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Abstract Qudit entangled states have proven to offer sig-
nificant advantages with respect to qubit states regarding the
implementation of quantum cryptography or computation
schemes. Here we propose and experimentally implement
a scalable scheme for preparing and analyzing these states
in the time–energy degree of freedom of two-photon pairs.
Using the scheme, the entanglement of (2 × 4)-dimensional
states is demonstrated.

1 Introduction

Entanglement is an intrinsic property of quantum mechan-
ics which has enabled the realization of classically impossi-
ble tasks, such as the implementation of more efficient com-
putation algorithms, provably secure cryptographic schemes
and the teleportation of quantum particles. Compared with
qubits, the application of qudits, i.e. states defined in a d-
dimensional Hilbert space, offers interesting alternatives.
For example, they allow the reduction of elementary gates,
and consequently of the number of physical information car-
riers, necessary to perform quantum computational tasks [1].
Moreover, the number of classical bits transmitted per pho-
ton pair can be increased by resorting to high-dimensional
super-dense coding schemes [2], and the fault-tolerance
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bounds for quantum cryptography schemes can be sig-
nificantly increased, e.g. to error rates of 35% for four-
dimensional encoding [3]. In this context we propose and
experimentally implement a scalable scheme for preparing
and analyzing high-dimensional states in the time–energy
degree of freedom of entangled two-photon pairs.

This paper is structured as follows: a short introduction
of the theoretical framework will be given in the following.
Section 2 describes in detail the experimental setup, with a
special focus on the stabilization scheme used. Finally, ex-
perimental results demonstrating entanglement between two
ququats (d = 4) will be presented in Sect. 3.

Since the first proposal for creating time–energy corre-
lated quantum states by Franson [4], they have been used
for long-distance distribution and teleportation of entangled
states [5, 6] or for the implementation of Quantum Key
Distribution (QKD) schemes [7]. As described schemati-
cally in Fig. 1, a source of time–energy entangled photons
can be any process that coherently emits pairs of photons.
Spontaneous parametric downconversion (SPDC) driven by
a source of coherent pump photons is such a process. Within
the coherence time of each pump photon a continuous super-
position of two-photon states |Ψ 〉 = ∫

t ′ |t〉|t〉dt defined for
an emission time t is created. For the analysis of the state,
each photon of a pair is distributed to the two observers Al-
ice and Bob, which are provided with unbalanced interfer-
ometers implementing the very same time delay �T and
additional phase shifts φA and φB .

If �T surpasses each SPDC photon’s coherence time
tc,ph, the local phase shifts φA and φB will not determine the
relative intensities at the outputs of the interferometers. Yet,
if both parties agree to analyze coincident detections with 0
time delay, they will project the initial state |Ψ 〉 onto a su-
perposition of the two-photon states |0〉A|0〉B (both photons
arrived at the detectors along the short arm) and |1〉A|1〉B
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Fig. 1 Scheme for analyzing time–energy entangled two-photon states
in two-dimensional Hilbert spaces. A coherent photon pair source is re-
quired to produce photon pairs within a continuous range of two-pho-
ton emission times. The parties Alice and Bob are each provided with
a photon and an interferometer system. A two-dimensional entangled
state can be analyzed by performing projection measurements for a
time delay tA − tB = 0 between the detected photons. Each photon can
be detected at any of the outputs ± of the respective interferometer
system

(arrival via the long arm):

|Ψ 〉0�T
2D = 1√

2

(|0〉A|0〉B + ei·(φA+φB)|1〉A|1〉B
)
. (1)

They will observe a variation of the coincidence rates in
dependence on the relative phases their photons acquire at
their respective interferometers according to

C0�T
2D = cos2 (φA + φB). (2)

This behavior can only be attributed to second-order
interference between the two-photon states |0〉A|0〉B and
|1〉A|1〉B , resulting in the non-classical correlations between
the measurement results.

Evidently, such a scheme is not limited to only two pos-
sible arrival times. As long as the sum of the delays is suf-
ficiently shorter than the pump coherence time, the effective
dimensionality of the state is defined only by the number of
delays used in the analyzers [8–10]. Figure 2 depicts how a
four-dimensional state can be observed. Here a time–energy
correlated state is analyzed by choosing the emission time
delays (in multiples of �T ) |0〉, |1〉, |2〉 and |3〉 within the
coherence time of a pump photon as the four-dimensional
computational basis. In analogy to the two-dimensional con-
figuration, spontaneous parametric downconversion can be
used to produce two-photon pairs.

