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Abstract Heat transfer processes, induced by ultrashort
laser pulses in thin gold films, were studied with a time
resolution of 50 fs. It is demonstrated that in thin gold
films heat is transmitted by means of electron–phonon and
phonon–phonon interactions, and dissipated on nanoscale
within 800 fs. Measurements show that the electron–phonon
relaxation time varies versus the probe wavelength from 1.6
to 0.8 ps for λ = 560–630 nm. The applied mathematical
model is a result of transforming the two-temperature model
to the hyperbolic heat equation, based on assumptions that
the electron gas is heated up instantaneously and applying
Cattaneo’s law to the phonon subsystem, agrees well with
the experimental results. This model allows us to define time
of electron–phonon scattering as the ratio of the heat pen-
etration depth to the speed of sound in the bulk material
that, in turn, provides an explanation of experimental results
that show the dependence of the electron–phonon relaxation
time on the wavelength.

1 Introduction

Understanding heat transfer processes in metallic films in-
duced by ultrashort laser pulse is of great importance due to
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their wide applications in microelectronics [1], micro- and
nano-electro mechanical devices, data storage devices [2, 3],
etc.

In order to theoretically and numerically study the laser
interaction with metallic films, the two-temperature model
(TTM) proposed by Anisimov [4] is widely employed [5]. In
general, the TTM is written in the form of two coupled non-
linear parabolic partial differential equations that describe
interaction of two subsystems, the electron and phonon (lat-
tice) gasses. The model is based on the assumption that elec-
trons and phonons are in thermal equilibrium. In particular,
that was in detail considered by Tzou [6], who then proposed
a macroscopic dual-phase-lag theory. This theory is a result
of modification of the TTM to one partial differential equa-
tion that reflects the effect of microscopic phonon–electron
interaction and diffusion.

Numerous experimental studies of metallic films heat-
ing by laser with picosecond and subpicosecond pulses have
been performed [7–14] and show that a finite time is needed
to reach the electron–phonon thermal equilibrium. It means
that irradiation by an ultrashort laser pulse can transiently
bring the metallic film to a stage of strong electron–phonon
nonequilibrium, in which the electron gas temperature rises
whereas the phonon (lattice) gas remains unchanged. The
strong electron–phonon nonequilibrium stage in metallic
films is a totally different thermal response of the metal-
lic film compared to a prediction from the original TTM
but can still be included within the framework of TTM.
To reflect this nonequilibrium stage in films, Qiu and Tien
[15] rigorously derived a hyperbolic two-step model from
the Boltzmann transport equation for electrons. Klossika
et al. [16] extended the TTM by Cattaneo’s law for the
heat flux in the electron gas to account for a finite propa-
gation speed of heat. Also, Chen and Beraun [17] applied
Cattaneo’s law for both electron and phonon subsystems
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and performed numerical analysis of the proposed model,
which, in general, is a set of four partial differential equa-
tions.

Due to physical complexity of the ultrafast heat trans-
fer mechanism in metallic films, the proposed models, as a
rule, do not have analytical solutions and are analyzed nu-
merically. This fact requires further investigations of devel-
oped models theoretically as well as experimentally, to clar-
ify the physical essence of ultrafast heat transfer mechanism
in metallic films.

In this article, the results of experimental and theoreti-
cal studies of heat transfer processes in thin gold films in-
duced by 100-fs laser pulses with a time resolution of 50 fs
are presented. The analysis of experimental results shows
that the heat transfer in thin gold films occurs via electron–
phonon and phonon–phonon interactions and that the re-
sulting temperature wave is dissipated in a surface layer
of thin film within 800 fs. Observed decay times of 1.6 to
0.8 ps correspond to the electron–phonon relaxation, and
12 ps corresponds to the phonon–phonon relaxation. More-
over, the electron–phonon relaxation time varies versus the
probe wavelength; at the same time, the phonon–phonon re-
laxation time shows a weak dependence on the probe wave-
length.

