. By
contrast, chirp ranges of 100 kHz and more lead to a very ro-
bust behavior. For an increased chirp range of 150 kHz, extra
laser power is needed to keep adiabatic following conditions
satisfied, but the maximum transfer efficiency is increased
by more than one order of magnitude, and the robustness
window is greatly enhanced. This illustrates how the RAP
process allows one to make use of extra laser power to obtain
an increased robustness and a higher maximum efficiency.
Note that transfer infidelities below 0.1% can hardly be ac-
tually observed in the experiment as other limitations from
the state preparation and fluorescence readout steps obscure
the result.

6 Conclusion and outlook

We have developed a Maxwell–Boltzmann theory for ther-
mally induced Rabi frequency fluctuations in the coherent
excitation of a single trapped ion with a laser. The model
is successfully applied to reproduce the dephasing behav-
ior of Rabi oscillations and to RAP excitation pulses with
variable parameters. The latter opens the possibility to make
the right choice of pulse parameters to achieve well-defined
behavior in terms of robustness and efficiency if the ion tem-
perature and the relation between Rabi frequency and laser
power is known. Based on the model, we have carried out
numerical simulations which allow for the determination of
the robustness against experimental parameter fluctuations.
This makes the RAP pulse a very reliable tool for popu-
lation transfer in quantum experiments with trapped ions.
Furthermore, the model offers a new thermometry scheme
which operates from closely above the Lamb–Dicke regime
to temperatures several times larger than the Doppler cool-
ing limit temperature. It closes a gap between two estab-
lished methods: The fully coherent measurement method
which compares the Rabi frequencies of the red and blue
motional sidebands on a given motional mode, which works
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Fig. 5 Simulation of the RAP pulse effect for systematic deviation of
experimental parameters. The plots show simulation data of the log-
arithmic infidelity log10(1 − pD(te)), i.e., a measure for the popula-
tion not transferred to the metastable state. The infidelities are plot-
ted versus a factor describing static errors of the Rabi frequency,
y = Ω0/Ω

(cal)
0 with respect to the one obtained from the calibration

Ω
(cal)
0 , and versus an extra detuning δ′ describing an error of the laser

frequency with respect to the atomic resonance, which is given in units
of the chirp range of 2π ·100 kHz from plot (b). Plot (a) shows the in-
fidelity data for zero chirp range, i.e., in the Rabi oscillation regime.
The peak Rabi frequency is chosen to be Ω

(cal)
0 ≈ 2π · 332 kHz.

One can clearly see that the parameter regions for which a consider-
ably high population transfer is accomplished are rather low, and a
minimum infidelity of about –2 is attained. Plot (b) shows the infi-
delity for a chirp range of 2π ·100 kHz and a peak Rabi frequency
of Ω

(cal)
0 ≈ 2π · 221 kHz, corresponding to the situation where adia-

batic following conditions are fulfilled and the transfer efficiency sat-
urates with respect to laser power as inferred from the experimen-
tal data Fig. 3. Plot (c) shows the same simulation for a chirp range
of 2π ·150 kHz and a correspondingly increased Rabi frequency of
Ω

(cal)
0 ≈ 2π ·332 kHz

only in the Lamb–Dicke regime and requires that either
the interaction with spectator modes is suppressed or that
these are also cooled deeply into the Lamb–Dicke regime.
A simpler scheme based on time-resolved fluorescence read-
out [10, 11] does not require the ability of coherently driving
long-lived transitions, but ceases to yield precise answers at
temperatures close to and below the Doppler limit.

Our technique also opens the possibility for the applica-
tion of quantum control strategies such as optimal control
theory for thermal ensembles, e.g., for improving the ro-
bustness of quantum gates. Entangling gates are usually the
operations in quantum experiments with trapped ions which
are the most difficult to realize with considerable fidelity, as
the interplay between internal and external degrees of free-
dom requires the precise knowledge and control of many pa-
rameters. Residual thermal excitation of the motional modes
leads to a loss of controllability of the system [12]. A re-
cent example of how coherent control strategies can cure
the effect of control parameter fluctuations for an entangling
quantum gate is given by [13]. The averaging of the coherent
dynamics as in (10) for general Hamiltonians in conjunction
with optimal control theory [14] could lead to the develop-
ment of gate schemes which are more robust in the thermal
regime than current ones [2].
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