They can be analyzed if one photon of a pair is sent to
Alice and the other to Bob who are provided with multiple-
path interferometer systems designed to project onto the
four respective emission times. Here the interferometers are
constructed by loops with respective delays �T and 2�T

Fig. 2 Scheme for analyzing time–energy entangled two-photon states
in higher dimensional Hilbert spaces. Extending the two-dimensional
configuration, the parties Alice and Bob use a double-loop interfer-
ometer configuration to project onto a superposition of four two-pho-
ton detection times |0〉A|0〉B , |1〉A|1〉B , |2〉A|2〉B and |3〉A|3〉B of a
four-dimensional entangled state

Fig. 3 Time distribution of the coincidence count rates as a function of
tA − tB , Alice’s and Bob’s photon detection times. For a time delay of
0, coincidence count rates associated to a four-dimensional entangled
state can be selected. For delays ±�T and ±2�T , a projection onto
states with a superposition of three and two two-photon probability am-
plitudes is realized, displaying correlations of three- and two-dimen-
sional entangled states, respectively. No correlations can be observed
in the coincidence windows ±3�T , corresponding to a projection on
a one-dimensional state

such that the probabilities of a photon acquiring a time de-
lay i�T , with i ∈ [0,3], are equal. They allow us to project
onto the two-photon states |0〉A|0〉B , |1〉A|1〉B , |2〉A|2〉B and
|3〉A|3〉B , which are indistinguishable for a detection time
delay tA − tB = 0 (see Fig. 3). If the maximal time delay
fulfills 3�T � tc, a coherent superposition can be observed:

|Ψ 〉0�T
4D = 1

2

(|0〉A|0〉B + ei·(φA,1+φB,1)|1〉A|1〉B
+ ei·(φA,2+φB,2)|2〉A|2〉B
+ ei·(φA,1+φB,1+φA,2+φB,2)|3〉A|3〉B

)
. (3)
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The coincidences between, say, the + output of each in-
terferometer (Fig. 2) show a variation according to

C0�T
4D = 1

4
cos2

(
φA,1 + φB,1

2

)

cos2
(

φA,2 + φB,2

2

)

(4)

as a function of their respective relative phase settings φA,1,
φA,2, φB,1 and φB,2 at the �T and 2�T loops.

Similarly, both parties can agree on measuring coinci-
dence count rates with different time delays, which allows
them to project onto two-photon superpositions with a vary-
ing number of terms. Here states with the same computa-
tional basis as the four-dimensional state but with their re-
spective coincidence functions showing an intrinsic depen-
dence of three- and two-dimensional states are analyzed (see
Fig. 3). A projection onto time delays tA − tB = ±�T and
tA − tB = ±2�T allows us to project onto the three- and
two-dimensional maximally entangled states

|Ψ 〉�T
3D = 1√

3

(|1〉A|0〉B + ei·(φA,2+φB,1−φA,1)|2〉A|1〉B

+ ei·(φA,2+φB,2)|3〉A|2〉B
)
, (5)

|Ψ 〉−�T
3D = 1√

3

(|0〉A|1〉B + ei·(φB,2+φA,1−φB,1)|1〉A|2〉B

+ ei·(φA,2+φB,2)|2〉A|3〉B
)
, (6)

|Ψ 〉2�T
2D = 1√

2

(|2〉A|0〉B + ei·(φA,1+φB,1)|3〉A|1〉B
)
, (7)

|Ψ 〉−2�T
2D = 1√

2

(|0〉A|2〉B + ei·(φA,1+φB,1)|1〉A|3〉B
)
. (8)

For a projection onto the + outputs at the respective interfer-
ometers and normalized to the total coincidence count rates,
the following rates are obtained for delays tA − tB > 0:

C�T
3D = 1

64

(
3 + 2 cos (φA,1 − φB,1 − φA,2)

− 2 cos (φA,2 + φB,2)

− 2 cos (φA,1 − φB,1 + φB,2)
)
, (9)

C2�T
2D = 1

16

(
1 − cos (φA,1 + φB,1)

)
. (10)

