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Abstract An analytical expression for the power spectral
density of the self-mixing signals from a flowing Brown-
ian motion system irradiated by a focused Gaussian field is
derived from the time autocorrelation function of the sig-
nals. The power spectral density is composed of two Voigt
functions. An improved series summation method (SSM) is
proposed to calculate the Voigt function. The characteristics
of the power spectral density are analyzed according to the
numerical results. The power spectral density can hopefully
be used for measuring the flow velocity and the particle size.

1 Introduction

Laser feedback interferometry (LFI), which is also known as
laser self-mixing interferometry, is an interferometric sens-
ing technique based on the optical mixing of the field in
the laser cavity with the weak field back-reflected or back-
scattered by a remote target. The feedback interferometry in
class-B lasers has attracted much attention mainly because
class-B lasers are much more sensitive to the perturbations
from the outside world than the conventional gas lasers [1].
Recently this technique has been applied for the analysis
of flowing Brownian motion system in which the particles
move randomly due to the collisions with molecules of liq-
uid (i.e. Brownian motion) and directionally due to the trans-
lational flow of liquid (i.e. translational motion) [2–12]. The
schematic diagram of feedback interferometry with laser
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diode in flowing Brownian motion system is shown in Fig. 1.
The light emitting from the laser hits the flowing Brown-
ian particles and is scattered back into the laser cavity. This
causes the periodic change of laser light output frequency,
linewidth, threshold gain, and output power, all of which re-
late to the phase of the backscattering light. The standard
internal monitoring photodiode (PD), which is built into the
commercial laser diode (LD) package, can be utilized to de-
tect the output power.

The first attempt to explain the effects of laser diode self-
mixing interferometry with weak optical feedback was made
by Lang and Kobayashi in 1980 [13]. Their model describes
the evolution of the electric field in a single mode laser diode
in the rate-equation limit and includes the influence of the
optical feedback through a time-delayed field term with cou-
pling strength. In our previous paper [14], the back-scattered
field from particles is introduced into the feedback term of
the Lang–Kobayashi rate equations. An expression of the
time autocorrelation function (TACF) of the back-emitted
power from the laser cavity was obtained which includes
the information of particle size and the translational veloc-
ity of particles. The time autocorrelation function can be
transformed into the power spectral density (PSD) which
includes the same information of the TACF. So in princi-
ple both the particle size and the translational velocity of
particles can be extracted from the PSD too. In fact, what
is usually measured in the self-mixing interferometry is the
PSD of the self-mixing signals. In this paper, an analytical
expression of the PSD is derived from the TACF, which is
composed of two Voigt functions. In order to calculate the
Voigt function much faster and accurately, an improved se-
ries summation method (SSM) is introduced. Numerical re-
sults of the power spectral density are shown to study its
dependence on different physical quantities.
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Fig. 1 Schematic diagram of
feedback interferometry with
laser diode in flowing Brownian
motion system

2 Derivation of power spectral density

According to our previous work [14], the time autocorre-
lation function (TACF) of the output power from the laser
cavity for a flowing Brownian motion system was obtained
as

R(τ) = P 2
0

{
1 + 2m2|CMie|2〈N〉︸ ︷︷ ︸

coefficient

cos(q · vτ)
︸ ︷︷ ︸
Dopplerterm

exp
(−Dq2τ

)

︸ ︷︷ ︸
Brownianterm

× exp
(−Qτ 2)

