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Abstract Optical-feedback cavity enhanced absorption
spectroscopy (OF-CEAS) is a very sensitive technique for
the detection of trace amounts of gaseous absorbers. The
most crucial parameter in an OF-CEAS setup is the optical
phase of the light fed back into the laser source, which is
usually controlled by the position of a piezo driven mirror.
Various approaches for the analysis of the cavity transmit-
ted light with respect to feedback-phase are presented, and
tested on simulated phase and frequency dependent cav-
ity transmission. Finally, we present the performance of a
digital signal processor based regulator—employing one of
these approaches—in a real OF-CEAS experiment. The re-
sults of the simulation show that several algorithms are well
suited for the task of control signal generation. They con-
firm also that with the presented approach, a mode by mode
correction of the feedback-phase is possible. Consequently,
a regulatory bandwidth of 37 Hz was achieved. This maxi-
mum control frequency was limited by the piezo system.

1 Introduction

Cavity ringdown (CRDS) and cavity enhanced absorption
spectroscopy (CEAS) are sensitive techniques, which have
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found widespread application in the measurement of trace
amounts of gaseous absorbers [1–6]. The high sensitivity
of these techniques is a result of the elongated light paths
the photons travel inside an optical cavity, which consists
of two or more highly reflective mirrors. The high reflec-
tivity of the cavity’s mirrors does not only result in a long
effective path of light (enhancement of a factor (1 − R)−1),
but also implies a very low transmission of the incident in-
tensity into the cavity (T = 1 − R) [7]. This well-known
trade-off between a long effective light path and high cav-
ity transmission can be overcome by utilising narrow-band
coherent light sources and exploiting the modal structure of
the cavity [8]. For the most recent variant of CEAS, diode
lasers (DL) are used as light sources and light leaking out of
the cavity is reinjected into its source (optical-feedback—
CEAS, OF-CEAS) [4, 5, 9–14]. An optical feedback with
frequency filtered light is achieved by applying this method,
with the result that the emission of the DL is locked to one
of the resonance frequencies of the optical cavity. The por-
tion of the reinjected light (feedback-rate) determines the
frequency range of the DL, over which the locking takes
place [4, 15].

All kinds of diode lasers are in principle sensitive to op-
tical feedback. In the context of OF-CEAS, the suitability
of distributed feedback diode lasers (DFB) [4, 5, 9–11] has
been proven for the near and mid-infrared region. Exter-
nal cavity diode lasers have proven suitable for the visible
range (ECDL)[12–14]. More recently, even quantum cas-
cade lasers have been utilised [16, 17].

The most important consideration for any OF-CEAS
setup is to avoid the reinjection of light, which has not been
frequency-filter ed by the cavity, into the DL. This is com-
monly achieved by utilising a V-shaped cavity design [4] (re-
fer to Fig. 2). Other suitable schemes include a linear cavity
with injection via a glass plate in Brewster’s angle [13] and
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Fig. 1 Cavity transmission with active feedback-phase regulation and
weak water vapour absorption. The continuous sweep of the injection
current results in an almost discrete tuning of the laser frequency. The
laser remains locked to one longitudinal cavity mode over a wide range.
Frequency jumps occur at the beginning and end of every mode. The
symmetry around each transmission maximum indicates the correct ad-
justment of the feedback-phase

a three mirror ring cavity with an additional retro-reflector
[18]. Lately, the OF-CRDS technique [13] has also been
adopted to measure the extinction by aerosol particles [19].

The common characteristic of all these optical feedback
schemes is that the reinjection of the light into the laser
diode has to take place with a well-defined constant phase.
This is commonly achieved by matching the cavity length to
the laser-cavity distance and additionally by active control of
the position of a piezo-mounted mirror. The position of this
mirror is usually found by minimising an error signal that
is created from the signal of the transmitted light by some
suitable algorithm. Figure 1 depicts an example of how the
measured cavity transmission will typically look like, if the
feedback-phase is well adjusted.

