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Abstract We investigate the propagation of nematicons in
various nematic liquid crystals. Following some general
considerations on the role of material parameters in light
self-trapping via a reorientational nonlinear response, we
discuss numerical results on light self-action and transverse
localization. Finally, we validate our findings with exper-
imental measurements in three liquid crystalline mixtures
featuring different amounts of birefringence.

1 Introduction

With the invention of the laser, available light intensities
have become high enough to allow observing nonlinear
effects and, among them, self-focusing. The latter occurs
when the beam phase-fronts bend in such a way as to coun-
teract diffractive spreading [1]. When self-focusing balances
diffraction, a spatial soliton is generated, i.e., a wave-packet
retaining its shape in propagation [2, 3]. In centrosymmet-
ric media the simplest nonlinear response is modeled by
changes in refractive index n proportional to the local inten-
sity I , i.e. Δn = n2I , with n2 the Kerr coefficient [4]. There-
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fore, a bell-shaped beam can give rise to a guiding trans-
verse index profile [5, 6], eventually resulting in a bright spa-
tial soliton. Spatial solitons in Kerr media are stable only in
(1 + 1)D geometries [7, 8] (i.e., with diffraction taking place
only in one transverse dimension, for instance in slab waveg-
uides), but undergo filamentation and catastrophic collapse
in (2 + 1)D geometries (i.e., diffraction acting in both trans-
verse dimensions). The first observations of spatial solitons
with cw lasers in (2 + 1)D were reported by Dabby and
co-workers in lead glasses [9] and by Bjorkholm and co-
workers in sodium vapors [10], respectively: in these exper-
iments, the stabilization of the self-trapped beam was pro-
vided by either a nonlocal response in the former case [11]
or by saturation in the latter. Nonlocal nonlinear media fea-
ture an index well Δn wider than the intensity profile I , with
the size of nonlocality depending on the width ratio of Δn

and I . Typically, nonlocality can be ascribed to diffusive
processes, such as heat transfer [9, 12], molecular/atomic
diffusion [11], electrostriction [13], thermophoresis [14],
diffraction [15] and long-range intermolecular links, as in
nematic liquid crystals (NLC) [16, 17]. In the area of light
self-localization, NLC have attracted a great attention be-
cause of their unique dielectric properties: large nonlin-
earity and spectral transparency [18], highly nonlocal re-
sponse [19] and large tunability (linear as well as nonlin-
ear) via external perturbations, e.g. quasi-static or optical
frequency electric fields [20]. Liquid crystals consist of or-
ganic molecules with intermediate properties between solids
and liquids. The nematic phase is usually characterized by
a high degree of orientational order, with the average direc-
tion of the major molecular axis described by a vector field
named director n̂ [18, 21]; conversely, no long-range posi-
tional order is present. With reference to their linear optical
properties, NLC are uniaxials with the optic axis along n̂, re-
fractive indices n|| and n⊥ for electric field parallel and nor-
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mal to n̂, respectively. The peculiar nonlinear mechanism in
NLC is then reorientational: an electric field induces dipoles
in the nonpolar molecules and tends to align them in order
to minimize the energy [18, 21]. Reorientational spatial soli-
tons in NLC, often called nematicons [17, 22], were reported
in slab waveguides [23], in planar cells with n̂ pre-tilted via
a bias (to avoid the Freedericksz threshold) [24], in unbiased
planar cells [25], in arrays of coupled waveguides [26, 27]
and in chiral NLC [28, 29]. Light self-localization through
thermal effects in cylindrical structures (capillaries) was also
observed [30], as well as the interplay between thermal and
reorientational responses [31]. Moreover, localization was
reported in the form of modulationally unstable patterns in
nematic liquid crystals with coherent [25, 32–35] and spa-
tially incoherent excitations [36], as well as dark solitons in
self-defocussing mixtures [37].

Nematicons possess several interesting properties: they
can be excited at input powers of mW due the large non-
linearity (even well below mW in doped NLC [38]), can
guide probes of different wavelengths or even incoherent
light [39–41], can be steered via an additional voltage bias
[20, 25, 42]. Their intrinsic robustness permits their inter-
action with defects without losing self-trapping: large angle
deflections were demonstrated via refraction/reflection at in-
terfaces (created by voltage [43] or by an external light beam
[44–46]), with all-optically induced perturbations [47–49],
and with air bubbles [50]. Individual nematicons can self-
act on their trajectory by changing the walk-off [51] or un-
dergoing a transverse force [52]. All-optical logic/switching
gates based upon these phenomena have been demonstrated
[44, 53].

