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Abstract We report on the design of a segmented linear
Paul trap for optical clock applications using trapped ion
Coulomb crystals. For an optical clock with an improved
short-term stability and a fractional frequency uncertainty
of 10−18, we propose 115In+ ions sympathetically cooled by
172Yb+. We discuss the systematic frequency shifts of such
a frequency standard. In particular, we elaborate on high-
precision calculations of the electric radiofrequency field of
the ion trap using the finite element method. These calcu-
lations are used to find a scalable design with minimized
excess micromotion of the ions at a level at which the cor-
responding second-order Doppler shift contributes less than
10−18 to the relative uncertainty of the frequency standard.

1 Introduction

Since the first demonstration of a single trapped ion in 1980,
experiments with trapped single particles have led to some
of the finest spectroscopic measurements in physics [1–3]
and radiofrequency (rf) Paul traps have become outstand-
ing working tools with unsurpassed accuracy in frequency
metrology [4, 5].

The location of the single ion and thus, electro-magnetic
fields sensed by it, can be controlled and measured at the
nm scale, leading to a superior precision of optical ion
clocks with a fractional systematic frequency uncertainty
now reaching down into the 10−18 regime [5]. Still, the low
signal-to-noise ratio of the single ion interrogation limits the
obtainable short-term stability and puts up high demands for
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the stability of the optical clock laser. One approach to im-
proving the short-term stability of ion clocks is to investigate
narrower atomic transitions with mHz linewidth and thus,
higher quality factor. Here, for Fourier limited spectroscopy
a short-term linewidth of the clock laser at the mHz level is
required. Due to the limited quantum information obtained
in single ion spectroscopy, long integration times are neces-
sary to lock the laser onto the atomic signal. For example, re-
solving and locking a laser to a mHz wide clock transition by
standard quantum jump spectroscopy, would require a clock
laser frequency stability in the low 10−17 range over several
minutes, in order to reach the quantum projection noise limit
of the single ion [6]. A major effort is made in the metrology
community to push the stability limits of optical reference
systems [7–9] and faster, phase sensitive detections schemes
could be thought of. Still, today’s state-of-the-art clock laser
stability and detection limit the achieved short-term stability
such that integration times of tens of days to weeks would
be necessary to reach a frequency resolution of 1 × 10−18

with an optical ion clock. This high-frequency resolution is
required for improved fundamental tests of physics and ap-
plications in geodesy [10, 11]. As for white laser noise, the
stability of the frequency measurement averages down with
the square root of both atom number N and integration time
τ [12], increasing the number of ions for example to only 10
could shorten the integration time already by a full order of
magnitude. Together with improved laser stability and pos-
sibly new detection methods, increasing the number of ions
within a well controlled ensemble of ions would substan-
tially improve optical frequency standards and open up ways
for new applications in navigation and geodesy [10].

A pivotal question is, whether a larger sample of ions
can be controlled sufficiently well to reach fractional fre-
quency inaccuracies or long-term stabilities as low as 10−18

or below. So far frequency standards based on microwave
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transitions in a cloud of buffer gas cooled ions have been
investigated for a frequency standard with a long-term sta-
bility of 10−15 [13]. A ring of ions in an anharmonic linear
Paul trap has been proposed [14] for an optical frequency
standard with improved short-term stability, conserving the
long-term stability at the level of 10−15.

For an optical ion clock at the accuracy level of 10−18,
the choice of atomic elements is limited as many ions have
an electronic quadrupole moment θ in the excited state of
the clock transition, which makes them sensitive to electric
field gradients. In a linear ion trap with its large static elec-
tric field gradient and the Coulomb fields of neighboring
ions, quadrupole shifts are on the order of 10 Hz. An ex-
ception are two-electron systems, where transitions between
1S0 and 3P0 states with θ = 0 are available. The most ad-
vanced ion clock today [5] uses such a system, 27Al+, with
θ = 0. Here, the clock ion is stored in a linear Paul trap to-
gether with a second species with easily accessible atomic
transitions. The clock signal is read out via the second ion
in a quantum logic step [15, 16]. In general, the field of ion
trapping has been pushed tremendously by the developments
in quantum computation with cold ions in the past few years.
A high level control of up to 14 ions has been demonstrated
in entangled strings of ions [17, 18], cooling to the three-
dimensional ground state was implemented [19] and new
scalable ion trap structures are being developed for larger
quantum registers [20, 21].

The most striking remaining problems for optical clocks
are heating of the ion due to its interaction with fluctuating
patch potentials [22] and driven motion (micromotion [23])
due to residual rf fields of the trap, both giving rise to sig-
nificant second-order Doppler shifts. In the NIST Al/Mg
ion trap a fractional frequency shift due to micromotion of
3 × 10−17 was observed, when the ion was shifted along the
axial trap direction by only 3 µm [5]. This excess micromo-
tion (EMM) arises because of finite size effects, misalign-
ment and machining tolerances in the ion trap assembly, see
Sect. 4, and poses severe problems, when scaling up an ion
optical frequency standard to many ions.

Inspired by scalable designs of ion traps for quantum
computation [20] we present a design study for an optical
frequency standard based on linear chains of ions with a po-
tential fractional frequency uncertainty of 10−18 or below.
In our scalable, segmented four-layer Paul trap, chains of up
to 10 ions can be trapped in the Lamb–Dicke regime [24]
in each trapping segment. It provides both, all degrees of
freedom to control micromotion as well as optical access
in three dimensions. In such a trap we plan to trap multi-
ple chains of 115In+ ions. The indium ion clock transition
can be detected directly using quantum jump spectroscopy.
In order to ensure efficient trapping and cooling of the ionic
crystals, additional sympathetic cooling with 172Yb+ will be
provided. The high-precision finite element method (FEM)

calculations presented in this paper are used to develop an
ion trap made of AlN ceramics wafers in our lab. In a pro-
totype of this trap, based on a ceramic filled, glass rein-
forced thermoset (Rogers4530BTM), we have already suc-
cessfully trapped chains of 172Yb+ ions for first tests on
this design [25]. Clearly, there are many challenges ahead
in building an optical clock based on Coulomb crystals with
systematic frequency shifts controlled at the level of 10−18

and issues of controlling the ion dynamics, collisions with
background gas, rf phase shifts, magnetic fields and opti-
cal imaging will be addressed in our experiment with mixed
chains of ytterbium and indium ions in our scalable ion trap.

In summary, in this paper we propose a novel optical fre-
quency standard based on linear crystals of 115In+ ions sym-
pathetically cooled by 172Yb+. We focus on the design of
the ion trap for such an optical clock with many ions. In
particular, we address the problem of residual micromotion
and required machining tolerances. As micromotion causes
extra heating in laser-cooled systems, this study is of gen-
eral interest for high-precision experiments, for example for
investigating ion-atom interactions in degenerate quantum
gases [26].

In Sect. 2, we detail our approach to an optical indium
frequency standard with ionic crystals and show that a long-
term frequency stability of 10−18 or below with systematic
frequency shifts at the mHz level is possible. Section 3 gives
general requirements and considerations regarding the ion
trap design. Section 4 describes the high-precision FEM cal-
culations of the electric field of a segmented linear ion trap.
The influence of the geometry is discussed and critical tol-
erances are detailed.