We present, in the following pages, different approaches
for the creation of an error signal from cavity transmission
data, which can be exploited for the automatic online adjust-
ment of the feedback-phase. For this purpose, it is first ex-
plained in Sect. 3, how the cavity transmission can be mod-
elled. Subsequent, in Sect. 4, the modelled cavity transmis-
sion is used to analyse the suitability of different approaches
with respect to features typically varying in an experiment.
Finally, in Sect. 5, we present the performance of the regu-
lator described Sect. 2.

2 Experimental

The OF-CEAS setup is depicted in Fig. 2. Light from a DFB
diode laser (NLK1E5C1TA, λ = 1.37 µm, NTT Electron-
ics), placed on a linear translation stage (LTS), is focused

Fig. 2 Schematic of the optical and electrical setup: V-shaped cav-
ity built of mirrors M1, M2, and M3, a DFB-laser mounted on a lin-
ear translation stage (LTS), attenuation optics, a piezo mounted mirror
MPhase for feedback-phase regulation, and the photodiode (PD). The
PD signal is evaluated by a DSP, generating the error-signal applied to
the PZT. Optionally, a sine can be added

by an aspheric lense and attenuated by two polarisation fil-
ters. It is coupled to the cavity via two mirrors, one of which
(MPhase) is mounted on a piezo electric actuator (PZT) and
used to adjust the feedback-phase. The PZT (PI, S-303) is
driven by a piezo controller (Thorlabs MDT694A) not de-
picted in Fig. 2. The V-shaped cavity consists of the three
mirrors M1, M2, and M3 (Laytertec, low loss, R = 1 m). Its
branches L1 and L2 have a length of 0.5 m and the opening
angle is α = 2.9°. L0, the distance between laser diode and
cavity, is 1 m. This assures that only even or only odd modes
are present in one scan [4].

The transmitted light (Cavity Output) is collected by a
photo receiver (FEMTO HCA-S, 20 MHz, 105 V/A) and
its signal is evaluated by the digital signal processor (DSP)
based electronics, which calculates the error signal applied
to the PZT. Optionally, an artificial disturbance (sine or step
function) can be added to the DSP’s output, which is used to
determine the achievable regulatory bandwidth for the feed-
back-phase and the step response in the setup. The experi-
mental basis of the regulator in use is a microcontroller (Mi-
crochip Inc., dsPIC33F series) including a DSP unit, and the
specific algorithms (refer to Sect. 4) are implemented in C
code and assembly language. The microcontroller is placed
on a printed circuit board (PCB), which also holds two 16-
bit digital-analog-converters (DAC). One of the DACs is
used for the output of the error-signal. The input-signal, i.e.
the intensity behind the cavity, is sampled at 100 kHz with
12 bit resolution by the dsPIC33F’s internal analog-digital-
converter (ADC).

Additional logic, which allows running an OF-CEAS ex-
periment independently of other computers, was also imple-
mented. For this purpose, the second DAC is available for
the tuning of the laser frequency. It is used to generate a
voltage ramp or any other arbitrary waveform, which can
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be fed into most diode laser drivers for analog modulation
of the current. At the end of each frequency-scan, a TTL
pulse can be produced in order to trigger the switch-off of
the laser diode, which generates a ringdown event. The ring-
down time is needed for the conversion of the cavity trans-
mission signal to absorption coefficients [5].