In order to expand the dimensionality of the analyzed
states, additional interferometer loops are required to dou-
ble the previous time delays. As an advantage, the construc-
tion allows us to increase the number of analyzed emission
time delays, and consequently the dimensionality exponen-
tially ∝2N (instead of linearly ∝ N for similar interferom-
eter proposals [10]), with N the number of interferometer
arms. As a drawback, the number of independent phase set-
tings is smaller than the dimensionality of the states. Ulti-
mately, only the pump laser coherence time and the minimal
time resolution of the detection system limit the number of

degrees of freedom and consequently the Hilbert space di-
mension as they impose constraints on the time delays �T

to be chosen. Alternatively, one can employ time-bin encod-
ing by using a short pump pulse and an interferometric setup
for the pump laser equivalent to the analyzer ones [11] or
the many mutually coherent pulses of a mode-locked laser
[12] (for time-bin-entangled states an additional phase mod-
ulator between the source and the interferometers could be
added. Here time-dependent phase shifts enable us to apply
the phase shifts missing in (3), etc.).

2 Experimental implementation

2.1 General setup

A high-brightness SPDC photon-pair source based on a pe-
riodically poled KTP crystal is chosen to produce the en-
tangled photons [13]. A poling period of 9.67 µm and type
II degenerate phase matching are used to produce photon
pairs with an efficiency of η = 49,000 (s mW)−1 at a central
wavelength of 805.9 nm and with a bandwidth of �λ < 1.1
nm (corresponding to a coherence time of ≈2 ps). The pho-
ton pairs are emitted collinearly and the H - and V -polarized
photons are separated and coupled into single-mode fibers,
respectively.

The implementation of the generic scheme (Fig. 2)
was based on various considerations. Fused fiber couplers
(FFCs) are used as beam splitters as they warrant a bet-
ter spatial mode overlap between the different paths (see
Fig. 4). This enables a significantly better interference visi-
bility, while requiring only a passive temperature stabiliza-
tion [5]. As a drawback, the FFCs are less suited for the near-
infrared wavelength regime used here than for the Telecom
wavelengths for which chromatic dispersion can be compen-
sated routinely. Dispersion is particularly disturbing in this
type of interferometer due to the different path lengths in
the combined interferometers. Therefore, a hybrid interfer-
ometer configuration consisting of a fiber and a free-space
path implementing the time delay is chosen, such that both
arms of the interferometer share the same path length made
of fiber. Polarization-mode dispersion between the different
interferometer paths is less severe and is compensated by
manual polarization controllers.

The minimal time delay required to distinguish between
the different two-photon amplitudes in Fig. 3 depends on
the timing resolution of the single photon detection devices.
Recently, CMOS-based avalanche detectors (APDs) are re-
ported to reach FWHM timing resolutions down to 50 ps
[14]. However, due to the higher detection efficiency in the
near infrared, we choose the standard reach-through SPAD
(Perkin Elmer, AQ4C-SPCM) with a typical resolution of
500 ps. In order to make the overlap of the two-photon
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Fig. 4 Experimental setup. Photon pairs are created by pumping a pe-
riodically poled KTP crystal using parametric downconversion. The
photons are separated at a polarizing beam splitter and sent to the re-
spective interferometer systems both parties (Alice and Bob) require
to analyze the shared entangled states. The interferometers are con-
structed by using fused fiber couplers (FFCs) as beam splitters and a
free-space path to implement the required time delays. Finally, single
photon avalanche detectors (APDs) are used to detect the photons at
each interferometer output

detection signals negligible, we thus choose �T > 2.4 ns.
A computer-controlled time-correlation module with a spec-
ified resolution of 82 ps (ACAM TDC-GPX) is used for
measuring the time differences between the detections at
the outputs of each interferometer using four independent
APDs. It is believed that further improvements in the de-
tection efficiency and timing resolution of APDs will lead
to a significant miniaturization and further scalability of the
scheme. Furthermore, the minimal time delay �T imposes
a strict lower bound for the coherence time of the SPDC
pump laser. For that purpose, we use a grating-stabilized
blue laser diode at 402.8 nm offering a coherence time of
2.58 µs 	 �T .

Alice’s and Bob’s interferometer delays �T and 2�T

are equalized with respect to each other within the coher-
ence time of their photons to enable the indistinguishability
of the respective two-photon probability amplitudes. Similar
adjustments are made to equalize the 2�T delays to double
those of �T (Fig. 4).

2.2 Interferometer stabilization

In order to warrant a stable phase relation in the interferom-
eters over longer measurement times, a stabilization scheme
compensating thermal and mechanical drifts of each inter-
ferometer has been developed.