︸ ︷︷ ︸
Gaussianterm

}
(1)

where P0 is the back-emitted power of laser diode in the ab-
sence of optical feedback; m is dependent on the character-
istic parameters of the laser diode; |CMie|2 is related to the
Mie solution of the Maxwell’s equations for the scattering
of electromagnetic radiation by spherical particles; 〈N〉 =
NT VS/VT is the average particle number located within
the volume VS ; q is the scattering vector shown in Fig. 2,
whose magnitude is given as q = (4π sin θ/2)/λ with λ the
light wavelength in medium and θ the scattering angle, v is
the velocity of translational flow, φ the angle between the
scattering vector and flow velocity; Q = (v2

x + v2
y)/2ω2

0 =
v2 sin2 ϕ/2ω2

0 with vx(y) is the x(y) component of the flow
velocity vector v, ω0 is the beam waist radius; D is the diffu-
sion coefficient given as D = kBT /3πηd with kB the Boltz-
mann’s constant, T the temperature, η the viscosity of sus-
pension and d the particle diameter; the second term in (1)
is a product of a Doppler shift term cos(q · vτ), a Brownian
term exp(−Dq2τ) and a Gaussian term exp(−Qτ 2). The
Doppler shift term is due to the translational motion of par-
ticles, dependent on the magnitudes of the flow velocity, the
scattering vector and the angle between them. The Brown-
ian term is due to the diffusional motion of particles, depen-
dent on the diffusion coefficient D and the magnitude of the
scattering vector q . The Gaussian term depends on the trans-
lational motion of the particles through the Gaussian beam
waist.

Since a signal with nonzero average power is not square
integrable, the Fourier transform does not exist in this case.

Fig. 2 Vector diagram of the scattering vector q, the flow velocity v
and the angle between them

Fortunately, the Wiener–Khinchin theorem provides a sim-
ple alternative. The PSD is the Fourier transform of the
TACF of the signal as long as the signal can be treated as a
wide-sense stationary random process. Thus, the PSD S0(ω)

is written as

S0(ω) ≡ F
[
R0(τ )

] ≡
∫ ∞

−∞
R0(τ )e−iωτ dτ (2)

where ω is the angular frequency. According to the convo-
lution theorem that the Fourier transform of a product of the
factors is given by the convolution of the factors’ Fourier
transforms, (2) can be rewritten as

F
[
R0(τ )

]

= F
[
exp

(−Dq2τ
)

exp
(−Qτ 2) cos(q · vτ)

]

= 1

2π

1

2π
F

[
exp

(−Dq2τ
)] ⊗ F

[
cos(q · vτ)

]

⊗ F
[
exp

(−Qτ 2)] (3)

The Fourier transforms of the single factors in (3) are, re-
spectively,

F
[
exp

(−Dq2τ
)] = 2q2D

ω2 + (q2D)2

F
[
cos q · v(τ )

] = π
[
δ(ω + q · v) + δ(ω − q · v)

]
(4)

F
[
exp

(−Qτ 2)] =
√

π

Q
exp

[
− ω2

4Q

]
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Substitution of (4) into (3) yields

F
[
exp

(−Dq2τ
)

exp
(−Qτ 2) cos(q · vτ)

]

= 1

2π

√
π

Q

∫ ∞

−∞

[
q2D exp(−ω′2/4Q)

(ω′ − ω + q · v)2 + (q2D)2

+ q2D exp(−ω′2/4Q)

(ω′ − ω − q · v)2 + (q2D)2

]
dω′ (5)

With the substitutions of γL = Dq2, γG = 2
√

Q ln 2,
x± = √

ln 2(ω ± q · v)/γG, y = √
ln 2γL/γG and t =√

ln 2ω′/γG, we finally find the analytical expression of the
PSD of the self-mixing signals:

S0(ω) =
√

π ln 2

γG

[
y

π

∫ ∞

−∞
exp(−t2)

y2 + (x+ − t)2
dt

+ y

π

∫ ∞

−∞
exp(−t2)

y2 + (x− − t)2
dt

]

=
√

π ln 2

γG

[
V (x+, y) + V (x−, y)

]
(6)

where

V (x, y) = y

π

∫ ∞

−∞
exp(−t2)

y2 + (x − t)2
dt (7)

is the Voigt function. γL is the half-width for the Lorentzian
broadening, γG is the half-width for the Gaussian broad-
ening. Equation (6) is composed of two Voigt functions
V (x±, y), one of which is centered at ω = q ·v and the other
is centered at ω = −q · v. The profile of the Voigt function
is a line profile resulting from the convolution of two mech-
anisms, one of which alone produces the Gaussian profile,
and the other produces the Lorentzian profile.