3 Modelling of the cavity output signal

In the case of optical feedback, the diode laser and the op-
tical cavity have to be regarded as a combined or coupled
system. Based on results of Laurent et al. [20], Morville et
al. [4] derived the dependency of the coupled laser frequency
ω and the diode cavity mode frequency ωN :

ωN =ω +
√

κ(1 + α2)
c

2n0lDL

FCAV

2FDL

× sin[ 2ω
c

(L0 + L1) + ϑ]−R2 sin[ 2ω
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In this equation, FCAV = πR

1−R2 and FDL = π
√

RDL
1−RDL

are the
finesse of the V-shaped and the diode laser’s cavity, respec-
tively, with R → 1 being the average mirror reflectivity and
RDL the laser diode’s cavity reflectivity. κ is the feedback-
rate, which is the ratio of the laser’s intensity and the in-
tensity of the reinjected light. α is the Henry–Factor [21],
ϑ = arctan(α), n0lLD the diode laser optical length, c the
speed of light, L1 and L2 the length of the cavity arms
and L0 the distance between the laser diode and the cav-
ity’s folding mirror. The frequency ω of the coupled system
is implicitly given by the diode cavity mode frequency ωN ,
which can be controlled externally either by temperature or
the laser diode injection current. Equation (1) describes the
effect of locking the laser frequency to the resonance fre-
quencies of the optical cavity. Note that the nomenclature
used throughout the literature is not consistent. Morville et
al. [4] use ωfree instead of ωN and name it the free running
laser frequency, which is the steady state solution of the rate
equation without feedback (Eq. (1) in Laurent et al. [20]).

All sorts of environmental factors, like thermal drift,
wind, or vibration introduce changes in the length L0 and
thereby change the feedback-phase. It is necessary to ac-
tively account for this phase and make corrections accord-
ingly.

In order to account for a variable feedback-phase, the ar-
guments of the both sine functions in the numerator of (1)
have to be extended by an additional summand Φ , the feed-
back-phase, which yields:

sin

[
2ω

c
(L0 + L1) + ϑ + Φ

]
, (2)

Fig. 3 Calculated cavity transmission in the case of weak optical-feed-
back (κ = 2 × 10−7) and various phasings

sin

[
2ω

c
(L0 − L2) + ϑ + Φ

]
. (3)

Equation (1) cannot be solved analytically for the cou-
pled frequency ω, but under the condition of a non-nega-
tive slope, numerical approaches for a solution exist. For
this work, the straight-forward approach of analytically cal-
culating the derivative of (1) and then numerically finding
all its zero crossings (ω′

n = 0) in a small region around
(ω − ωRES)/FSR, where FSR is the external cavity’s mode
spacing was used. This way the regions of non-negative
slope are easily found and an invertible data set can be cre-
ated. As the inverted data set is equally spaced in ω and not
in ωN , it is interpolated to yield the frequency of the laser
locked to a cavity mode.

In order to calculate a transmission signal that can be
compared to the experiment, the cavity transmission H(ω),
given in (4), has to be evaluated at that frequency.

HV (ω) = T 2

(1 − R2)2 + 4R2 sin2( 1
2ωτ + 3ϑ

2 )
. (4)

In this equation τ is the light’s roundtrip time within the
cavity, ϑ the argument of the mirror’s complex field-re flec-
tivity, R the mirrors intensity reflectivity, and T its inten-
sity transmission. A derivation of this equation is sketched
in Appendix.

Computed transmission signals have been plotted in
Fig. 3 for different values of the feedback-phase. The solid
black curve represents an optimal adjustment, whereas the
dashed red, and dashed bold blue curves are the result of
small misalignment in different directions. The dotted pink,
and dotted bold green curves correspond to larger misalign-
ment. It has to be mentioned that slightly asymmetrical sig-
nals like the dashed red, and the dashed bold blue curve
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can still be used for the measurement of absorption coeffi-
cients, as usually only the peak-transmission of a mode is
evaluated. As that is still at 25%, which is the theoretical
maximum for a V-shaped cavity, it does correspond to the
transmission at a cavity’s eigenfrequency. More information
on the evaluation of raw data has been published by Kerstel
et al. [5].

4 Creation of an error-signal

In order to adjust for the feedback-phase, an error-signal has
to be created. In 1991, Ohshima and Schnatz [22] published
a scheme for locking to a single cavity mode, which directly
employs the symmetry of the cavity transmission signal.