2 Systematic shifts in an optical indium multi-ion clock

The single 115In+ ion is a well known, previously inves-
tigated candidate for an ultra-stable and accurate optical
clock [27–29]. Its narrow clock transition 1S0 → 3P0 at
236.5 nm, with a natural linewidth of γ = 0.8 Hz and elec-
tronic quadrupole moment θ = 0, see Fig. 1, makes it an
interesting candidate for a scalable optical clock with many
ions. The possibility to detect the quantum information of
the clock excitation directly via the 3P1 state with a natu-
ral lifetime of 0.44 µs (γ = 360 kHz) [27] can facilitate the
atomic signal read-out of a larger chain of ions, without the
need of quantum logic technique [15]. Its transition wave-
length of 230.5 nm can be generated with standard diode
laser technology and second harmonic generation [30]. Due
to the lower cooling power obtained by laser cooling on this
narrow transition and the increased rf heating in Coulomb
crystals, it is still advisable to sympathetically cool the in-
dium ions with a second ion species with a stronger cooling
transition. In our case we choose 172Yb+, because of its long
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Fig. 1 Simplified level scheme
of 115In+ and 172Yb+, showing
relevant cooling, repump and
clock transitions

Table 1 Systematic relative frequency shifts in 115In+. For the uncer-
tainty of the BBR shift the theoretical uncertainty is given. (*) a heating
rate of 50 phonons per second at νsec = 1 MHz is assumed, see text

Type of shift Shift |Δν| Uncertainty

in 10−18 in 10−18

Thermal motion (T = 0.5 mK) 1 1

Heating∗ <0.1 <0.1

Excess micromotion ≈1 < 1

Second-order Zeeman <0.1 <0.1

BBR at 300 K 13.6 1

DC Stark 0.08 0.08

lifetime in ion traps, the all-diode-laser-based easy accessi-
ble wavelengths and the similar ion mass, which allows for
efficient sympathetic cooling. YbH+ formed in collisions
with background gas can be dissociated with the Doppler
cooling light [31]. In addition, the 172Yb+ isotope has no
hyperfine structure and cooling is facilitated. Besides the en-
hanced cooling efficiency and control of ions, the presence
of a second species allows for the possibility to sympatheti-
cally cool during the clock interrogation in case of excessive
heating, additional characterization of the trap environment,
such as magnetic fields, and an alternative clock read-out via
quantum logic for comparative studies.

Besides the absence of electronic quadrupole moment,
the 1S0 → 3P0 transition in 115In+ has the advantage of
a very low sensitivity to environmental effects, which are
summarized in Table 1. In particular, indium profits from its
heavy mass when considering relativistic frequency shifts
(second-order Doppler shift) due to time dilation Δνtd/ν =
−Ekin/mc2, where Ekin is the kinetic energy of the ion,
m its rest mass, c the speed of light and ν the frequency
of the atomic transition. At the Doppler cooling limit TD =
0.5 mK of 172Yb+ this frequency shift amounts to Δνtd/ν =
−Ekin/mc2 = −1 × 10−18, where Ekin = (5/2) kBT is the
kinetic energy due to thermal secular and micromotion in

a linear ion trap [23]. If relative uncertainties below 10−18

are targeted, further cooling such as sideband cooling of the
Yb+ ion or direct cooling on the intercombination line of the
115In+ ion [34] can be implemented, where temperatures of
100 µK can be reached. An additional kinetic energy can be
brought into the system by excess heating due to thermally
activated patch potentials and contaminations on the elec-
trodes [4, 35]. Assuming an enhanced electronic field noise
with a power spectral density of SE = 10−12 (V/m)2 Hz−1

in our ion trap with electrode-to-ion distance of 0.7 mm, see
Fig. 6 in [36], we obtain a maximum relative frequency shift
of 1 × 10−19 due to heating of the secular motion during
the clock interrogation, corresponding to five phonons at an
eigenfrequency of the secular motion νsec = 1 MHz. Here
we assumed a maximum clock interrogation time of 100 ms,
limited by the natural lifetime of the 3P0 state of 115In+.
Commonly observed heating rates in such ion traps can be a
factor 10 to 100 lower [36], giving relative frequency shifts
of 10−20 and below.

Regarding ac Stark shifts due to black-body radiation
(BBR), 115In+ has one of the smallest sensitivities among
optical clock candidates. With a differential static polariz-
ability of Δα0 = 5 × 10−8 Hz/(V/m)2 between the 1S0 and
3P0 state [32], it is comparable to 27Al+ [32, 33]. Here, dy-
namic corrections due to the frequency distribution are ne-
glected, as they are typically of the order of a few percent
or below. At room temperature this corresponds to a black-
body shift of the clock transition of 1.36(10) × 10−17. For
example, determining the temperature of the trap environ-
ment to T = 30±10◦C will give a relative clock uncertainty
due to the black-body shift of 2 × 10−18.

Two major systematic frequency shifts arising from im-
perfections in the rf trapping potential are excess micro-
motion (EMM) and dc Stark shifts. If the driving radiofre-
quency field Erf of the trap cannot be zeroed at the place
of the ion, it amounts to a second-order Doppler shift
of Δνtd/ν = −e2E2

rf/4c2m2Ω2
rf, where e is the electronic

charge, Erf the amplitude of the electric rf field at the place
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of the ion and Ωrf/2π the trap drive frequency [23]. This ef-
fect is the dominating uncertainty in today’s best ion clocks
and aggravates for a larger number of ions. Section 4 of
this paper addresses the influence of finite size effects of
the trap and imperfections in the electrode machining on the
rf field in detail. The targeted upper limit in our trap de-
sign for residual rf fields on the trap axis is a maximum of
90 V/m, which corresponds to Δνtd/ν = −1 × 10−18 for a
trapped 115In+ ion at a trap frequency Ωrf/2π = 20 MHz,
as discussed in Sect. 3.1. In addition, any residual electric
field seen by the ion, will give rise to a dc Stark shift νS in
the clock transition. Here, 115In+ profits from its low static
differential polarizability Δα0 [32]. At an rf field amplitude
of 90 V/m this Stark shift corresponds to νS = Δα0〈E2

rf〉 =
8 × 10−20 × ν.

Lastly, we consider the influence of static and dy-
namic magnetic fields in the ion trap. The linear Zeeman
shift from the mF = 9/2 to mF = 7/2 states amounts to
6.36 kHz/mT [38] and is due to hyperfine mixing of 3P0

and 1P1 states (the nuclear spin of 115In is I = 9/2). It can
be measured and subtracted by alternatively pumping the
ion into the stretched states of the ground state with oppo-
site magnetic moments [4, 37]. The second-order Zeeman
shift is given by Δν = β〈B2〉, where for the alkaline-earth
like system β = 2μ2

B/3h2ΔFS = 4.1 Hz/mT2, where μB

is the Bohr magneton and h the Planck constant. Owing
to the large fine-structure splitting ΔFS = 3.2 × 1013 Hz
of the excited triplet states, indium has an advantageously
low second-order B-field dependency, 10000 times lower
than 171Yb+ and 20 times lower than 27Al+. Due to unbal-
anced currents in the ion trap alternating magnetic fields
with B2

rms = 2.2 × 10−11 T2 have been observed in ion
traps [5]. For 27Al+ this accounts for an ac Zeeman shift
of Δν/ν = 1.4 × 10−18. For the 115In+ ion with Δν/ν =
7 × 10−20 this effect is negligible at the level of 10−18.
While static and dynamic B-fields can be determined quite
accurately and frequency shifts can be taken account of, for
an optical clock based on many ions, requirements on the
homogeneity of magnetic fields become important. With a
linear Zeeman shift of 6.36 kHz/mT variations in magnetic
field amplitude should be less than 16 nT across the ion
chain to ensure that the broadening of the atomic line is less
than 0.1 Hz. Distortions of the line profile due to spatially
varying systematic shifts will have to be evaluated carefully
to avoid locking offsets. The fast interrogation cycle that is
possible with a multi-ion frequency standard will be advan-
tageous when both stretched states are probed, in order to
avoid offsets due to temporally varying magnetic fields.