3 Calculation of the Voigt function

Direct calculation of the integration of Voigt function is dif-
ficult. This is because that the Voigt function is the improper
integral with both limits infinite and the integrand with the
narrow peak makes the evaluation of any proper integral low
efficiency and low precision. So, instead of the direct calcu-
lation of the integration, a lot of methods have been pro-
posed to evaluate the Voigt function. To our knowledge, the
method derived by Limandri et al. is one of the most ac-
curate and fast ones for the evaluation of the Voigt func-
tion [15]. This method is called as series summation method
(SSM) in our paper because the Voigt function is expanded
finally as the series summation.

According to reference [15], the Voigt function is ex-
pressed in terms of the series approximation for the error
function as

V (x, y) = exp(−x2)
{
erfc(y) exp

(
y2) cos(2xy)

+ 1

2πy

(
1 − cos(2xy)

)

+ 2

π

N∑

n=1

exp(−n2/4)

n2 + 4y2

[
gn(x, y) sin(2xy)

− fn(x, y) cos(2xy)
]}

(8)

where

fn(x, y) = 2y − 2y cosh(nx) cos(2xy)

+ n sinh(nx) sin(2xy) (9)

gn(x, y) = 2y cosh(nx) sin(2xy) + n sinh(nx) cos(2xy)

and the product erfc(y) · exp(y2) used in (8) is evaluated ac-
cording to the algorithm proposed by Cody [16]. The series
summation, for each y, is truncated at the Number N :

N =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

15, [0,3]
50, (3,20]
110, (20,50]
150, (50,75]

(10)

When x > 75, the Voigt function is computed numerically
using the asymptotic expansion given by Roco and Téllez
[17]:

V (x, y) ≈ y√
π(x2 + y2)

×
[

1 − cos(3 arctan x
y
)

2(x2 + y2) cos(arctan x
y
)

]
(11)

It is worth to point out that a high precision can be ob-
tained using the original SSM of (8) to calculate the Voigt
function for x > 75. In this case, the series number N be-
comes very large as x increases. The large N costs much
CPU time due to the computation of a great number of terms.

The SSM by Limandri can be further improved. Substi-
tuting (9) into (8), we obtain a simplified expression of the
Voigt function:

V (x, y) =
[

erfc(y) exp(y2) cos(2xy) + 1 − cos(2xy)

2πy

]

× exp
(−x2) + 2y

π

N∑

n=1

V0(n, x, y) (12)

where V0(n, x, y) is given as

V0(n, x, y) = exp[−(x − 0.5n)2]
n2 + 4y2

× {[
exp(−nx) − cos(2xy)

]2 + sin2(2xy)
}

(13)

Figure 3 shows the dependence of V0(n, x, y) on n,
wherein y = 10 and x is 1.0, 10 and 100, respectively.
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It can be seen that the term V0(n, x, y) reaches its maxi-
mal value at neighborhood of n0 = int(2x) and it decreases
rapidly as n deviates away from n0. Therefore, in order to
save the CPU time, the number of series in the summation∑N

n=1 V0(n, x, y) of (12) may be reduced. Especially, if x

is sufficiently large, the summation is not necessary to start
from n = 1. Instead, it can be replaced by n = n0 − n− ,
where n− is a positive integer less than n0. Similarly, the
end point of the series summation n = N may be replaced
by n = n0 + n+, where n+ is a positive integer too. Thus,
(12) may be rewritten as

V (x, y) =
[

erfc(y) exp
(
y2) cos(2xy) + 1 − cos(2xy)

2πy

]

× exp
(−x2) + 2y

π

nmax∑

n=nmin

V0(n, x, y) (14)

Fig. 3 Dependence of V0(n, x, y) on n,y = 10 and x is 1, 10 and 100,
respectively

where the starting point of the series summation is nmin =
n0 − n− and the end point is nmax = n0 + n+ .