Further schemes—suitable for OF-CEAS, where tuning
over many modes takes place—have been presented by
Motto-Ros [23] and Baran et al. [11]. Both approaches have
in common, that the feedback-phase correction is performed
continuously, i.e. irrespective of the beginning and end of
each mode.

Here, we present an approach to analyse for the symme-
try of each individual mode, in order to achieve the highest
possible regulatory bandwidth. This approach has two major
functioning units: The finding of the modes and the applica-
tion of the error-signal algorithms.

The most fundamental task in both parts is the calculation
of the first derivative. Savitzky–Golay filters have been used
for this work, as they allow for noise filtering and signal dif-
ferentiation at the same time [24, 25]. Filter lengths between
five and fifteen points turned out to be appropriate, and by
using cyclic permutations of the filter, its application—a dis-
creet convolution—comes down to a scalar product of two
vectors. Although noise filtering and calculation speed are of
minor interest for the simulations, both become important in
a real experiment.

In a first step, the finding of the beginning and end of
every mode is addressed. For this purpose, a zero crossing
trigger on the raising slope of the first derivative of the cavity
transmission signal is used as indicator. Between two trigger
events the algorithms are applied to the cavity transmission.
At the occurrence of the trigger, the final error signal is cal-
culated and given as result. Especially for the finding of the
modes, the noise reduction from Savitzky–Golay filters is
beneficial, as it protects effectively from false trigger events.
Additional protection is achieved by defining a minimum
and maximum mode width, as well as a signal threshold.

In the following sections, different approaches for the
error-signal generation are presented and discussed with re-
spect to the criteria below for an ideal result. These are in
essence four points:

1. Linearity (at least monotonicity) with respect to the phase
over a wide range.

2. Independence of the signals intensity.
3. Independence of the mode width.
4. Analog or digital implementability.

A linear correlation is needed for PID regulators to perform
well and a monotonic signal can be converted to a linear
signal via a regulatory curve. The frequency scan of a diode
laser is usually performed by scanning its injection current.
This leads in principle to a variation of the laser’s intensity.
Also, the presence of absorbers changes the amount of the
cavity transmission, and by this reduces the amount of light
fed back into the diode laser (feedback-rate), which comes to
a smaller mode width. Finally, the algorithms should be sim-
ple enough, to be applied by analog electronics, or mode by
mode on a conventional microcontroller. The methods pre-
sented in the following sections employ different features of
the cavity transmission (compare to Fig. 3) to check its sym-
metry, though they all have the common characteristic that
the first derivative is the basis for their mode of operation. In
order to obtain the characteristics of a specific Error-meth-
od, it was applied to the phase dependent transmission (refer
to 3) for different values of the feedback-phase. This proce-
dure was repeated for different intensities (10%, 20%, . . . ,
80%, 90%) at a fixed feedback-rate and then for different
feedback-rates (10−6, 5 × 10−7, 10−7, 5 × 10−8) at a fixed
intensity. The selected feedback-rates correspond in our case
to locking ranges of about (2, 1.4, 0.7, and 0.5) FSR and an
intensity decrease of 95%. By proceeding as outlined above,
most practical conditions in an experiment are covered. The
slight noise, which is visible in most characteristic curves, is
a fragment of the interpolation process.

4.1 Edge steepness approach

In order to check the symmetry of the cavity transmission,
its edge steepness, which is available from the derivative of
the signal, can be used as an indicator. A very straightfor-
ward approach is to use the sum of maximum and mini-
mum of the derivative as an error signal (ES-method). This
scheme works because the increase (derivative maximum)
and decrease (derivative minimum) in the intensity trans-
mission are equally strong in the symmetric case, whereas
in every other case one of those is stronger than the other.
The difference in the steepness (difference of derivative min-
imum and maximum absolute values) gives the amplitude of
the error signal, whereas the relative strength determines the
direction.