2.2.1 Polarization-multiplexing scheme

As described before, time–energy correlated states offer an
intrinsic insensitivity to the global phase acquired during
the transmission of the photons to the respective analysis
devices. Nevertheless, the fluctuation of the various phases

Fig. 5 Interferometer stabilization scheme using polarization multi-
plexing. An error signal dependent upon the interferometer phase is
extracted by ensuring that the polarization transformation for a refer-
ence laser is orthogonal in both arms, while the SPDC photons share
the same polarization state at the output. It can be used to drive a feed-
back loop adjusting the relative phase αSL to a constant value while a
change αλ/2 of the analysis λ/2 waveplate allows us to vary the relative
phase acquired by the SPDC photons without any shift of the compo-
nents inside the interferometer

of the unbalanced interferometers during the measurement
time will cause a reduction or even loss of interference vis-
ibility. The variation �φ of the relative phases depends on
the fluctuation of the path-length difference �L and wave-
length variation �λp of the pump laser. As temperature
drifts and vibrations of the optical components will cause a
variation of both parameters �L and �λp, total path-length
differences of up to 2 m require a stabilization scheme.

�λp is minimized by referencing the pump laser diode
to a stabilized reference cavity using the Hänsch–Couillaud
locking scheme. The cavity itself is stabilized by a grating-
stabilized laser diode at 780 nm locked itself to a frequency-
comb mode (250 kHz FWHM, 780-nm central wavelength,
maser referenced) [15]. The same laser diode is used to sta-
bilize each interferometer to a subwavelength accuracy by
using polarization multiplexing (depicted in Fig. 5).

Polarization multiplexing can be used for stabilizing
standard interferometers as well as for the system imple-
mented here, for which the reference laser and photon modes
spatially overlap [16]. For similar methods, fringe locking
on the reference laser interference signal would limit the
range over which a stable interferometer phase change is
possible, and also requires the measurement of the intensi-
ties at both outputs of the respective interferometer. Instead,
for polarization multiplexing it suffices to make the polar-
ization states of the stabilization laser in both arms mutually
orthogonal, while the polarization state of the SPDC photons
should not be changed (in this example H ). Thus, manual
fiber polarization controllers (PCs) are used first for equal-
izing the polarizations of the SPDC photons in the respective
interferometer paths. The stabilization laser is then coupled
into one input of the interferometer polarized with 45◦. The
rotation of its polarization vector to −45◦ is induced along
the long arm (red) using a birefringent crystal (here YVO4)
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with optical axes orientation along H . This leaves the SPDC
photon’s polarization H unchanged.

In this experiment, wavelengths of 780 nm and 806 nm
are chosen for the stabilization laser and SPDC photons,
respectively, allowing separation by a dichroic beam split-
ter. The polarization analysis of the stabilization laser con-
sists of an YVO4 crystal used to compensate for an ad-
ditional phase φ acquired in the fibers and the dichroic
beam splitter and a λ/2 waveplate before projecting onto
a polarizing beam splitter (PBS) which reflects V (verti-
cal) and transmits H (horizontal) polarized light. The polar-
ization change by the waveplate rotation adds to the inter-
ferometer phase resulting in the error signal E(φSL, φ λ

2
) ∝

cos (φSL − 2φλ/2) extracted by measuring the difference of
the intensities H/V at both outputs of the PBS (φSL is the
relative phase difference mod 2π between the interferome-
ter arms, and φλ/2 is the rotation angle of the λ/2 analysis
waveplate). A P–I feedback control is applied to piezoelec-
trically lock the phase φSL to 0, such that a rotation of φλ/2

will contribute to an effective phase change −φλ/2 acquired
by the 806-nm photons. Using this method, we observe fluc-
tuations of the error signal of each interferometer loop with
�φSD ≤ ±0.02π , resulting in a relative stability of all four
loops of �φSD ≤ ±0.059π as determined from coincidence
measurements over one hour (see Fig. 7).

We want to emphasize that for our method the phase-
change speed is ultimately limited by typical millisecond
piezoactuator response times, while the probability of fringe
skipping is minimized with respect to other stabilization
schemes. More importantly, no optical component is placed
in the path of the photons in order to vary their phase, there-
fore avoiding transmission losses and mode aberrations for
the SPDC photon modes.