The above considerations show that it should be possible
to evaluate the clock frequency of a larger sample of 115In+
ions with a fractional frequency uncertainty of 10−18, as-
suming that a sufficiently ideal trap can be machined, which
will be addressed in more detail in the following sections

of this paper. We have not addressed other potential system-
atic frequency shifts like Doppler effects of first-order [4]
or phase-chirps in acousto-optic modulators, which are of
general technical origin and need to be evaluated in each
individual experimental setup. Frequency shifts due to col-
lisions with the background gas have to be studied, but are
typically in the 10−19 range when operating the ion clock at
a background pressure in the low 10−9 Pa range [4].

3 Trap design

For an optical clock with low systematic frequency shifts
and competitive long-term stability it is important to have
a high level control of the electrostatic and magnetic fields
seen by the ions over the whole trapping region. This in-
cludes both necessary external control and 3D optical ac-
cess to measure micromotion and field shifts. We consider a
scalable segmented trap design, see Fig. 2, in which ions can
be trapped either in a long linear string with an axial anhar-
monic dc potential [39] or, in a harmonic axial confinement,
in separate “buckets” of up to 10 ions in every other trap
segment, which can then be controlled independently. Com-
pared to linear ion trap designs with separate dc electrodes

Fig. 2 Schematic drawing of our trap design based on four segmented
electrode wafers: (a) side view; (b) top view onto one inner wafer with
a rf trap electrode pair. The following lengths of the trap geometry are
defined: electrode thickness te; total length of the trap electrodes Lt;
segment length ls, and width of isolation slit in the rf ground/dc elec-
trodes wn which is identical to the width of the corresponding notches
in the rf electrodes
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on the trap axis for the axial confinement [40], segmented rf
electrodes [41, 42] give a more ideal behavior of the rf field
lines along the axial trap direction and allow for a high pre-
cision in the alignment of trap electrodes, if machined from
one part. Currently a laser cutting and metallization process
for low rf loss ceramic wafers is being developed in our lab.
Four of these wafers can be precision aligned and stacked
on top of each other to give the trap assembly.

Figure 1(b) shows the top view onto one pair of rf
quadrupole electrodes, which can be laser cut from one thin
wafer. To the segmented rf ground electrodes different dc
potentials can be applied for the axial confinement as well
as for static stray field compensation in the axial and one
radial direction. To obtain both degrees of freedom to com-
pensate for residual micromotion in the radial plane, our de-
sign includes an additional electrode wafer with compen-
sation electrodes that overlie each rf ground/dc electrodes
with a small spacing in the range of 0.1 mm to 0.25 mm,
see Fig. 1(a). The dc field generated by these extra compen-
sation electrodes as well as their effect on the rf field is de-
scribed in Sect. 4.7. Our trap design is rather open and offers
optical access in the (x, z) plane and in the (y, z) plane for
laser beams necessary for laser cooling, exciting repumping
transitions, state manipulation and probing. In x direction,
with a typical electrode thickness te between 0.2 mm and
0.4 mm, a solid angle fraction larger than 4% is available
for optical fluorescence detection.

3.1 Trap parameters

In order to reduce heating of the secular motion of the ions
we have chosen a rather large distance d = 0.7 mm from
the electrodes to the trap center, since observed excess heat-
ing rates scale as d−4 [35, 36]. The geometry of the linear
quadrupole electrode assembly has unity aspect ratio, with
a distance of 1 mm between the tips of opposite electrodes,
as shown in Fig. 2(a). For this case, the quadrupole term of
the radial rf potential is only a factor 1.3 lower than in an
ideal Paul trap with hyperbolically shaped rf electrodes. In
this sense, the trap geometry is relatively efficient and suf-
ficiently large trap frequencies of secular motion in radial
direction νr can be realized despite the large distance to the
trap electrodes. With an rf voltage amplitude of 1.5 kV at
an rf drive frequency Ωrf/2π = 20 MHz we obtain trap fre-
quencies for the secular motion of νr,Yb = 1.25 MHz and
νr,In = 1.75 MHz for 172Yb+ and 115In+ ions, respectively.

An important criterion for first-order Doppler free clock
spectroscopy is the Lamb–Dicke condition with η =
kΔx < 1 [24]. Here, Δx is the rms spread of the position
of the ion and k is the modulus of the wave vector of the
light exciting the transition. At an ion temperature corre-
sponding to the Doppler limit for Yb+, TD = 0.5 mK, the
Lamb–Dicke parameter in radial direction takes a value of

η = kΔx = 0.45 for the indium clock transition at 236.5 nm.
For the ground state of the harmonic oscillator, with νr,In =
1.75 MHz, η = 0.13.

The confinement in axial direction is generated by apply-
ing a dc potential between neighboring segments in the rf
ground electrodes. For a harmonic confinement inside the
Lamb–Dicke regime, every other segment can be used as an
ion trap with one segment for dc confinement in between.
We find that the curvature of the axial trapping potentials
has a shallow maximum as a function of segment length ls
close to 1 mm dropping off by 10% at 0.8 mm and by 7%
at 1.2 mm. Regarding the number of traps obtained per unit
length of the quadrupole electrodes it seems desirable to use
a smaller segment length. However, for segment lengths ls
smaller than 1 mm neighboring traps become less well iso-
lated from each other in the sense that varying compensation
voltages in one trap are sensed by neighboring ion traps. In
addition, the depth of the static potential well on the trap axis
decreases monotonically with decreasing segment length ls.
As will be described in Sect. 4.3 the choice of the segment
length also influences the axial component of the rf field, as
far as the contribution from the notches and isolation slits in
the quadrupole electrodes is concerned. For our design, we
consider segment lengths in the range from 1 mm to 2 mm.

In an ideal linear Paul trap the rf field vanishes along the
symmetry axis of the ion trap and driven micromotion of
the ion can be minimized for a linear string of ions. To pre-
vent transitions of the linear chain of ions to zig-zag, he-
lical and more complex crystal structures, the ratio of ra-
dial to axial trap frequencies of secular motion νr/νz has
to be kept above a critical value, which depends on the
number of ions N in the crystal. The various phase tran-
sitions in the ion Coulomb crystal were investigated numer-
ically and analytically [45–47]. Estimates for the critical ra-
tio νr/νz for the transition from the linear crystal as a func-
tion of N from different authors are in agreement with each
other and are compiled in reference [43]. Using the criterion
νr/νz > 0.73N0.86 obtained by Steane [44], we find, for ex-
ample, νr/νz > 3 for five ions and νr/νz > 5.3 for ten ions.
Choosing 1.75 MHz for νr the linear confinement of ten ions
is possible for νz < 0.33 MHz.

3.2 Design criterion: micromotion in linear rf trap

A principal limitation in today’s optical ion clocks are fre-
quency shifts induced by excess micromotion [23]. The ob-
served EMM can originate from uncompensated static stray
fields that shift the ion off the nodal line of the rf field, resid-
ual phase shifts of the rf potential on opposing electrodes
and imperfections in the ion trap geometry that lead to a
non-vanishing rf field along the trap axis. Our design allows
to compensate static stray fields for all degrees of freedom
in the radial plane to zero micromotion radially. RF phase
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shifts can be suppressed by carefully designed electronic cir-
cuits, symmetric leads and low resistivities. The electronic
circuit scheme of our scalable trap design is currently tested
on a first prototype trap [25]. In this paper we focus on the
minimization of residual rf fields Erf,z along the trap axis,
which are due to the trap geometry and cannot be zeroed,
thus severely limiting the available trapping region, where
micromotion is negligible.

The dominating frequency shift due to EMM is the
second-order Doppler shift, while dc Stark shifts induced by
residual rf fields are roughly an order of magnitude smaller
in the case of ions with low static polarizabilities, such as
115In+ and 27Al+, see Sect. 2. We therefore assume as a
trap design criterion a maximum second-order Doppler shift
of |Δνtd/ν| = 10−18 due to residual axial rf fields.