Figure 4 depicts the characteristics of the ES-method for
different intensities. It is obvious that this scheme depends
on the intensity of the input signal, because the edge steep-
ness, i.e. the change of intensity, is a function of the inten-
sity itself. This behaviour can be compensated by normal-
ising to the mode’s peak transmission. On the other hand,
this method is almost independent of the locking range, i.e.
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Fig. 4 Error signal characteristics of the ES-method for different sig-
nal intensities with κ = 10−6 and ϑ = 1.4

Fig. 5 Error signal of the ES-method at fixed intensity of 70% and
variable feedback-rate ϑ = 1.4

the width of a single mode, which can be seen in Fig. 5.
The reason for this can be understood as follows: In ev-
ery case, the cavity transmission is negligible outside the
locked area. During a mode-lock, the transmission traverses
a unique, phase dependent shape. The shape is unique to the
feedback-phase and either compressed or stretched with the
feedback-rate. Hence, the intensity jumps are not a function
of the mode-width, and thus the edge steepness is a stable
indicator.

This scheme can easily be evaluated by a microcontroller
based solution, as it is used here. The procedure requires
only two comparisons and up to one write operation per data
point involved. It is therefore extremely fast.

4.2 Weighted slope approach

Instead of evaluating the edge steepness directly, an alter-
native approach is to evaluate the overall slope, i.e. to in-

Fig. 6 Comparison of the ES- and WS.1-method characteristics with
normalization applied. κ = 10−6 and ϑ = 1.4

tegrate the derived signal. A direct integral would always
have a zero result, but if the derivative is weighted, e.g.
by some sort of nonlinear function, which is monotonic,
the integral produces a usable error signal. The advantage
of such an approach is that it can also be implemented in
analog circuitry with reasonable effort. Some candidates for
such functions are f (x) = x3 (WS.1-method) or f (x) =
sign(x) · (exp(|x|) − 1). The exponential function is specifi-
cally interesting, as it describes the characteristics of bipolar
transistors. A simple combination of a npn and a pnp tran-
sistor would do the job in this case. When using a microcon-
troller, the x3 function is more suitable, because it can be
calculated faster.

The weighted slope approach—implemented in the form
of the WS.1-method—has the same compensable intensity
dependency as the ES-method in Sect. 4.1. The WS.1-me-
thod is also almost independent of the locking-range, as the
weighting favours strong slopes (frequency jumps), whereas
small slope values, which are present in the locked area, be-
come insignificant. Figure 6 shows a direct comparison of
both methods with normalisation applied.

A variant of the weighted slope approach was recently
proposed by Baran et al. [11]. Instead of applying a non-
linear weighting function to the derived signal, it is inte-
grated with a different time constant (WS.2-method). For
this work, a moving average filter is used to simulate the
slow integration. The method’s characteristic for different
intensities is plotted in Fig. 7 and is comparable to the one
of the ES- and WS.1-method. The feedback-rate dependant
characteristic is comparable to the one of SM-method in
Sect. 4.3, which is shown in Fig. 9.

4.3 Shifted maximum approach

A further method, presented by Motto-Ros [23], uses the
position of the maximum within one mode as an indicator



496 J.C. Habig et al.

Fig. 7 The WS.2-method characteristics for different signal intensities
with κ = 10−6 and ϑ = 1.4

Fig. 8 Error signal characteristics of the SM-method for different sig-
nal intensities. κ = 10−6 and ϑ = 1.4

for the symmetry of the signal (SM-method). The feedback-
phase is at its optimum value if the transmission maximum is
located at the centre of the mode. The translation of the peak
position to the error-signal is done by a threshold trigger
applied to the derived signal. If the derived signal is higher
than the upper threshold a constant positive signal is output,
if it is lower than the lower threshold a negative value is
output. Otherwise it is zero. Integrating over the output gives
the error signal, which has been plotted in Fig. 8.