In (13), the factor in the great brackets, i.e. {[exp(−nx)−
cos(2xy)]2 + sin2(2xy)}, is approximate to 1. Therefore, we
may employ the approximation V0(n, x, y) ≈ exp[−(x −
0.5n)2]/(n2 + 4y2) to determine the integers n− and n+.
To do so, we may assume a small value ε(> 0) and let the
equality be

V0(n, x, y) = ε · V0,max(n, x, y) where

V0,max(n, x, y) ≈ (n2
0 + 4y2)−1.

(15)

The approximate solution of (15) is obtained as

n− = n+ = 2
√− ln ε (16)

For example, letting ε = 10−10 then we have n− = n+ =
10 and hence the starting and the end points of the series
summation in (14) are nmin = n0 − 10 and nmax = n0 + 10,
respectively. One should pay attention that, when the param-
eter x is very small, n0 − 10 would be possibly less than 1.
In this case, nmin should be equal to 1.

Numerical calculation of the Voigt function is performed
using the modified SSM, in which the value of ε is 10−10. To
check the accuracy of the numerical calculation, the results
obtained with the modified SSM and the original SSM are
compared with those published by Zaghloul [18]. The refer-
ence values of the Voigt function shown in Table 6 of Ref.
[18] are in low relative errors (<10−13). In Fig. 4, we pro-
vide a comparison between the results of the modified SSM
and those of the original SSM, wherein the relative error is
defined as the relative difference between the calculated re-
sult and the reference value of Ref.18. It can be found that
the relative error of the results obtained with the modified
SSM is mainly in the order of 10−10. Besides, the results of

Fig. 4 Relative differences between the results obtained by two series summation methods and those given by Zaghloul for (a) y = 10−12 and
(b) y = 15
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Fig. 5 Numerical results of the Voigt function, y = 10−5, 10−3, 10−1,
1 and 10, respectively

the modified SSM coincide with those of the original SSM
in the range of x < 75. However, visible differences exist in
the range of x ≥ 75. This is because, in the original SSM,
the asymptotic expression of (11) is used for x ≥ 75. There-
fore, we may summarize here that the modified SSM is able
to give numerical results with the accuracy determined by
the value of parameter ε.

An example of the calculation on the Voigt function
V (x, y) is shown in Fig. 5 wherein the parameter y is 10−5,
10−3, 10−1,1 and 10, respectively. It can be found that the
Voigt function is of Gaussian profile in the range of small
values of x and is of Lorentzian profile for larger x. The
turning point depends on the value of y. While y � 1 (for
example y = 10−5, 10−3 and 10−1), the turning points are
quite visible on the curves and it is found that the value of
x for the turning point increases as the value of y decreases.
However, when y is close to (or larger than) 1, it is difficult
to find the turning point. This is because, as y increases, the
Voigt function approximates the Lorentzian profile gradu-
ally [19].

4 Numerical results and discussions of the PSD

In Sect. 2, we have found an analytical expression of the
PSD of the self-mixing signals for the flowing Brownian
motion system, which is composed of two Voigt functions. It
is well known that the Voigt function is considered a special
function itself because the analytical explicit representation
in terms of elementary functions does not exist. Therefore,
although the dependence of the PSD of the self-mixing sig-
nals for the flowing Brownian motion system on the particle
size and the flow velocity is involved in the analytical ex-
pression, it is difficult to study these relationships quantita-
tively and instead numerical calculation is performed.

Table 1 The parameters for numerical calculation.