Due to a small heat capacity of the electron gas, ther-
malization caused by electron–electron interactions [18, 19]
takes place during a time scale less than few hundred fem-
toseconds. This time is relatively small referring to the total
duration of the surface temperature response, which takes
more than 10 ps. Thus, the heating of the electron gas is as-
sumed to be instantaneous, and, applying Cattaneo’s law to
the phonon subsystem of TTM allows one to transform the
model into the hyperbolic heat equation [20]. The developed
model taking into account the both sources, i.e., the volu-
metric and surface heat flux, is studied analytically within a
semi-infinite domain and agrees well with the experimental
data. This model allows us to define the time of electron–
phonon relaxation as the ratio of the penetration depth to the
speed of sound in the bulk material. Since the dependence
of the penetration depth on the wavelength has been experi-
mentally observed, for instance, in [21], the definition of the
electron–phonon relaxation time has a physical meaning and
provides an explanation of experimental results which show
dependence of the electron–phonon relaxation time on the
wavelength.

2 Experimental setup

The pump-probe transient reflection experimental setup is
shown in Fig. 1. The output of Titanium–Sapphire (Legend
Eite, Coherent) regenerative amplifier seeded by an oscil-

Fig. 1 Pump-probe transient reflection: OPO is the Optical Parametric
Oscillator; GTP is the Glan–Thompson Polarizer; WLC is the White
Light Continuum

lator (Micra, Coherent) was used as a pulse laser source:
wavelength 800 nm, pulse width 65 fs, pulse repetition rate
1 kHz, average power 3.5 W. The main part, 90%, of the ra-
diation was converted into the UV (350 nm) by the use of
the optical parametric oscillator (Topas, Light Conversion)
with the following second- and fourth-harmonic generation
and was used as pump pulse. The remaining 10% was used
to generate white light continuum in a CaF2 plate, i.e., the
probe pulse [22].

Pump pulses (fluence ∼40 µJ/cm2) were focused on the
surface of a 300-µm-thick gold film deposited on a SiO2 sub-
strate with a lens of 30-cm focal length and an incidence
angle of 10°. Probe pulses with variable time delays rel-
ative to pump pulses were used to measure time-resolved
transient reflection produced by the pump pulses. The white
light continuum was split into two beams (probe and ref-
erence) and, after reflection from the sample, directed into
two diode arrays attached to spectrometers (Model 77400,
Oriel). According to [6, 23], at early times after 100-fs laser
excitation, the normalized reflectivity change ΔR/R is pro-
portional to the normalized temperature change of the elec-
tron gas ΔT/T :

ΔT

T
∼ ΔR

R
. (1)

Thus, the surface reflectivity kinetics were obtained and as-
signed to the surface temperature variations.

3 Experimental results

Figures 2, 3, and 4 show normalized reflection changes at
561, 590, and 632 nm, respectively, after 350-nm excita-
tion of the gold films deposited on a quartz substrate (open
circles: experimental data; solid curves: applied theocratical
model, see below).
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Fig. 2 Decay kinetics of the
reflection change at 561 nm
from 300 µm gold plated quartz
substrate after the excitation
with 350-nm 65-fs laser pulse
and theoretical curves for
different penetration depths κ

Fig. 3 Decay kinetics of the
reflection change at 590 nm
from 300 µm gold plated quartz
substrate after the excitation
with 350-nm 65-fs laser pulse
and theoretical curves for
penetration depth κ = 3.8 nm
corresponding to
electron–phonon relaxation time
equal to 1.15 ps

Fig. 4 Decay kinetics of the
reflection change at 632 nm
from 300 µm gold plated quartz
substrate after the excitation
with 350-nm 65-fs laser pulse
and theoretical curves for
penetration depth κ = 3.0 nm
corresponding to
electron–phonon relaxation time
equal to 0.9 ps

The experimental data in the time range t = 0–5 ps were
also fitted to a multiexponential decay function convoluted
with the instrument response function B(t − t0) centered
at t0:

ΔR(t) =
∫ ∞

0

(
n∑

i=1

ΔRi exp

(
− t ′

τi

))

× B
(
t − t ′ − t0

)
dt ′, (2)

where ΔR(t) is the differential reflection at time t , ΔRi is
the amplitude of component with lifetime τi . The full-width-
half-maximum (FWHM) of the instrument response func-
tion, taken from the pump-probe cross-correlation signal in
quartz, was 100 ± 10 fs.