In contrast to the other methods presented, the SM-me-
thod is much less sensitive to the intensity of the input sig-
nal and, therefore, it is the best suited method for a simple
analog implementation, as no normalisation of the signal is
required. With respect to the influence of the feedback-ra-
te, however, this method is less advantageous as can be seen
from Fig. 9.

Fig. 9 Error signal characteristics of the SM-method at fixed intensity
of 70% and variable feedback-rate . ϑ = 1.1

Table 1 Overview of algorithms presented throughout Sect. 4

Method Monotonic
region [rad]

Mode width
dependent

Intensity
dependent

ES 2.1 No Yes

WS.1 2.1 No Yes

WS.2 2.1 Yes Yes

SM 1.7 Yes No

4.4 Overview of the presented methods

Finally, the results from this chapter are summed up. Table 1
gives an overview of the presented methods with respect to
the monotonic region of each, as well as to the mode width
dependency. The intensity dependency is also given, but it
has to be kept in mind that it is generally possible to com-
pensate it by a normalisation procedure as outlined above.

5 Experimental results

In this section, the performance of the ES-method, imple-
mented on a DSP, is evaluated in a real experimental setup.
The results are generally the same, when the WS.1-meth-
od is used instead. The performance of the SM-method and
the WS.2-method, employing analog implementations, was
already presented elsewhere [11, 23].

5.1 Regulatory bandwidth under experimental conditions

In a first step, we determine the performance of the ES-me-
thod in terms of the regulatory bandwidth in a full experi-
mental setup.

For this purpose, the regulator is connected to a piezo
controller driving a piezo on which a mirror is mounted
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Fig. 10 Damping of the artificial phase disturbance by the regulator
using the ES-method. The red lines mark the regulatory bandwidth of
37 Hz, which is the frequency that results in a 3 dB damping

(see Fig. 2). An artificial disturbance of the phase was in-
troduced via a sine of variable frequency, which was added
to the correction signal and this way applied to the PZT. The
idea behind this experiment is that the artificial disturbance
results in a cyclic change of the feedback-phase. For slow
disturbances, i.e. at low frequencies, the regulator electron-
ics can follow the perturbation and eliminate it, whereas at
higher frequencies the perturbation becomes too quick and
can no longer be compensated. This behaviour is essentially
the same as for a high pass filter, hence the phase regulator
can be considered as such a filter and be characterised by
the damping of the input. Accordingly the regulatory band-
width is hereby defined as the frequency, at which the input
disturbance experiences a damping of 3 dB. For this exper-
iment, the amplitude of the sine was selected to approxi-
mately match a phase shift of 0.6 rad. The laser current is
scanned by ramps of 5 Hz, which is the maximum scan rate
achievable with our setup. Every ramp consists of 95 modes,
hence the mode rate is 475 modes/s. Using the ES-method,
the achieved regulatory bandwidth was 37 Hz (see Fig. 10).

The PID parameters used are: P = 0.17, I = 0.5, and
D = 0.1. These values are the dimensionless parameters,
as they are used by the PID routine included in the dsPIC
DSC DSP Algorithm Library (Microchip Inc., Part Num-
ber: SW300022). They represent the best parameter set in
terms of speed and stability that could be found. Although a
correct choice for the PID parameters is crucial for a good
performance, a relatively big variation of 10% for each one
individually did change the bandwidth only by a few per-
cent. It is also possible to find sets, which result in a higher
bandwidth, though the increase in speed is generally accom-
panied by a less stable regulation.

5.2 Step response of the regulator

Finally, the regulator’s step response is given, which nicely
demonstrates its function. Instead of the sine function used
beforehand, a step function is added to the regulators output.
The PID parameters used are the same as in Sect. 5.1. From
this experiment, several insights can be gained. On the one
hand, the response of the piezo system (PZT and driver) can
be monitored, and on the other hand the number of modes
needed to correct for the step-like perturbation can be mea-
sured. Figures 11 and 13 depict the step perturbation and
response for a negative and a positive change, respectively.