All the properties summarized above make nematicons
ideal candidates for the realization of all-optical signal pro-
cessing microsystems; to this extent it is crucial to under-
stand the role of specific NLC properties towards applica-
tions. In this paper we study, both theoretically and experi-
mentally, the propagation of individual nematicons in NLC
with various dielectric properties. We will show theoreti-
cally that, for a given initial distribution of n̂, the nonlinear
response depends on the linear refractive indices n|| and n⊥
and on the magnitude of the forces binding the molecules
to one another. We will discuss the dominant role of the
anisotropy εa = n2‖ − n2⊥ and validate our results using a
(1 + 1)D simulator. We confirm our findings by the experi-
mental observation of light self-trapping in three NLC mix-
tures with different degrees of optical anisotropy, i.e. bire-
fringence.

2 Model

Let us consider a planar cell as sketched in Fig. 1. An NLC
layer of thickness L is confined between two parallel glass

Fig. 1 Sketch of a planar cell. The green ellipses represent the NLC
molecules. The interfaces parallel to yz are located in x = 0 and x = L,
respectively, i.e., L is the cell thickness

slides, with the x axis normal to them; the glass/NLC in-
terfaces are treated to ensure that n̂ lies in the plane yz

in their proximity, at an angle θ0 with ẑ. A third glass
slide seals the cell, with n̂ aligned parallel to ŷ in order
to maximize the input electric field coupling to an extraor-
dinary wave in the bulk NLC [54]. A transition zone for
0 < z < L connects the input interface to the bulk NLC: we
will neglect its effects as we are interested in light prop-
agation in the volume of the cell, assuming the director
to be uniformly distributed in the sample. Finally, we will
consider the cell infinitely extended along y. The sample
is excited by a TEM00 beam at wavelength λ with wave
vector k along ẑ, polarized along y to couple into the ex-
traordinary wave in bulk (ordinary waves are subject to the
Freedericksz threshold; hence, they are not suited for the
exploitation of reorientation towards self-localization [18,
21]). We consider in z = 0 a flat phase-front and a beam
waist w0, i. e., an electric field of the form E(x, y, z = 0) ∝
ŷ exp [−(x2 + y2)/w2

0]. We define θ = θ0 + ψ , with θ the
angle between n̂ and ẑ [i.e. n̂ = (0, sin θ, cos θ)], accounting
for the action of the electromagnetic torque with the opti-
cal perturbation ψ on the director distribution in angle. The
components of the dielectric tensor ε can be expressed as
εjl = ε⊥δjl + εanjnl (j, l = x, y, z), where εa = n2‖ − n2⊥ is

the optical anisotropy, nj = ĵ · n̂ and δjl is the Kronecker’s
delta; hence, it is clear that the linear properties of the system
depend only on n‖, n⊥ and θ0. Naming H the extraordinary
component of the magnetic field parallel to x̂ and setting
H = A exp (ik0n0z) [k0 = 2π/λ is the vacuum wavenumber
and n0 = (cos2 θ0/n2⊥ + sin2 θ0/n2‖)−1/2], light propagation
in the paraxial perturbative regime is ruled by [51, 55]

2ik0n0

(
∂A

∂z
+ tan δ0

∂A

∂y

)

+ Dy

∂2A

∂y2
+ ∂2A

∂x2
+ k2

0Δn2
eA = 0, (1)

∇2ψ + γ κ2 sin
[
2(θ0 + ψ − δ0)

]|A|2 = 0, (2)
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where we defined the extraordinary refractive index (pro-
file) ne = (εyy − ε2

yz/εzz)
1/2 [Fig. 2(a)] and the nonlinear

index well Δn2
e = n2

e −n2
0 [note that n0 = ne(θ0)], the walk-

off angle δ0 = arctan[εa sin 2θ0/(εa + 2n2⊥ + εa cos 2θ0)]
[Fig. 2(c)] and the diffraction coefficient Dy = n2

0/εzz(θ0);
we also introduced the light-matter coupling γ = ε0εa/(4K)

(K is the Frank’s elastic constant taken to be the same
for bend, twist and splay deformations [21]) and κ =
−Z0/(n0 cos δ0) (Z0 is the impedance of vacuum), which
links electric and magnetic fields of the lightwave [55].
Equation (1) is a nonlinear Schrödinger-like equation ac-
counting for anisotropy (including walk-off) and nonlocal-
ity (via Δn2

e ), whereas (2) states the equilibrium between
the torque due to intermolecular forces (Laplacian term) and
the torque due to the optical field (a term dependent on |A|2)
[16, 18, 21]; noticeably, (2) is a diffusion equation because
the perturbation induced by light (Δn2

e ) spreads out in NLC
due to strong interactions between molecules, as noted in
Sect. 1.