Parameters Value Unit

Angle between the scattering
vector and flow velocity ϕ

85 Degree

Beam waist radius ω0 10 Micrometer

Flow velocity v 0.01 Meter per second

Particle diameter 100 Nanometer

Scattering angle θ 180 Degree

Temperature T 293 Kelven

Viscosity of water η 0.01 @ 293 K Poise

Wavelength λ 0.6 Micrometer

From Sect. 2, we may find that the PSD of the self-mixing
signals possesses a Doppler peak at ω = q · v and the broad-
ening of the power spectral density depends on the com-
bination of the Lorentzian broadening (i.e. γL = Dq2) and
the Gaussian broadening (i.e. γG = 2

√
Q ln 2). However, the

area beneath the power spectral density is independent of the
Lorentzian broadening γL and/or the Gaussian broadening
γG due to the fact that

∫ +∞
−∞ S0(ω)dω = 2π .

In the numerical calculation of the PSD, the values of
γL, γG and q · v are estimated with the following relation-
ships:

q · v = 4πv

λ
sin

θ

2
cosϕ (17)

γL = Dq2 = kBT

3πηd

(
4π

λ
sin

θ

2

)2

(18)

γG = 2(Q ln 2)
1
2 =

(
ln 2

2

) 1
2 v sinϕ

ω0
(19)

The relevant parameters are listed in Table 1. According to
these parameters, the values of γL, γG and q · v are 103, 103

and 104 rad/s in order, respectively.
The following figures show the power spectral densities

corresponding to different Gaussian or Lorentzian broad-
ening in the case of the scattering vector perpendicular or
oblique to the translational velocity of particles.

Figure 6 shows the power spectral densities of the self-
mixing signals corresponding to different Lorentzian broad-
ening, while the Gaussian broadening keeps unchanged. In
Fig. 6(a), the scattering vector q is perpendicular to the
translational velocity v of particles. In this case, there is no
Doppler shift in the power spectral density because q · v is
equal to zero. The power spectral densities are dominated by
the Gaussian broadening in the range of frequencies close to
zero (say ω < 6 × 103 rad s−1) and are dominated by the
Lorentzian broadening in the range of high frequencies (say
ω > 104 rad s−1). As the Lorentzian broadening increases,
the power spectral densities in the range of high frequen-
cies shift to much higher frequencies. As compensation, the
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Fig. 6 Power spectral densities of self-mixing signals corresponding to different Lorentzian broadenings: (a) without Doppler shift; (b) with
Doppler shift

Fig. 7 Power spectral densities of self-mixing signals corresponding to different Gaussian broadenings: (a) without Doppler shift; (b) with Doppler
shift

power spectral densities in the range of low frequencies go
down because the area beneath the power spectral densi-
ties must keep constant. In Fig. 6(b), the scattering vector is
oblique to the translational velocity. In this case, the Doppler
peak is located at ω = 6 × 104 rad s−1. The power spec-
tral densities are dominated by the Gaussian broadening in
the range of frequencies close to the Doppler peak and are
dominated by the Lorentzian broadening in the range of fre-
quencies far away from the Doppler peak. The asymmetry of
the curves about the Doppler peak is caused by the sum of
the Voigt functions. As the Lorentzian broadening increases,
the power spectral densities on the right side of the Doppler
peak shift to higher frequencies and the power spectral den-
sities in the range of frequencies close to the Doppler peak

go down because of the invariance of the areas beneath the
power spectral densities.

Figure 7 shows the power spectral densities of the self-
mixing signals corresponding to different Gaussian broad-
ening, while the Lorentzian broadening keeps unchanged.
In Fig. 7(a), the scattering vector q is perpendicular to the
translational velocity v. Similarly to Fig. 6(a), there is no
Doppler shift in the power spectral density. The power spec-
tral densities in the range of low and high frequencies are
dominated by the Gaussian broadening and the Lorentzian
broadening, respectively. Since the Lorentzian broadening
does not change, the power spectral densities in the range of
high frequencies coincide with each other. However, as the
Gaussian broadening increases, the power spectral densities
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in the range of low frequencies shift to higher frequencies
and go down as a compensation (because of the invariance
of the areas under the power spectral densities). In Fig. 7(b),
the scattering vector is oblique to the translational velocity.
In this case, the increase of the Gaussian broadening is nec-
essarily accompanied by the increase of Doppler shift be-
cause both of them are related to the translational velocity.
As the Gaussian broadening increases by two or three times,
the Doppler shift is doubled or trebled. This is because both
the Doppler shift q · v and the Gaussian broadening γG are
proportional to the translational velocity, as given in Equa-
tions (17) and (19). While the broadening of the power spec-
tral density increases, its height goes down because of the
invariance of the areas beneath the power spectral densi-
ties.