The figures yield immediately that the piezo system is
a performance limiting factor in our setup, as the response
to the step perturbation is not abrupt but has a significant
settling time of about two modes. A stronger driver and a
reduced mirror mass will certainly improve this. A full com-
pensation of the step perturbation (excluding the settling de-
lay) takes about 5 modes for a negative, and 3 for a positive
step.

Whenever the regulator finds a new mode, a 5 V pulse
is raised on one of its digital outputs. These pulses are de-
picted in both figures as red dots. Especially from Fig. 11, it
can be seen that the regulator reliably detects the beginning
and the end of each mode, even for strong perturbations and
in the presence of parasitic modes. This reliable mode de-
tection is a key feature, which has to be implemented with
care. Figure 12 gives an additional example for the finding
of the modes at the transition from one scan to the next.
From this figure, two important features of the regulator can
be deduced. The first point is again the reliable finding of
the modes; this time in the case of a varying mode width
due to the non-linear frequency to injection current relation
of the diode laser. The second point is the rejection of the
complicated tuning region just after the ringdown event at
the end of the scan. If the transmission data between 50 ms
and 60 ms was also used for the feedback-phase correction,
it would introduce a significant disturbance.

6 Conclusion and perspectives

In this work, different approaches for the generation of an
error-signal for phase-locking in OF-CEAS were presented
and analysed. Besides the previously published methods of
Motto-Ros [23] (SM) and Baran [11] (WS.2), two further
methods (ES and WS.1) were proposed. Detailed simula-
tions of the error-signal to be expected from those methods
gave the result that the ES- and the WS.1-method are equally
well suited as direct error-signals, as they are almost inde-
pendent of the mode width and can be normalised to the
transmission intensity. The SM-method, on the other hand,
is almost intensity independent, but has a stronger depen-
dency on the mode width. The WS.2-method is dependent
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Fig. 11 Response of the regulator to a negative step like phase shift
using the ES-method

Fig. 12 Cavity transmission and mode finding in between two current
ramps

on both, intensity and mode width, of which at least the in-
tensity dependency could be compensated in the same way
it has been done for the other methods.

The feasibility of a reliable, dsp based, mode by mode fe-
edback-phase correction—implementing the ES-method—
was demonstrated, and its performance under experimental
conditions evaluated. From the experiments, it is found that
a bandwidth of 37 Hz could be achieved in our setup. The
step response shows that this performance is currently lim-
ited by the piezo system.

Appendix: Transfer function of a V-shaped cavity

The intensity transfer function for a V-shaped cavity has
been presented by Morville et al. [4]. For the purpose of this
work, it is, however, more convenient to use it in the form

Fig. 13 Response of the regulator to a positive step-like phase shift
using the ES-method

of (4). This form can be derived the same way as it has been
done by Lehmann and Romanini [8] for a linear cavity. As-
suming that all mirrors have identical properties, the electric
field behind mirror M1 is given by:

Etrans(t) =
∞∑

n=0

T 2 R4nEinc

(
t − nτ + 2

L1

c

)
. (5)

Here, R and T are the field reflectivity and transmission,
Einc the incident field, n the number of roundtrips in the cav-
ity, and τ the time per roundtrip. 2L1

c
corresponds to the time

retardation of rays leaving the cavity at the first contact with
mirror M1. This yields the field transfer function:

HV (ω) := T 2e−iω
L1
c

1 − R4e−iωτ
(6)

and the intensity transferfunction HV (ω) = |HV (ω)|2:

HV (ω) = T 2

(1 − R2)2 + 4R2 sin2( 1
2ωτ + 3ϑ

2 )
(7)

where T = |T |2, R = |R|2, and ϑ = arg (−R).
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