Equation (2) rigorously holds valid when K1 = K3 (K1

and K3 are the elastic constants for splay and bend defor-
mations, respectively [21]), with an effective K given by
an average of all three constants; when K1 �= K3, extra
terms depending on the first partial derivatives of θ and on
the mixed second-order derivative appear. Nevertheless, our
measurements indicate that the single constant approxima-
tion is valid finely, with good agreement between data and
model when K is determined via a best fit procedure [55].

Setting A = √
Pu with P the beam power, from (2) it

is apparent that, for a given optical field, the nonlinear in-
dex perturbation depends on the parameter σ = γ κ2P . Let
us consider two NLC mixtures with the same (unperturbed)
angle θ0 and refractive indices n⊥ and n‖, but with differ-
ent elastic constants KI and K II , respectively: a normalized
input field u0 = u(x, y, z = 0) will undergo the same evolu-
tion in propagation if P I = (KI /K II)P II , with P I and P II

the beam powers corresponding to the mixtures with KI and
K II , respectively.

We first consider the linear case, i.e., Δn2
e = 0; the in-

put Gaussian beam will evolve according to the Helmholtz’s
(paraxial) equation, with

A =
√

P

w(z)

√
2n0 cos δ0

πZ0
eiζ e

[i k0neff
2R(z)

− 1
w2(z)

][x2+(y−z tan δ0)
2]
, (3)

where we introduced the effective index neff = n0/Dy

[Fig. 2(b)], the Rayleigh distance lR = πw2
0neff/λ, the Gouy

phase ζ = arctan (z/ lR), the spot size w(z) =
w0

√
1 + (z/ lR)2 and the curvature radius R(z) = z[1 +

(lR/z)2]. The divergence φ of the beam is φ = λ/(πw0neff):
hence, the beam diffraction depends both on the NLC
indices and on the director angle θ0. Specifically, fixing
beam waist w0 and index n⊥, after setting neff(θ0, εa) =

Fig. 2 Plots versus θ0 and for Δn = 0.01,0.05,0.1,0.2,0.4 (bottom
to top lines): (a) the extraordinary index ne , (b) the effective index neff,
(c) the walk-off δ0 and (d) the ratio between the nonlocal Kerr coeffi-
cient n2H and the material-dependent parameter γ . Solid lines are ex-
act values, dashed lines approximated values for small anisotropies εa .
Here n⊥ = 1.5

n⊥/Dy |εa=0 + δn (δn quantifies changes in neff due to the
anisotropy) it is straightforward to compute the variations
Δφ in divergence,

Δφ = − λ

πw0

δn

n2⊥
, (4)

which implies that the beam divergence decreases with
higher neff, consistently with (3). Thus, when comparing
light self-localization in various NLC (i.e., different εa), the
differences in diffraction have to be accounted for. For in-
stance, Fig. 2(b) provides δn = 0.26 for θ0 = 45◦, n⊥ = 1.5
and Δn = 0.4, i.e. Δφ = −0.7◦ on a divergence φ = 4◦ for
εa = 0, a relative change of the order of 20%.

After linearizing Δn2
e (i.e., Δn2

e ≈ 2n0Δne), from
(1)–(2) we can define a nonlocal effective Kerr coefficient
n2H [55]:

n2H (θ0) = 2γ κ2 sin
[
2(θ0 − δ0)

]
n2

e(θ0) tan δ0. (5)

Equation (5) includes the dependence of self-focusing on the
director distribution at rest (i.e., θ0) [55] and on the material
parameters through the birefringence εa and the elastic con-
stant K . The Kerr coefficient n2H is inversely proportional
to K as large elastic constants correspond to higher powers
in order to get the same all-optical reorientation ψ ; in ad-
dition, n2H is approximately proportional to the square of
the optical anisotropy εa as the latter is in turn proportional
to the induced torque for a fixed excitation [see (2)] and the
nonlinear index well depends on εa for a given perturbation
ψ [see Fig. 2(a)].