Table 1 Deconvolution-fit results of rise and decay times of the reflec-
tion change in gold films after 350-nm excitation

Probe wavelength, [nm] 561 590 632

Rise time, [fs] <100 <100 <100

Decay time, [ps] 1.63 1.27 0.87

Table 1 shows fit results. Rise times at all probe wave-
lengths were less than 100 fs. Decay times decrease from
1.63 to 0.87 ps by changing the probe wavelengths from 561
to 632 nm.
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4 Mathematical model

In general, the TTM can be expressed in terms of two
coupled nonlinear partial differential equations for one-
dimensional problem as follows:

Ce(Te)
∂Te

∂t
= ∂

∂x

[
ke(Te, Tp)

∂Te

∂x

]

− G(Te)(Te − Tp) + S(x, t), (3)

Cp(Tp)
∂Tp

∂t
= ∂

∂x

[
kp(Tp)

∂Tp

∂x

]
+ G(Te)(Te − Tp), (4)

where C and k are the heat capacities and thermal conductiv-
ities of the electrons and phonons as denoted by subscripts e

and p, respectively, G(Te) is the electron–phonon coupling
factor, and S(x, t) is a source term describing the local en-
ergy deposition by the laser pulse. The model is based on the
assumption that electrons and phonons are in thermal equi-
librium. Observations of experimental data show that the
thermalization of the electron gas due to electron–electron
interactions takes place during a time scale less than few
hundred femtoseconds [18, 19]. This time is relatively small
in comparison with the total duration of the surface temper-
ature response, which takes more than 10 ps. Thus, the heat-
ing of the electron gas is assumed to be instantaneous, so in
(3) the terms Ce(Te)

∂Te

∂t
and ∂

∂x
[ke(Te, Tp) ∂Te

∂x
] do not have

effect on the process of heating the electron gas. Hence, (3)
can be simplified and becomes

G(Te)(Te − Tp) ≈ S(x, t). (5)

Equation (5) shows that equilibrium between electron and
phonon gases occurs after the laser excitation.

Although material parameters Cp , kp , and G are, in gen-
eral, functions of temperature, in our study we treat them as
constants. As the relaxation time of the phonon gas in metal
is about 10 ps, we extend (4) by applying Cattaneo’s law for
the heat flux in the phonon gas, which is

τ
∂q ′′

p

∂t
+ q ′′

p = −kp

∂Tp

∂x
, (6)

where τ is the relaxation time, and q ′′
p is the heat flux of the

phonon gas corresponding to the gradient of Tp . Combining
(6) with (4) and accounting for the law of energy conserva-
tion, we have

τ
∂2Tp

∂t2
+ ∂Tp

∂t

= αp

∂2Tp

∂x2
+ 1

Cp

[
G(Te − Tp) + τ

∂

∂t
G(Te − Tp)

]
, (7)

where αp = kp/Cp is the thermal diffusivity of the phonon
gas. Substituting (5) into (7), a one-dimensional hyperbolic

heat equation [20] with the time-dependent volumetric heat
source is obtained and can be written as follows:

τ
∂2T

∂t2
+ ∂T

∂t
= α

∂2T

∂x2
+

[
q + τ

∂q

∂t

]
, (8)

where q = S(x, t)/C (C ≡ Cp , see below). Due to the as-
sumption mentioned above that the electron gas is heated
instantaneously, electron–phonon subsystems are at equilib-
rium. Hence, all parameters of (8) can be defined as for the
bulk material, and the subscript p is removed from the equa-
tion.