As already pointed out in Sect. 2, this relativistic fre-
quency shift contributes with Δνtd/ν = −Ekin/(mc2) to the
fractional uncertainty of the optical clock. Here, the kinetic
energy Ekin = E

(sec)
kin + E

(mm)
kin of the ion of mass m is given

by the contributions E
(sec)
kin from the secular motion and

E
(mm)
kin from the micromotion of the ion. Assuming the secu-

lar motion to be thermalized at a temperature T one obtains
E

(sec)
kin = 3

2kBT for the three degrees of freedom of motion
with kB denoting the Boltzmann constant. For the radial de-
grees of freedom in a linear Paul trap, assuming the confine-
ment is given by a purely quadratic pseudopotential

Ψ = e2E2
rf/

(
4mΩ2

rf

)
, (1)

the thermal contribution of micromotion to the kinetic en-
ergy is equal to the kinetic energy contribution from the
secular motion E

(mm)
kin = 2

2kBT , a result obtained from both
classical and quantum-mechanical treatment of the ion mo-
tion [48]. This is the case when the EMM is reduced to a
negligibly small level in the radial directions and when the
contribution of the static potential to the radial confinement
can be neglected. The static potential has a weakening ef-
fect on the radial confinement and thus results in an increase
of the micromotion contribution to the kinetic energy which
can be calculated using (10) in reference [23]. In an ideal
trap the axial confinement is purely given by the static po-
tential. The micromotion contribution to the kinetic energy
in axial direction can only stem from excess micromotion
due to a residual axial component of the rf field Erf,z along
the trap axis. Neglecting the contribution of the static poten-
tial to the radial confinement we obtain

Δνtd

ν
= −5

2

kBT

mc2
− e2E2

rf,z

4m2c2Ω2
rf

, (2)

when the excess micromotion in radial directions is reduced
to a negligibly small level, which is possible using tech-
niques described by Berkeland et al. [23] and taking care

in the design of the rf circuit to minimize rf phase shifts be-
tween the quadrupole electrodes to a negligibly small level.

As the second term on the righthand side of (2) suggests,
the axial component of the rf field Erf,z has to be considered
separately. Although a single ion or a linear chain of ions
may also be displaced in axial direction in the trap by apply-
ing a dc electric field in search for a minimum in |Erf,z|, the
existence of a minimum and whether the minimal magnitude
of Erf,z is small enough is determined almost entirely by the
design of the trap and the strict keeping of tolerances in its
construction. Hence, in the design of the trap we look for ge-
ometries which minimize the axial component of the rf field
and analyze the sensitivity of different sizes in the geometry
in order to state the tolerances for the construction.

For indium ions using an rf drive frequency Ωrf/2π =
20 MHz and an rf amplitude of 1.5 kV a residual axial rf
field amplitude |Erf,z| of 90 V/m amounts to a relative fre-
quency shift of Δνtd/ν = −1 × 10−18 due to non-thermal
EMM, second term in (2). In order to minimize the axial
micromotion for a linear chain of 5 to 10 ions to that level,
in each trapping segment a region of a length of 50 µm to
100 µm is required along the z axis, where the magnitude of
the axial rf field is no larger than 90 V/m.

4 Trap field calculations

An ideal infinitely long linear Paul trap has no axial rf field
component. In segmented linear Paul traps of finite length
used in practice, a nonzero axial rf field component |Erf,z|
on the trap axis appears for several practical or technical rea-
sons, which we investigated in order to minimize their effect.
These are: the finite length of the quadrupole electrodes; in-
sulation gaps in the dc electrodes; deviation from the ideally
parallel alignment of the quadrupole electrodes to the trap
axis; differences in the geometry of the electrodes and insu-
lation gaps that breach the symmetry.

For the trap field calculations in Sects. 4.2 through 4.6 an
electrode geometry similar to Fig. 2 is used, with a varying
number of segments, as will be indicated in the text. Only the
layers of extra compensation electrodes are omitted, in order
to preserve symmetries and to separate the different effects.
The effect of these extra layers on the rf field is discussed in
Sect. 4.7.

In order to obtain the ponderomotive potential given
in (1), the electric field Erf of the linear Paul trap is cal-
culated. The Laplace equation is solved for boundary con-
ditions given by the electrodes. As this is a linear homoge-
neous differential equation, a solution for a specific bound-
ary condition can be written as a linear combination of so-
lutions of this geometry. It is worthwhile noting that a bet-
ter understanding of the effects can be gained by decom-
posing the electrostatic potential problem linearly into one
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component containing only the almost ideal part of the po-
tential producing the quadrupole trap potential and a second
component, which contains mainly the effect of the trap im-
perfection under investigation. In our experiment we use a
configuration with two diagonally opposite electrodes put
on rf voltage Urf keeping the other pair at rf ground. The po-
tential in this configuration is denoted by (0,Urf). It can be
thought of as sum of the configurations (−Urf/2,Urf/2) and
(Urf/2,Urf/2). The configuration (−Urf/2,Urf/2) generates
the quadrupole potential required for trapping and by sym-
metry has zero voltage everywhere on the trap axis. There-
fore, for the ideal symmetric trap, this configuration has no
axial rf field component. The (Urf/2,Urf/2) configuration
generates a flat nonzero potential between the quadrupole
electrodes with almost zero electric field in the neighbor-
hood of the trap axis. It displays finite size effects and ef-
fects of the segmentation slits onto the on-axis electric field
clearly.

It can also be advantageous to apply this decomposition
method when calculating the trap potential using the FEM.
The precision achieved at a given mesh point density in-
creases with decreasing electric field. Thus, effects which
appear mainly in the (Urf/2,Urf/2) configuration, which
does not contain the strong radial trapping field gradients,
can be calculated with higher accuracy. The dependence of
the accuracy of the solution on the electric field is accounted
for by the definition of the residual error estimation func-
tion [49], which plays an important role in approximating
iterative linear solver methods employed in the solution of
FEM problems as well as in adaptive mesh refinement rou-
tines.

We estimate the accuracy of our calculations to resolve
the axial component of the rf field on the trap axis on a level
well below 90 V/m at an rf amplitude Urf of 1500 V. Re-
garding the large radial field gradients of 2.3 × 109 V/m2

obtained at this rf amplitude, this is demanding as the mesh
elements in the region of the trap axis typically have a size
in the range of 0.05 mm to 0.1 mm and hence, fields on their
surfaces are on average orders of magnitude larger.

To reach the required accuracy we followed the mesh
generation strategy with adaptive mesh refinement steps de-
scribed in Sect. 4.1 until a convergence at the low percent
level is reached. Where applicable, symmetry planes are
used in the FEM model to reduce the size of the problem
and hence required computing power. For the trap model of
Sects. 4.2 and 4.3, the linear decomposition into the con-
figurations (−Urf/2,Urf/2) and (Urf/2,Urf/2) could be ex-
ploited and thus, higher accuracy reached at the same use of
computing resources. For these calculations we obtained ac-
curacies better than 10 V/m for the axial component of the
rf field on the trap axis.

4.1 Technical details of the finite element calculations

For the calculation of the rf trap potential, it is sufficient to
consider the rf field at a fixed phase, such that the field calcu-
lation reduces to an electrostatic problem. Dynamic effects
due to the electronic lead design that can produce different
phase shifts for the rf field at different points in the trap have
been considered with a separate rf electronics software and
will be discussed for the prototype trap [25].

The calculations of the rf field presented in this work
consist of finding the solution to the electrostatic Dirichlet
problem, in which the electrode surfaces of the trap are the
boundaries kept at given electric potentials. We use a com-
mercially available software (COMSOL Multiphysics 3.5)
for finite element analysis. In our FEM model we surround
the trap electrode assembly with a wide rectangular bound-
ary box, which is set to ground potential. The sides of the
grounded box are typically at a distance of 1–2 cm from the
trap electrode surfaces. We verified for different box sizes
from 7 to 30 mm that this distance was large enough to have
no influence on the obtained results.