To quantitatively address the dependence of the nonlin-
earity, we first analyze the case of small anisotropy; in this
limit we can write

ne = n⊥ + sin2 θ0

2n⊥
εa, (6)
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δ0 = sin 2θ0

2n2⊥
εa, (7)

n2H = ε0κ
2

4K
ε2
a sin

[
2(θ0 − δ0)

]
sin (2θ0). (8)

Figure 2 shows the comparison between the exact formula
and the results stemming from (6)–(8). For anisotropy up
to Δn = n‖ − n⊥ < 0.1 and for n⊥ = 1.5, the agreement
between full and approximated expressions is excellent,
whereas for larger Δn (lines for Δn = 0.2) slight differ-
ences appear; in particular, the maxima in walk-off δ0 and
Kerr coefficient n2H shift towards θ0 larger than 45◦ as the
anisotropy increases.

Looking at (8) it is clear that the nonlinear effects, for
given θ0 and elastic constant K , depend on the square of εa .
This result is valid for small εa ; for large anisotropies the
behavior is more involved, although the qualitative trend re-
mains valid, with a shift of the director angle corresponding
to the maximum nonlinearity as the plots of Fig. 3 show.

Fig. 3 (Left) Walk-off δ0 and (right) Kerr coefficient n2H /γ versus
n‖ for θ0 = 45◦ from the exact formula (solid lines) and in the limit
of small optical anisotropy (dashed lines). The dotted lines are the
corresponding maxima versus θ0 calculated exactly for each n‖. Here
n⊥ = 1.5

3 Numerical simulations

3.1 (1 + 1)D model

The numerical integration of the system of (1)–(2) is time-
consuming, as it requires the iterative solution of a boundary
problem in a 3D geometry. A simplified (1 + 1)D model
can be obtained from (1)–(2) when assuming light prop-
agation in the cell mid-plane x = L/2 (i.e., no boundary
effects [56]) and studying beam evolution in the plane yz

(notably, in typical experiments only the light distribution
in yz is acquired by imaging the NLC scattered photons
out of the plane [24, 57]). Setting A = X(x, z)v(y, z) and
ψ = ϕ(y, z) sin(πx/L), (1)–(2) in x = L/2 provide [51,
55]:

2ik0n0

(
∂v

∂z
+ tan δb

∂v

∂y

)
+ Dy

∂2v

∂y2
+ k2

0Δn2
ev

+ 2iαk0n0v = 0, (9)

∇2
yzϕ −

(
π

L

)2

ϕ + γ κ2 sin
[
2(θ0 + ϕ − δ0)

]|v|2 = 0, (10)

with the last term in (9) accounting for scattering losses, al-
ways present in the nematic phase. In (9) we also included
self-steering via nonlinear changes in walk-off by setting
δb = δ(θ0 +ψb), with ψb the maximum all-optical perturba-
tion for z constant [51, 55, 58]. The reorientation equation
(10) is a screened Poisson equation with screening length L,
i.e. conserving the nonlocality of the real 3D system, deter-
mined by the shortest size of the cell, i.e. the thickness L

[59]. Finally, the power in the simplified (1 + 1)D model
[see (9)–(10)] P2D is smaller than the actual one P , that is,
P = ηP2D with typical η in the range 3 ÷ 10 [51, 55]. The
system of (9)–(10) is solved iteratively: for a given ε the
beam propagation is computed via (9), then the new field is

Fig. 4 Beam profile |v|2
computed from (9)–(10). First,
second and third columns (rows)
correspond to
Δn = 0.06,0.2,0.4
(P2D = 1 µW, 0.5 mW, 4 mW),
respectively. Here w0 = 3 µm,
λ = 1064 nm, L = 75 µm,
n⊥ = 1.5, K = 12 pN and the
attenuation (scattering losses) is
α = 5 cm−1
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used in (10) to calculate the variations in director distribu-
tion induced by the new perturbation; the cycle is repeated
until convergence is achieved.

3.2 Results

Figure 4 shows the computed light evolution in the plane
x = L/2. As predicted in Sect. 2, for a fixed input power the
larger is the NLC anisotropy the stronger is self-focusing
(compare different columns); accordingly, the power re-
quired for self-trapping drops for large εa . The anisotropy
also affects the soliton trajectory via walk-off (note the dif-
ferent ranges of y in each column of Fig. 4), consistently
with Fig. 2(c). At high powers the optical reorientation is
large enough to change the soliton trajectory via nonlinear
walk-off, with sideway displacements of dozens of microns
in z = 1.5 mm at 4 mW (bottom row in Fig. 4).