2.2.2 Time-multiplexing scheme for stabilization of
different interferometer arms

Figure 6 describes how the polarization-multiplexing scheme
can be applied in order to extract error signals dependent on
the respective phases φ1 and φ2 caused by the two interfer-
ometer loops �T and 2�T .

The H -polarized photons obtained from the SPDC
source are coupled into one input, and fiber polarization con-
trollers are placed in each path to obtain H polarization at
each output of the fibers. In order to obtain independent er-
ror signals SL1 and SL2, the stabilization laser intensity is
split up into two modes.

The first component (SL1) used to stabilize �T is cou-
pled into the free interferometer input and extracted at the
long path of the 2�T interferometer using a dichroic beam
splitter with ideal transitivity for 806 nm and a 30–70%
splitting ratio for 780 nm. The error signal E(φ1, φ1, λ

2
) ∝

Fig. 6 Time-multiplexing scheme of stabilization laser intensities SL1
and SL2 for stabilizing of different interferometer loops independently.
The electronically demultiplexed error signals depend only on the re-
spective phase settings φ1 and φ2 of the delays �T and 2�T , allow-
ing an independent stabilization and variation of the relative phases
acquired by the photons. Here the interferometer delay 2�T is added
by using an optical delay line between two mirrors

cos (φ1 + φ1, λ
2
) can be extracted by applying the scheme de-

scribed in Fig. 5. For referencing 2�T , the intensity SL2 is
coupled through the free-space path of the first interferom-
eter using a dichroic beam splitter with the same character-
istics. The intensities for SL2 are extracted by interference
filters after their overlap at the last beam splitter. The cor-
responding error signal displays a dependence only on the
phase φ2 acquired at the 2�T interferometer: E(φ2, φ2, λ

2
) ∝

cos (φ2 + φ2, λ
2
). The variation of φ1, λ

2
and φ2, λ

2
allows an

independent variation of the relative phases acquired by the
SPDC photons in both interferometer arms.

As the stabilization light for the two loops would mutu-
ally disturb the generation of the error signals, they are time
multiplexed (100-Hz frequency, offset >20 ms) by trans-
mitting each mode through alternating blades of an optical
chopper before feeding the laser light into the interferome-
ters. For demultiplexing the respective error signals depend-
ing on the phases φ1 and φ2, the P–I feedback electronics
are driven by analog sample-and-hold circuits triggering a
feedback loop only at the times at which the respective sta-
bilization signals are detected.
Despite the chromatic filtering between the stabilization
laser and the SPDC photons, non-negligible background
counts are still measured at the wavelength of 806 nm. It
is believed that they can be associated with scattering pro-
cesses of the stabilization laser in the fibers and other optical
components. For this reason, the detection of SPDC pho-
tons and the transmission of both reference signals SL1 and
SL2 are also time multiplexed with respect to each other,
by transmitting the SPDC photons through a further set of
blades of the same optical chopper. To minimize losses in
the photon coincidence count rates, the time-averaged trans-
mission rate of the SPDC photons is set to ≈75% while the
stabilization signals share ≈25% of the time. The scheme
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Fig. 7 Phase fluctuation of the four-dimensional coincidence rate over
measurement times of up to one hour. Routinely a standard deviation
of �φ = ±0.059π is observed

is scalable and can be applied on additional interferome-
ter arms used to expand the dimensionality of the analyzed
states.

3 Experimental results

First, we evaluate the performance of the stabilization
scheme by analyzing the time-dependent variation of the
coincidence count rates for the four-dimensional state. Typ-
ical phase deviations for measurement times of up to 50 min
and integration times of 10 s are displayed in Fig. 7. Average
standard deviations of �φ4D = ±0.059π are observed, ≈3
times larger than for the single-interferometer stabilization
scheme of �φPM = ±0.02π described in Sect. 2.2.1, but
still sufficiently small for further measurements. The main
contribution to this value is due to the independent fluctu-
ations of four interferometer phases (see (3)) and the addi-
tional phase uncertainty resulting from the short time span
used for stabilization (≈8%).

In order to characterize and to evaluate the setup, first
the dependence of the coincidence count rates of (4), (9)
and (10) for different dimensions is tested for phases φ1 and
φ2 for each party. An illustrative way to display the differ-
ence between two-dimensional and four-dimensional entan-
gled states is to simultaneously scan the phases φA,1 and
φA,2 of Alice’s interferometers (φB,1 = φB,2 = 0). Then the
coincidence functions as given in (3) and (9) simplify to
C0�T

4D ∝ cosφ4 and C2�T
2D ∝ cosφ2, respectively. As illus-

trated in Fig. 8, the coincidence count rates clearly show an
excellent overlap with the function C0�T

4D . As described in
[17, 18] these characteristics can be used to define dimen-
sional witnesses.