Dielectric components required in the actual implemen-
tation of the trap were not taken into account in our field cal-
culations, since they are either far away from the trap region
or their surface is almost entirely coated with conducting
electrode material. The electrode surfaces are represented in
the geometry model of the trap simulation by an assembly
of rectangular boxes of 5 mm depth and of variable width
ls and thickness te as then stated in the text. An example of
a geometric model used in a calculation for a trap made of
three segments is schematically drawn in Fig. 3.

To generate the mesh we used the routines provided by
the FEM software. The mesh elements are of tetrahedral
shape. Quadratic Lagrange element functions were used in
our calculations, with the exception of the calculations pre-
sented in Fig. 11 as here the use of quartic Lagrange ele-
ment functions led to a slight improvement in the quality of
the solution. As control parameters for the mesh generation
we mainly used the maximum mesh point separation and its
growth rate in transitions from regions where a higher mesh
point density is required to regions where it can be lower. In
order to have an independent control over the mesh genera-
tion in different regions of the geometry, we define various
domains where dedicated mesh generation parameters can
be applied (see Fig. 3).

An initial mesh is generated with the maximum mesh
point separation set equal to a fraction of the smallest dis-
tance in the surrounding local geometry and the element
growth rate to values between 1.1 and 2. We changed mesh
control parameters in the special mesh domains we had de-
fined and compared the results of the calculation. We found
that choosing small element growth rates in the range from
1.1 to 1.5, i.e. keeping mesh point density gradients small,
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Fig. 3 (a) Schematic drawing of a geometry model with three elec-
trode segments used for FEM trap calculations. The trap electrodes,
including the grounded ends of the trap slit, are displayed as light blue
rectangular boxes. Dedicated domains for mesh generation control are
drawn in light to dark grey. The outmost boundary box set to ground
potential is not shown. (b) Top view showing electrodes and domains
of the top layer with grounded end electrodes

was important to obtain convergence of the result with in-
creasing mesh point density. Starting with a mesh, improved
by the convergence analysis with manually changing mesh
parameters, we additionally apply the adaptive mesh refine-
ment routine of COMSOL. During the solution of the prob-
lem this routine detects the regions where improvements to
the mesh are most effective in increasing the accuracy of
the calculation. It accordingly improves the mesh quality
and recalculates the solution. Typically after two or three
adaptive mesh refinement steps we found that, regarding the
axial component of the field on the trap axis, the relative
change between two consecutive adaptive mesh refinement
steps had decreased to a level on the order of 10−2.

The number of degrees of freedom or unknowns of the
linear system of equations for our problem was typically
in the range between 106 and 8 × 106. Only approximat-
ing iterative solver methods are practicable for problems of
this size and the computer memory at our disposal. In our
case mostly an iterative conjugate gradient method with al-
gebraic multigrid preconditioning and an iterative geometric
multigrid method were used in combination with the direct
solvers PARDISO and UMFPACK. As computer hardware
we used two desktop computers, of which one has 4 giga-
bytes and the other has 16 gigabytes of main memory.

4.2 Effect of the finite length of quadrupole electrodes

For an electronically symmetric trap configuration (−Urf/2,

Urf/2) the electrostatic potential along the trap axis is 0.
Therefore, the electric field lines show no axial field com-
ponent along the entire trap axis. For a highly segmented rf
trap, where trapping electrodes are used simultaneously for
dc compensation, it is technically very challenging to deliver
multiple independent rf voltages to the various electrode
segments with identical amplitude and phase. Therefore, for
the scalable trap design we chose the (0,Urf) configuration,
where one rf trap electrode is kept on rf ground, facilitat-
ing independent adding of dc voltages. In this configuration
the electrostatic potential on the trap axis is roughly Urf/2
and electric field gradients along the axis are observed when
terminating the rf trap electrodes to a finite size. In order to
keep this axial component of the rf field amplitude below a
given value, we adjust the minimum length of the trapping
electrodes. For our linear Paul trap with a 1 mm ×1 mm
electrode spacing, Fig. 4(a) shows the axial component of
the rf field along the trap axis plotted over the axial coor-
dinate z for various lengths of the quadrupole electrodes.
Here, the electrode thickness te = 0.2 mm and, for simplic-
ity, an electrode geometry without notches was used. Our
trap design also includes grounded electrodes at the ends of
the quadrupole electrodes perpendicular to the trap axis be-
hind a 1 mm insulating slit, as shown in Fig. 3. The purpose
of the grounded end electrodes is to provide a defined elec-
trostatic potential between the ends of the quadrupole elec-
trodes of the trap, where otherwise the insulator material of
the wafer would be exposed. For the calculations shown in
Fig. 4(a) the grounded end electrodes are included in the trap
geometry. For comparison, for an electrode length of 30 mm
both cases are shown, with grounded and without grounded
electrodes (free ends curve).

Requiring an axial rf field component Erf,z of magnitude
smaller than 90 V/m, we can find the width of the range on
the trap axis usable for trapping of clock ions. In Fig. 4(b)
the width of this usable range is plotted as a function of the
length of the quadrupole electrodes. When we segment the
quadrupole electrodes using a segment length of 1 mm, for
example, with a total length of the quadrupole electrodes
of Lt = 30 mm and an electrode thickness of te = 0.2 mm,
our design can accommodate a linear array of six usable ion
traps for the clock application. The number of usable traps
decreases rapidly when the total electrode length is short-
ened. With Lt = 2 cm and te = 0.2 mm the number of usable
ion traps is already reduced to two. For an electrode thick-
ness of 0.4 mm the corresponding usable range for clock
application is given in Fig. 4(b) as well. In comparison to
te = 0.2 mm, we obtain a moderately increased number of
suitable traps: eight with an electrode length of 30 mm and
three with a 20 mm electrode length.
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Fig. 4 (a) Axial field
component of rf field along the
trap axis for different length Lt ,
calculated for an electrode
thickness te = 0.2 mm.
(b) Width of range along trap
axis, where the axial component
Erf,z is of magnitude smaller
than 90 V/m as a function of the
electrode length. Results for an
electrode thickness te = 0.2 mm
and for te = 0.4 mm are shown.
Solid and dotted lines are to
guide the eye

With a view to further miniaturization of trap assemblies
and further increase of the number of trap sites, it would be
desirable to find a way to avoid long trapping electrodes. By
introducing an additional rf ground electrode above and be-
low the rf electrodes the effect of finite length of the trap
electrodes can be decreased substantially, such that more
trap segments can be used with the same or an even smaller
length of trap electrodes. Enclosing the linear quadrupole
electrodes by extra ground electrode layers from above and
below forces equipotential surfaces of the rf potential to flat-
ten out over a wide range of the trapping area, as shown in
Fig. 5 (right). With electric field lines being orthogonal on
equipotential surfaces, this results in a smaller gradient of
Erf,z over much of the z axis, with a steeper increase only
close to the ends of the trap array. However, there are sev-
eral drawbacks of the additional rf ground electrode layers,
which are more or less important depending on the choice
of electrode thickness and electrode layer spacing: the ca-
pacitance of the trap is increased; the numerical aperture for
optical detection can become limited by the electrode as-
sembly; increased risk of electrical breakdown; and finally,
the axial rf field component on the trap axis resulting from
notches in the electrodes is considerably intensified. As op-
erating a 30 mm long ion trap in our setup brings no further
limitation for the moment, we did not include this option
in our current trap design. Additional electrode layers are
chosen only for extra compensation on top of the rf ground
electrodes as shown in Fig. 2, which can then be put sub-
stantially closer.