Note that Klossika studied the propagation of heat in a
metal by means of waves with a finite speed, however, in
his considerations the volumetric heat source was neglected
[16]. In our case, the penetration depth is of the order of few
nanometers. Nevertheless, the basic term which defines the
surface temperature response under our experimental condi-
tions (subpicosecond irradiation) is not the surface heat flux,
but the volumetric source. Moreover, the penetration depth,
which is included in the volumetric source, is an important
characteristic that defines the relaxation time of electron–
phonon scattering in metal thin films. Hence, the volumetric
source cannot be neglected in a realistic model.

For the further analysis, (8) is rewritten in a dimension-
less form

∂2θ

∂ξ2
+ 2

∂θ

∂ξ
= ∂2θ

∂η2
+

[
q̃ + 1

2

∂q̃

∂ξ

]
, (9)

where ξ = t/(2τ), η = x/(2
√

ατ), and θ and q̃ are the
dimensionless temperature and volumetric sources, respec-
tively.

It is assumed that the light intensity of the laser pulse,
denoted by I (t), is Gaussian and the laser irradiation energy
is absorbed by the metallic film exponentially. Upon cor-
recting the reflection at the surface, the volumetric heating
within the material can be simulated as

S(x, t) = 1 − R

κ
exp

(
−x

κ

)
I (t), (10)

where R is the reflectivity of the irradiated surface, and κ is
the radiation penetration depth. The dimensionless tempera-
ture can be defined as

θ = Cρ
√

ατπ

F(1 − R)
[T − T0], (11)

where F is the fluence of the laser radiation, and T0 is
the initial temperature; hence, the dimensionless volumetric
source becomes

q̃ = 1

ξpΔη
exp

(
− η

Δη
− a

[
ξ − ξb

ξp

]2)
, (12)

where ξp = tp/(2τ), ξb = tb/(2τ), Δη = κ/(2
√

ατ), a is
a positive constant (e.g., for the Gaussian distribution, a =
2.77 [15]), and tp is the FWHM of the laser pulse.
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Now, we are going to obtain the solution to (9) by the
use of the method proposed in [24], which was further de-
veloped for finite domains [25] and for nonhomogeneous
problems [26]. This method leads to a Volterra-type integral
equation that relates the local values of temperature and the
corresponding heat flux. The equation is valid in the entire
domain, including the boundaries.

Details of the solution procedure of (9) in the Laplace
space are shown in the Appendix. According to this proce-
dure, the general solution in its complete form is

Q(η; s) = 1 + 1
2 s

λ(s)
Q̃′′(s) + P(η; s) + 1

λ(s)

dP (η; s)
dη

, (13)

where

P(η; s) = Δη2 1 + 1
2 s

Δη2s2 + 2Δη2s − 1
Q̃(η; s). (14)

Analysis of (14) shows that the latter defines two pro-
cesses which are due to electron–phonon and phonon–
phonon scattering, characterized by the denominator of the
transfer function and numerator, respectively. It is known
that relaxation time τ is defined as

τ = α

c2
, (15)

where c is a speed of sound in a bulk material and cor-
responds to phonon–phonon scattering [27]. Hence, taking
into account the definition for τ (15) and dimensionless
constant Δη, the relaxation time corresponding to electron–
phonon scattering can be defined as follows:

τe−ph = κ

c
. (16)

By substituting (14) into (13) and finding the inverse
Laplace transform, the solution of (9) can be presented in
the integral form. For the surface temperature (η = 0), it be-
comes

θ(ξ) =
∫ ξ

0

[
q̃ ′′(ξ∗) + 1

2

∂q̃ ′′(ξ∗)
∂ξ∗

]
I0

(
ξ − ξ∗)e−(ξ−ξ∗) dξ∗

+ Δη2

4
√

1 + Δη2

√
π

a

∫ ξ

0

{(
1 + 1

2
s1

)
e

B2
1

A

×
[

erf

(√
Aξ∗ + B1√

A

)
− erf

(
B1√
A

)]