Next, we analyze the coincidence count rates observed
for states of different dimensions by comparing the experi-
mental data with the corresponding theoretical predictions.

Fig. 8 Coincidence count rate variation for a simultaneous scan of
phases φA,1 and φA,2 in both interferometer arms of Alice. The func-
tion C0�T

4D is fitted to the experimental data while C2�T
2D corresponds

to the theoretical coincidence function for a two-dimensional state

In Fig. 9 the coincidences for the +,+ detector combina-
tion are shown as a function of φA,2 for Figs. 9(a) and 9(b)
and in dependence on φA,1 for (c) and (d) while keep-
ing the respective other phases constant at 0. In (a) and
(b), the fringe visibility for the four-dimensional data (blue)
amounts to V4D = 0.981(8)% while the corresponding value
for the three-dimensional state (green) only amounts to
V3D = 0.654(7)% and vanishes for the two-dimensional
state (red), in close correspondence with the theoretical pre-
dictions of V4D,th = 1, V3D,th = 7/9 = 0.78 and V2D,th =
0 according to (3), (8) and (9). The phase difference be-
tween both coincidence count rates of �φ = φ3D − φ4D =
1.024(2)π corresponds closely to the theoretical expected
value of π . In contrast, when varying φA,1 (Figs. 9c and 9d),
the three-dimensional coincidence function remains con-
stant at 1/9 of the maximal probability, while the two-
dimensional coincidence count rate displays a visibility of
V2D = 0.919(11)%, in clear correspondence with the the-
oretical expectations (V2D,th = 1). Again, the phase differ-
ence �φ = φ2D − φ4D = 1.013(2)π displays the good re-
producibility of the interferometer setup. The periods of
all curves show a deviation of less than ≈4% with re-
spect to the ideal value. A contribution of accidental co-
incidence count rates in the range of 1% of the maximal
count rates of the four-dimensional state is observed, result-
ing in a negligible reduction of its interference visibility.
For the two-dimensional state, the count rates are reduced
by a factor of four as compared to the four-dimensional
state (see (9)); the same background causes a significantly
lower signal/noise ratio and a higher reduction of the visi-
bility.

A figure of merit for the suitability of the setup for
preparing higher dimensional time–energy entanglement is
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Fig. 9 Experimental and
theoretical coincidence
probabilities for
four-dimensional,
three-dimensional and
two-dimensional states as a
function of φA,2 (a and b) and
φA,1 (c and d)

Fig. 10 Coincidence count rate of the four-dimensional entangled
state scanned as a function of the phase φA,1 of Alice’s short inter-
ferometer

the interference visibility of the coincidence curves. Fol-
lowing the considerations given in [19], a Bell inequality
can be defined [18], which is violated only by (2 × 4)-
dimensional entangled states. Here the bound I ≤ 2 can be
translated into a minimal fringe visibility of Vc = 78.4%
to allow a violation of local realism for the state space
spanned by our interferometer system. The experimentally
determined visibility (Fig. 10) of Vexp = 0.975(16)% sur-
passes the bound by 12 standard deviations, offering the po-
tential for a violation of higher dimensional Bell inequali-
ties [18].

4 Conclusion

We introduced an experimental scheme which is suited for
the preparation and analysis of four-dimensional entangled
photons. The experimental results exhibit high visibilities
and are in good agreement with the described theoretical
predictions, enabling the expansion of the scheme to en-
tangled states of even higher dimensions. From the view-
point of fundamental research, they offer the opportunity for
studying the increased non-classicality of high-dimensional
states as characterized by the violation of Bell tests [18, 20]
or allow studies of the non-contextual nature of quantum
mechanics [21–23]. With increasing dimensionality of the
encoded states, the application of mutually unbiased bases
allows us to increase the security bounds of quantum cryp-
tography schemes [20] while minimizing the experimental
effort for full state determination [24] with respect to stan-
dard tomographic techniques. It is thus of high relevance to
utilize the benefits of the scheme demonstrated here and to
further increase the dimensionality of qudit states.
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