It is worthwhile mentioning that Erf,z plotted in Fig. 4(a)
can be well approximated in the central region on the z axis
using the expression

f (z) = C
√

r2 + (L/2 + z)2
− C

√
r2 + (L/2 − z)2

, (3)

Fig. 5 False-color representation of rf equipotential surfaces of a lin-
ear quadrupole trap. (left) RF potential of a two-layer trap; (right) rf
potential with additional rf ground electrode layers on top of rf elec-
trodes

which gives the axial component of the field of a line charge
of length L in the distance r from the z axis and with unit
line charge density. For z values closer to the ends of the
quadrupole electrodes the calculated field component Erf,z

deviates strongly from this expression as here the approx-
imation using a constant line charge density can obviously
not be made. Using a least square fit of this expression to the
FEM calculation results for the axial electric field we obtain
values for L, r and a proportionality factor C for different
lengths of the quadrupole electrodes. In the calculations pre-
sented in the following paragraphs it was helpful to use a
smaller length of the trap electrodes in order to keep the size
of the problem smaller. To better isolate the effects under in-
vestigation we subtracted the finite length effect in form of
the mentioned fit function from the FEM results.

4.3 Effect of insulation slits in dc electrodes

In our design the rf ground electrodes also serve to apply dc
voltages for axial confinement of the ions and to generate
electric compensation fields in axial and in one radial di-
rection. The electronic insulation of the electrodes requires
segmentation slits. Here a notch is machined into the un-
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Fig. 6 (a) Axial field
component of rf field on the trap
axis for different widths wn of
the notches in the quadrupole
electrodes. The electrodes are
notched at z = 0. The horizontal
lines indicate the targeted
maximum amplitude of 90 V/m.
(b) Maximum magnitude of the
axial component of the rf field
|Erf,z| as a function of wn. Lines
between data points are to guide
the eye

derlying insulator material and a conductive layer is applied
around the teeth structure to cover insulation material in di-
rect view of the ions, still leaving each tooth electrically in-
sulated from its neighbors.

Electrode surfaces of the trap assembly are equipotential
surfaces of the electrostatic problem. The introduction of in-
sulation slits into the electrode geometry causes a receding
of equipotential surfaces in their vicinity. This receding is of
course more prominent closer to the electrode. Further away,
it is increasingly smoothed out and the curvature it causes in
the equipotential surfaces is reduced. Still, in the neighbor-
hood of the trap axis a net effect of insulation slits in the
electrodes is noticeable. Implementing corresponding sym-
metric notches in the rf electrodes can partially compensate
for this effect. This can be understood when decomposing
the corresponding electrostatic problem linearly into the two
configurations (−Urf/2,Urf/2) and (Urf/2,Urf/2). For the
contribution of the (−Urf/2,Urf/2) configuration it is clear
that keeping an exact geometric symmetry between the rf
and rf ground electrodes leads to a zero potential all along
the trap axis. On the trap axis, the effect of notches in the
rf ground electrodes is then exactly canceled out by the ef-
fect of the corresponding notches in the rf electrodes. How-
ever, even if the symmetry of the geometry is intact, there
will be a residual magnitude in the axial component of the rf
field which stems from the contribution of the (Urf/2,Urf/2)

configuration and cannot be compensated by symmetry. The
potential on the trap axis in this configuration is a certain
amount smaller than Urf/2, depending on how open the elec-
trode structure is. For trap electrodes, for example, being
further apart from each other, the electrostatic potential on
the trap axis is smaller. This seems to be exactly the effect
of the notches in the electrodes, the equipotential surfaces
are receded closer to the notches, leading to a minimum in
the rf potential on the trap axis and resulting in a dispersion-

Fig. 7 Maximum magnitude of the axial component of the rf field
|Erf,z| as a function of the electrode thickness te for notches of size
wn = 0.15 mm. Lines between data points are to guide the eye

shaped behavior of the axial component of the rf field. Fig-
ure 6 shows the calculation of this effect for different widths
wn of the notches in the electrodes. In this calculation a
thickness te of 0.2 mm was assumed for the electrode blades.
To highlight the effect of a single segmentation, a trap geom-
etry with only one notch per electrode blade was simulated.
All four notches of the quadrupole electrodes are located at
z = 0.

We also calculated the effect for different electrode thick-
ness. The maximum magnitude of the axial component of
the rf field |Erf,z| obtained for different electrode thickness
te is given in Fig. 7 for a fixed notch size wn = 0.15 mm.
Using thicker electrodes is obviously advantageous regard-
ing the contribution of the notches to the axial component of
the rf field. This can be an interesting option when the elec-
trodes are made using a technique different from the one
we chose. Both laser cutting of thin wafers and the subse-
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Fig. 8 (a) Axial component of the rf field Erf,z on axis as a function of
the axial coordinate z in a single trap for a segment length ls = 1 mm
and for a segment length ls = 2 mm with the width of the notches being
0.15 mm. (b) Axial component of the rf field Erf,z on axis as a func-
tion of the axial coordinate in an array of traps with 5 inner segments
of length ls = 1 mm separated by 0.15 mm wide notches. The axial
location of the segments is indicated by dotted lines

quent metallization are more difficult for thicker structures
and higher aspect ratios.

For a segment length of a few mm and smaller, the ef-
fects of the notches from both ends of a segment cancel par-
tially. The behavior of the resulting axial rf field in the mid-
dle of the segment varies with the segment length, since it is
composed of contributions from both ends of the segment,
which have opposite sign. Figure 8(a) shows the simulation
of a trap with three segments, thus two discontinuities in
the electrode blades. The inner segment length is ls = 1 mm
and ls = 2 mm, respectively, with the width of the notches
kept at 0.15 mm and electrode thickness at 0.2 mm. Here,
the center of the inner segment is at z = 0. The curve for
the 1 mm long segment shows that the effects of the notches
from both sides of the segment are partially canceling each
other. This can also be seen in the calculation for a trap with
five inner segments of 1 mm length shown in Fig. 8(b). We
can conclude that if the symmetry of the electrode construc-
tion is given, the remaining axial rf field component pro-
duced by the notches in the electrodes is small enough to
allow trapping of ion chains of five to ten ions for clock ap-
plications. Even if a larger width of the notches is chosen,

close to the center of each trap segment the axial rf field
component has a zero crossing resulting in a range with
|Erf,z| < 90 V/m large enough to accommodate a chain of
ions.

4.4 Angular misalignment of quadrupole electrodes

Due to the precision achieved in the process of laser ma-
chining of 1 or 2 µm, we can assume that electrodes located
on one wafer can be aligned nearly perfectly with respect
to each other. Thus, we only need to consider angular mis-
alignment of the two quadrupole electrode pairs occurring
during the trap assembly.

First, we consider a possible rotation angle α between
the two wafers of the quadrupole trap electrodes around the
axis normal to the wafer plane, corresponding to the x axis
in Fig. 2. Figure 9(a) shows the axial component of the rf
field calculated for an electrode thickness of 0.2 mm for
different misalignment angles α using a (0,Urf) configura-
tion. Here, the trap axis z′ is rotated by the angle α/2. Our
calculations show that this angular misalignment produces
an rf field component along the trap axis, which is propor-
tional to the angle of rotation of the two electrode layers
with respect to each other. This can be seen from Fig. 9(b)
which shows a plot of Erf,z′ as a function of the rotation an-
gle. When repeating the calculation for an electrode blade
thickness of 0.4 mm the results for the axial rf field com-
ponent show no significant difference compared to the re-
sults obtained with 0.2 mm electrode thickness. We deduce
from Fig. 9(b) an axial rf field of 6.2 × 102 V/m per mrad.
In order to keep this axial rf field component well below
90 V/m we have to ensure that the angular misalignment of
the two wafers for rotation around the x-axis is less than
0.14 mrad.