−
(

1 + 1

2
s2

)
e

B2
2

A

[
erf

(√
Aξ∗ + B2√

A

)

− erf

(
B2√
A

)]}(
δ
(
ξ − ξ∗)

− 1

Δη
I0

(
ξ − ξ∗)e−(ξ−ξ∗)

)
dξ∗, (17)

where I0(ξ) is the modified Bessel function, δ(ξ) is the
Dirac delta function, erf(ξ) is the Gauss error function [28],
s1,2 = −1± 1

Δη

√
1 + Δη2, B1,2 = s1,2 −2 a

ξ2
p
ξb , and A = a

ξ2
p

.

Thus a model, based on the assumption that the heating
of the electron gas is instantaneous, has been developed (see
(17)). It shows that the heat transfer in thin metallic films oc-
curs initially by means of electron–phonon interaction, fol-
lowed by phonon–phonon interaction. The model predicts
that the electron–phonon thermal equilibrium occurs after
the laser excitation and defines the electron–phonon relax-
ation time as the ratio of the penetration depth to the speed
of sound in the bulk material, see (16). The model describes
the surface temperature response of the thin film induced
by an ultrashort laser pulse and takes into account contri-
butions of the transient heat flux (given by the first integral
in (17)) and the volumetric heat source (the second integral
in (17)).

5 Model analysis and validation

The first and second integrals in (17) are denoted by θf (ξ)

and θv(ξ), respectively. Contributions of θf (ξ) and θv(ξ) are
different and depend on ξp and Δη. Note that, in a particular
case, the dependence of the local temperature on θf (ξ) has
been studied in [29]. However, the analysis of model (17)
shows that for ξp < 0.02 and 0.01 < Δη < 0.15 (chosen
from practical reasons to fulfill conditions of the performed
experiment), the contribution of the surface heat flux θf (ξ)

becomes negligible in comparison with the contribution of
θv(ξ). Hence, model (17) can be simplified as

θ(ξ) ≈ θv(ξ). (18)

The surface temperature is monitored up to 400 ps, af-
ter the laser excitation. For direct comparison of the model
with experimental data, we use the normalized tempera-
ture. A maximal temperature change, estimated from (11),
is 350 K. Hence, we are operating in the linear range of re-
flectivity versus the temperature [30, 31]. Gold properties
and their dependence on temperature are presented in Ta-
ble 2. The variation of the relaxation time τ is only 2.7%
in the temperature range between 300 and 500 K. Thus, the
influence of the local surface temperature variations on τ is
negligible, and the relaxation time can be taken as 12 ps.

Hence, taking into account the value of the relaxation
time and the time characteristics of the laser pulse, the di-
mensionless variable ξp = 4.2 × 10−3. Since heat is dissi-
pated in a surface layer of the gold film and the radiation
penetration depth lies within the range between 2 and 10 nm
or, in the dimensionless form, between 0.03 and 0.1, (18)
can be used to perform numerical simulations.

Figure 2 shows comparison of the experimental results at
the probe wavelength 561 nm with the developed model un-
der variations of the radiation penetration depth. We found
a good agreement between theoretical model (18) and ex-
perimental results for the penetration depth of 5.0 nm that
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Table 2 Temperature-dependent bulk properties of gold

Temperature, [K] 300 400 500

Thermal diffusivitya α,
[m2/s]

1.27 × 10−4 1.22 × 10−4 1.19 × 10−4

Speed of soundb c,
[m/s]

3280 3200 3140

Relaxation timec τ ,
[ps]

12 12 12

aReference [32]
bReference [33]
cCalculated by (15)

corresponds to electron–phonon relaxation time calculated
by (16) τe−ph = 1.52 ps and phonon–phonon relaxation time
τ = 12 ps.

Figures 3 and 4 present experimentally measured kinetics
of the reflection changes at 590 and 632 nm, respectively,
together with the theoretically obtained data. Calculations
were performed for the radiation penetration depths of 3.8
and 3.0 nm which correspond to electron–phonon relaxation
times calculated by (16) τe−ph = 1.15 and 0.9 ps, respec-
tively.