To summarize, while the scattering vector is perpendic-
ular to the translational velocity, the power spectral den-
sity has no Doppler peak. The power spectral density is the
convolution of the Gaussian broadening and the Lorentzian
broadening. The power spectral density approximates to the
Gaussian profile in the range of low frequencies and to the
Lorentzian profile in the range of higher frequencies. The
Gaussian broadening is related to the translational motion
of the particles while the Lorentzian broadening is related
to the Brownian motion of the particles. Therefore, informa-
tion on the translational velocity of particles and the parti-
cle size is included in the power spectral density. While the
scattering vector is oblique to the translational velocity, the
power spectral density has a Doppler shift which is related
to the translational velocity of the particles.

The information of the translational velocity of the parti-
cles may be obtained either from the Gaussian broadening or
from the Doppler peak. In the former case, it is better that the
scattering vector is perpendicular to the translational veloc-
ity and the Lorentzian broadening very small. That is to say
the particle size should be large enough or the translational
motion should be very fast so that the Brownian motion can
be ignored. In the latter one, the additional information of
the angle between the scattering vector and the translational
velocity is required. However, it is much easier to find the
Doppler peak on the power spectral density.

The information of the particle size is included in the
Lorentzian broadening. Unfortunately, for nano-fluids, the
Brownian motion is accompanied by translational motion so
that the Lorentzian profile is visible only in the range of high
frequencies of the power spectral density (or far away from
the Doppler peak) and its level is low. So efforts to suppress
the Gaussian broadening should be made so as to extract the
information of the particle size from the power spectral den-
sity. This can be realized by using a wide beam or slowing
down the translational velocity. The detailed procedures for
extracting the particle size are beyond the scope of this paper
and further research on these is required.

5 Conclusions

In this work, we study the power spectral density of the self-
mixing signals from a flowing Brownian motion system ir-
radiated by a focused Gaussian field. The power spectral
density is derived from the Fourier transform of the time
correlation function and composed of two Voigt functions.
To calculate the Voigt function much fast and accurately,
the SSM is improved. The power spectral densities are cal-
culated, corresponding to different Gaussian or Lorentzian
broadening and in the case of the scattering vector perpen-
dicular or oblique to the translational velocity of particle.
The numerical results show that, while the scattering vector
is perpendicular to the translational velocities of particle, the
power spectral density has no Doppler peak and is the con-
volution of Gaussian broadening and Lorentzian broadening
only. The Gaussian broadening is related to the translational
velocity of particles and the Lorentzian broadening is related
to the particle size. While the scattering vector is oblique
to the translational velocity of particle, the power spectral
density shows a Doppler peak, which is determined by the
translational velocity of particle, the scattering vector and
the angle between them. Therefore, the translational veloc-
ity can be extracted from the Doppler peak and/or Gaussian
broadening, and the particle size can be extracted from the
Lorentzian broadening.

Finally, we would point out that in this paper the the-
ory and the numerical calculation are presented for a single
particle size and a single flow velocity, while in practice a
laminar flowing Brownian motion system contains different
sizes of particles and the flow velocity is distributed in a
Gaussian profile. Therefore, the power spectral density in a
real measurement is much more complicated. The detailed
procedures for extracting the particle sizes and flow veloc-
ity require the de-convolution of the power spectral density,
which is still under investigation.
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