Second, we consider an angular misalignment of the two
electrode wafers with respect to each other around the axis
of rotation corresponding to the y axis (see Fig. 2). An an-
gular misalignment around this axis can occur during the
assembly of the electrode wafers, when, for example, the
spacer height is not identical, or glue is creeping between
spacer and electrode blade. Such a misalignment leads in
first order to a linearly changing distance between the elec-
trode wafers along the trap axis. This obviously leads to
a corresponding change in the radial rf field gradients and
consequently of the radial trap frequencies for the secular
motion and a small variation of the on-axis potential is to
be expected as well. In our calculations we used misalign-
ment angles in a range from 1 mrad to 10 mrad. However,
within the estimated accuracy of the calculation, which is
well below 90 V/m on the trap axis, we could not resolve
any deviation from zero in the axial rf field component due
to angular misalignment of this type.
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Fig. 9 (a) Axial component of
the rf field Erf,z′ on the trap axis
(z′) as a function of the axial
coordinate for different
misalignment angles α. Here the
trap axis (z′) is rotated by the
angles α/2 and −α/2 to the
axes defined by the upper and
lower electrode layer,
respectively. (b) Magnitude of
the axial component of the rf
field Erf,z′ on the trap axis as a
function of the misalignment
angle. Data points are fitted with
a linear fit to extrapolate Erf,z′
to small angles

4.5 Tolerances on width and position of notches in
electrodes

In the process of machining notches into the electrode blades
inaccuracies can occur in both the positioning of the notches
as well as in their width. The subsequent process of coating
the insulator with the electrode material can also contribute
to further inaccuracies.

First, we consider the effect of a small change in the
width of one of the four notches separating two segments of
the linear Paul trap. We calculated the resulting rf field when
one notch is made wider in one rf carrying electrode. Our
calculations show what can be expected from such a change
in the geometry: an additional receding of the equipotential
surfaces away from the widened notch occurs, centered at
the axial coordinate of the notch. As a result the axial rf field
component displays a dispersion-shaped behavior along the
z-axis at the edge of the trap segment in excess of the mag-
nitude found for a symmetric electrode geometry as shown
in Fig. 6(a). The radial components of the rf field as well
display on the z-axis an increase from zero which peaks at
the z location of the widened notch. The feature in the ra-
dial field components is of similar width and amplitude as
the one in the axial component. Due to the strong gradient
in the radial rf field components the excess field produced
by the widened notch leads to a small bending of the actual
trap axis away from the z-axis by a distance on the order of
100 nm.

Figure 10(a) shows the axial rf field component as a
function of the axial coordinate obtained for different pos-
itive deviations Δw in the width of one notch from the
width of the notches in the other three electrodes, which
are kept at wn = 0.1 mm. The dependence of the ampli-
tude of the dispersion-shaped feature in the axial rf field
component on the deviation in the width of one notch is

shown in Fig. 10(b). The line in the graph resulting from
a least square fit suggests that the dependence can be re-
garded to be linear in this range. Assuming a segment length
of ls = 1 mm, we deduce a maximum tolerance for the notch
width in the rf carrying electrode of Δw = 3 µm in order to
have |Erf,z| ≤ 90 V/m in the middle of the segment. For a
segment length of 2 mm the middle of the trap segment is
further away from the segment border and the region where
Erf,z peaks, such that notches can be cut to less stringent
tolerances of Δw = 11 µm.

By widening a notch in an rf ground electrode instead of
in an rf carrying electrode we find in our calculations a very
similar effect in the axial component of the rf field on the
trap axis, albeit smaller in amplitude, by roughly 20% for
the here considered geometry, and of opposite sign.

We also varied the design width wn of the electrode
notches in the range from 0.1 mm to 0.2 mm and observed
a linear increase of the amplitude of the effect of a widened
notch with increasing wn. The amplitude of the effect was
increased 1.8 times for a design notch width of 0.2 mm as
compared to a design notch width of 0.1 mm.

The calculations in Fig. 10 have been carried out for an
electrode thickness of te = 0.4 mm. When we repeated the
calculations for te = 0.2 mm we found only a small increase
in the magnitude of Erf,z by a factor of 1.07 for a design
notch width of wn = 0.1 mm and by a factor of 1.15 for
wn = 0.2 mm.

Second, we consider an inaccuracy Δz in the position of
one notch in an otherwise perfectly symmetric electrode as-
sembly. Figure 11 shows the effect on Erf,z when one notch
is displaced in positive z direction. On the axial component
of the rf field the effect is asymmetric with a maximum lo-
cated around the center of the notches followed by a mini-
mum of smaller magnitude located around z = 0.7 mm. The
magnitude of the additional axial rf field produced by a po-
sition inaccuracy is considerably smaller than that found for
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Fig. 10 (a) Axial component of
the rf field Erf,z on the trap axis
as a function of the axial
coordinate for different
deviations Δw in the width of
one notch in an rf carrying
electrode. All other notches are
kept at wn = 0.1 mm. The
notches are centered at z = 0.
(b) Maximum amplitude of
Erf,z along the trap axis as a
function of Δw. Data points are
fitted to show their linear
dependence in this range

Fig. 11 (a) Axial component of
the rf field Erf,z on the trap axis
as a function of the axial
coordinate for different
deviations Δz in the position of
one notch. In the geometry used
for the calculations
wn = 0.1 mm, except for the
curve mentioned in the legend,
where wn = 0.2 mm.
(b) Maximum of |Erf,z| as a
function of Δz

inaccuracies in the width of a notch. Since the maximum of
|Erf,z| is also localized on the border of the segment the trap
region in the center of the segment is even less affected.

For the calculations shown in Fig. 11(a) the notch width
wn = 0.1 mm has been used with exception of one curve,
for which the chosen notch width of 0.2 mm is pointed out
in the legend of the graph. We observed a rapid increase of
the maximum of |Erf,z| as a function of the notch width, the
displacement of one notch with respect to the others being
kept constant. We want to point out that the residual axial
rf field amplitude occurring in the perfectly symmetric case
also grows rapidly with increasing width of the notches (see
Fig. 6) and can contribute significantly here. The curves in
Fig. 11(a) have been calculated using an electrode thickness
of 0.4 mm. When we used an electrode thickness of 0.2 mm
instead, we did not find a significant increase in the effect.

Targeting a positioning accuracy Δz of better than 10 µm
when aligning the different electrode layers on top of each
other, the axial rf field contribution due to position inaccu-

racies will not become critical for a notch width of up to
0.2 mm.

4.6 Translational misalignment of quadrupole electrodes

We looked into the misalignment of the trap assembly in
which one of the electrode wafers is translated with respect
to the other parallel to the trap axis. The translation destroys
the symmetry of the geometry at the end of the trap seg-
ments, where the notches in the electrodes of one wafer be-
come displaced with respect to the corresponding notches in
the other wafer. Considering such a pair of notches of which
each is in another wafer, we expect that the displacement
results in an extra axial component of the rf field halfway
between the two notches. In our FEM calculations the extra
axial rf field contribution was evident between the wafers in
the vicinity of the notches.

The calculations also show that the extra axial field de-
creases in magnitude toward the trap axis to finally vanish
right on the axis. Since for the pair of notches situated on
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Fig. 12 Alternative electrode designs to obtain two degrees of free-
dom for dc field compensation in the radial (x, y) plane

the opposite side of the trap axis the configuration of rf and
rf ground electrodes is reversed on the two wafers, the ad-
ditional axial rf field component has opposite sign on both
sides of the trap axis. As a result the effects of the transla-
tion from two opposite pairs of notches cancel each other
on the trap axis. From our calculation using wn = 0.1 mm
and te = 0.4 mm we conclude that even at a distance of
0.05 mm from the trap axis and at z coordinates correspond-
ing to the location of electrode notches, an axial translation
of 0.05 mm of the wafers with respect to each other results in
a contribution to the axial component of the rf field smaller
than 90 V/m. In the middle of the segment where the ions
are trapped the effect is even smaller.