6 Conclusion

Heat transfer processes in thin gold films induced by 100-fs
laser pulses are studied both experimentally and theoreti-
cally. The analysis of experimental results shows that the
heat transfer in thin gold films occurs via electron–phonon
and phonon–phonon interactions and the resulting tempera-
ture wave is dissipated in a surface layer of thin films within
800 fs. Electron–phonon relaxation time varies in the range
from 1.6 to 0.8 ps with the wavelength λ = 560–630 nm.
The phonon–phonon relaxation time is equal to 12 ps and
shows a weak dependence on the probe wavelength.

The proposed model is a result of transformation of TTM
to the hyperbolic heat equation based on the assumptions
that the electron gas is heated instantaneously and Catta-
neo’s law is applied to the phonon subsystem. This model
is studied analytically within a semi-infinite domain with
both the volumetric and the surface heat flux energy sources
and agrees well with the experimental data. The view of
heat processes proposed here allows us to define the time
of electron–phonon relaxation as a ratio of the penetration
depth to the speed of sound in the bulk material. In turn,
this definition of the electron–phonon relaxation time pro-
vides an explanation of experimental results which show the
dependence of the electron–phonon relaxation time on the
wavelength and agrees well with the experiment.
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Appendix

Following the solution procedure from [26], let us take the
Laplace transform of (9). Taking into account that, initially,
the system described by (9) is at thermal equilibrium and so
∂θ
∂ξ

|ξ=0 = 0 and θ |ξ=0 = 0, we have

d2Θ

dη2
− (

2s + s2)Θ +
[

1 + 1

2
s

]
Q̃ = 0, (19)

where Θ(η; s) and Q̃(η; s) are the Laplace transforms of
θ(η, ξ) and q̃(η, ξ), respectively. The general solution of the
nonhomogeneous equation (19) is

Q(η; s) = C1(s)e
λ(s)η + C2(s)e

−λ(s)η + P(η; s), (20)

where λ(s) = √
2s + s2. The two first terms on the right side

of (20) are the general solution of the associated homoge-
neous equation with Q̃(η; s) = 0, and P(η; s) is a particular
solution of (19).

For the problem in question and taking into account the
fact that the surface heat flux is induced by the electron gas
after absorbing the laser energy, the boundary conditions be-
come

∂θ

∂η

∣∣∣∣
η=0

= −q̃ ′′ − 1

2

∂q̃ ′′

∂ξ
, lim

η→∞ θ = 0, (21)

where q̃ ′′ = 1
ξp

exp (−a[ ξ−ξb

ξp
]2) is the dimensionless form

of the surface heat flux. Hence, the parameter C1(s) must be
zero, and (20) is simplified into

Q(η; s) = C(s)e−λ(s)η + P(η; s). (22)

To eliminate C(s) from (22), the derivative of Θ(η; s) with
respect to η is used:

dQ(η; s)
dη

= −λ(s)C(s)e−λ(s)η + dP (η; s)
dη

. (23)

Then, combining (22) and (23), and taking into account the
relationship between the temperature gradient and the sur-
face heat flux (21), the general solution of (20) can be writ-
ten as

Q(η; s) = 1 + 1
2 s

λ(s)
Q̃′′(s) + P(η; s) + 1

λ(s)

dP (η; s)
dη

, (24)

where Q̃′′(s) is the Laplace transform of q̃ ′′(s). The right
part of (24) consists of the sum of two terms which are re-
sponsible for the temperature responses due to the surface
heat flux and volumetric heating, respectively. Taking into
account that the function Q̃(η; s) can be represented as a
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product of two functions, one of which depends on the com-
plex variable s only, and the other is exp(−η/Δη), the par-
ticular solution of (20) can be written as follows:

P(η; s) = Δη2 1 + 1
2 s

Δη2s2 + 2Δη2s − 1
Q̃(η; s). (25)
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