4.7 Introduction of extra electrode layers for dc field
compensation

In order to compensate for dc stray fields in radial direction,
which would displace trapped ions from the null field line
of the rf field, the trap design has to offer a way to apply
independent dc compensation fields in the radial plane in
each trap segment. Two degrees of freedom are required to
compensate for any electric field in the radial plane. Using
a small voltage difference between the rf ground electrodes
of the trap segment generates a dc electric field oriented in
the (x, y) plane nearly along the (1,1) direction. In order to
generate a second dc electric field with a strong component
perpendicular to this axis, we considered two alternative de-
signs.

In a first design, schematically drawn in Fig. 12(a), we
added segmented compensation electrodes behind a 1 mm
wide rf electrode with an insulation gap of 0.2 mm between
rf and compensation electrodes. This design is compact but
bears some strong shielding of the compensation electrodes
by the trap electrodes. The FEM calculation of the dc field
generated in this geometry with an electrode thickness of
0.4 mm, a segment length of 1 mm and a notch width of
0.1 mm gives a field of 8 V/m in the trap region of the seg-
ment using +1 V and −1 V on the extra compensation elec-
trodes of the segment. Also in the next and second to next
neighboring segments considerably large dc fields of 4 V/m
and 1.4 V/m are found.

A second design consists of expanding the two-layer
quadrupole trap assembly by two additional layers with
dedicated segmented compensation electrodes. Figure 12(b)
gives a schematic view of this design. The additional lay-
ers are similar to the other two trap layers only that the rf
electrode side is missing. Each extra layer is placed with
a spacing of 0.25 mm on top and precisely aligned with a
segmented rf ground electrode. The geometry of the extra
compensation layers is kept identical to the inner trap elec-
trodes regarding notch width and electrode thickness. The
FEM calculation of the dc field generated by this geometry
using an electrode thickness of 0.4 mm, a segment length of
1 mm, and a notch width of 0.1 mm gives a stronger field
value in the trap region of 60 V/m for the voltages of +1 V
and −1 V on the two extra compensation electrodes. The
direction of the generated field vector points mainly along
the x-axis with a component of 3.7 V/m along the y-axis.
The corresponding field values obtained in the next and sec-
ond to next neighboring segments are 19 V/m and 2.5 V/m,
respectively.

The second design has a clear advantage over the first
design regarding the larger field. The field is also well lo-
calized on the trap segment with only a 4% contribution to
the dc field in the neighboring traps. In addition, consider-
ing the relatively large rf voltage amplitude we envisage to
apply, the second design is also less prone to rf breakdown
and surface flashover than the first. The slightly larger layer
stack reduces the solid angle for optical detection to an ac-
ceptable level.

Since we opt for the second design we investigate the
effect of the extra compensation electrode layers on the rf
field. It is important to examine how the additional com-
pensation electrodes affect the axial component of the rf
field produced by the electrode notches. Considering the ef-
fect on a single segment border we calculate the rf field for
an electrode geometry with only two long segments, thus
one central discontinuity in the electrode blades. Adding
the extra compensation electrode layers to the trap geom-
etry clearly increases the amplitude of the axial rf field com-
ponent caused by the notches. Compared to calculations for
the same geometry without extra compensation electrodes as
described in Sect. 4.3 (Fig. 6), we find that the amplitude of
Erf,z is increased by a factor of 3.6 for an electrode thickness
of 0.2 mm and a notch width of 0.2 mm, and by a factor of
4.6 for an electrode thickness of 0.4 mm and notch widths of
0.1 mm as well as 0.15 mm. Although the extra compensa-
tion layers lead to a considerable increase in the axial rf field
component on the segment borders, the axial rf field compo-
nent can still be small enough in the region in the middle of a
trap segment, because here again the effects stemming from
neighboring segment borders partially cancel one another
out. An example for this is given in Fig. 13 for three dif-
ferent design parameters: electrode thickness, notch width
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Fig. 13 Axial component of the rf field Erf,z on the trap axis as a
function of the axial coordinate z for a 3-segment trap design with extra
compensation electrode layers. The center of the middle trap segment
is located at z = 0. The curves are calculations for different geometrical
design parameters: electrode thickness te, notch width wn and segment
length ls given in mm in the legend

and segment length. Here, a three segment trap was simu-
lated with the middle segment of length ls surrounded by
two long outer segments. In the calculations for all three
parameter sets shown in Fig. 13 an axial region of at least
0.12 mm length with |Erf,z| < 90 V/m can be found, which
is suitable for clock spectroscopy.

5 Conclusion and outlook

We presented an electrode design of a segmented linear Paul
trap optimized for optical clock application and frequency
standards based on the spectroscopy of Coulomb crystals.
Using segmented electrodes the design supports the imple-
mentation of linear arrays of traps, where in each trap seg-
ment electrodes are provided for the compensation of dc
electric fields in all three directions of space. The trap as-
sembly still offers a good optical access for laser beams and
fluorescence detection.

In this design geometry we propose to trap arrays of
115In+ ions sympathetically cooled by 172Yb+. We showed
that with such an optical frequency standard of improved
short-term stability a fractional long-term stability of 10−18

can be reached with systematic frequency shifts at the mHz
level. Integration times for the frequency measurement can
be shortened by more than an order of magnitude and re-
quirements for clock laser stability relaxed significantly.

Of great importance for high-precision spectroscopy of
a larger sample of ions is the minimization of excess mi-
cromotion of the ions, which can contribute considerably to
the second-order Doppler shift of the clock transition. In our
design we minimized the critical axial component of the rf
field along the trap axis and studied tolerances for the man-
ufacturing process of the trap. We identified and quantified

the three most critical causes for excessive magnitudes of the
axial rf field component: the finite length of the quadrupole
electrodes; the tolerance on the width of the notches sep-
arating electrode segments; and the tolerance on the align-
ment angle of opposing electrode wafers (torsion around the
x axis in our coordinate system). For our choice of geometry
with an 1 mm × 1 mm spacing between the quadrupole elec-
trodes, and requiring the axial component of the rf field on
the trap axis to not limit the targeted fractional uncertainty
of the frequency standard of 10−18, we can summarize our
results on these critical effects as follows. Using a trap seg-
ment length of 1 mm and electrode thickness of 0.2 mm a
linear array of six usable traps with at least 10 ions each is
obtained with a total electrode length of 3 cm, whereas with
a total electrode length of 2 cm our design only supports two
usable traps. Choosing the width of the notches that are sep-
arating trap segments to be 0.1 mm and the segment length
to be 1 mm, the tolerance on the width of a notch in the elec-
trodes is 3 µm. The tolerance on the angular misalignment
of the two quadrupole electrode layers around the direction
orthogonal to the wafers is less than 0.14 mrad.

The effect of other tolerances in the trap construction, like
the position deviation of a single notch in the electrodes, the
translational displacement along the trap axis of one elec-
trode layer with respect to the other, and the angular mis-
alignment of the electrode layers around the y axis, have
also been investigated and quantified. We showed that their
effect on the axial component of the rf field on the trap axis
is either negligibly small or can be easily avoided by apply-
ing state-of-the-art tolerances in the manufacturing process.
Further, we point out that depending on the choice of seg-
ment length boundary effects of the segmentations can can-
cel each other out, reducing the on-axis micromotion.

Based on our FEM calculations a prototype trap with two
trapping segments made of Rogers4350BTM has been con-
structed and is currently under test. First measurements of
micromotion with 172Yb+ ions show a promising low value
in agreement with our simulations. For a scalable high-
precision trap we are developing a laser cutting and met-
allization process for AlN wafers, in which we plan to in-
vestigate an array of 6 × 10 ions for an optical frequency
standard.
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