Figure 5 plots waist w and trajectory (defined as the
first and second central moments of the distribution |v|2, re-
spectively). The trajectories in the linear regime depend on
δ0, with larger walk-off angles for larger anisotropies [see
Fig. 2(c)]; the anisotropy affects diffraction as well, with
beam spreading decreasing with Δn [see (4)]. In the non-
linear regime the soliton trajectory for small anisotropies
does not appreciably vary for powers up to 4 mW (in the
scale of Fig. 5 linear and nonlinear trajectories overlap for
Δn = 0.06), whereas self-deflection becomes appreciable
for large birefringence even at these excitations. Owing to
losses, beam breathing in waist changes in propagation, both
in amplitude and period [51, 55]. To quantify the nonlinear
effects, we introduce the mean beam waist w as

w = 1

Lz

∫ Lz

0
w(z)dz. (11)

The behavior of w versus power P2D in Lz = 1.5 mm
is plotted in Fig. 5: clearly the power required for self-
confinement is lower for larger εa . Noteworthy, w saturates

with excitation, in agreement with the nematicon existence
curve versus waist and power in the absence of losses, i.e.
P ∝ w−2 [19, 51].

4 Experimental results

To validate the theoretical and numerical results as reported
in Sects. 2–3, we fabricated three planar glass cells of thick-
ness L = 75 µm (Fig. 1), and filled them with distinct NLC
mixtures, namely 1550, E7 and 1791A [60, 61]. A TEM00

Gaussian beam at λ = 1064 nm was coupled into the NLC
samples using a microscope objective, with an input waist
w0 ≈ 3 µm (value evaluated from the diffraction of the or-
dinary wave component) and k ‖ ẑ. The values of birefrin-
gence in the near infrared are Δn ≈ 0.06, 0.2 and 0.4 for the
three NLC, respectively, with n⊥ ≈ 1.5 for all of them [60,
61]. Linear and nonlinear parameters of the samples were
measured through the beam evolution in the yz plane versus
input power P , imaging the scattered light out of yz with
a high resolution CCD camera and an optical microscope.
Figure 6 shows the light evolution in the three samples for
various initial powers, whereas Fig. 7 plots the correspond-
ing trajectories and waists, in good agreement with the nu-
merical results. From the measured trajectories (Fig. 6), the
linear walk-off angles for increasing anisotropy resulted in
δ0 ≈ 2.5◦, 6.5◦ and 12◦ [the walk-off is the slope of the
curves in Fig. 7(a)], in agreement with the theoretical pre-
dictions (Fig. 2). The self-steering predicted in the non-
perturbative regime was not observed due to the insurgence
of thermal effects and the instabilities stemming from the
fluid-like nature of the NLC [21, 58].

Self-confinement was studied by measuring the waist in
propagation: at low power, namely P ≈ 0.1 mW, all three
samples exhibited a linear behavior, with diffraction de-
termined by the effective extraordinary index neff [see (4)
and Fig. 2(b)], as visible from the slopes of the solid lines
in Fig. 7(b). The nonlinear effects in the low birefringent

Fig. 5 Left panel: beam trajectories in x = L/2 for Δn = 0.4
(solid lines with symbols), 0.2 (dashed lines) and 0.06 (solid lines);
for a given NLC, the top blue (bottom green) line corresponds to
P2D = 1 µW (4 mW). Center panel: beam waist versus z; line types
as in the left panel. Inset: magnification near the input interface, show-

ing the two curves corresponding to P2D = 4 mW and Δn = 0.2,0.4.
Right panel: mean beam waist w versus excitation for Δn = 0.4 (bot-
tom red line), 0.2 (middle green line) and 0.06 (top blue line). The
parameters are as in Fig. 4
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Fig. 6 First four columns from the left: acquired images of beam evo-
lution for several input powers and three NLC mixtures (see legend
on the left). Rightmost plots: intensity profile at z = 1 mm in the lin-

ear regime (P = 0.1 mW, dashed lines) and in the solitonic case (solid
lines, in the top graph P = 45 mW, whereas in the center and bottom
graphs P = 3 mW)

1550 NLC (Fig. 6 first row) were limited to self-focusing at
P = 3 mW: as a matter of fact, in Fig. 7(b) the waist increase
with z at P = 3 mW (blue dashed line) is slightly less than
in the linear case (P = 0.1 mW, solid blue line). Finally,
light self-trapping and the formation of a soliton took place
at powers of about 45 mW (Fig. 6, first row, fourth column).
In the mixtures E7 and 1791A (second and third rows in
Fig. 6, respectively) self-focusing is stronger owing to the
higher εa , as demonstrated by a direct comparison between
the first three columns in Fig. 6. Soliton formation in E7 oc-
curred for P ≈ 3 mW (Fig. 6, second row) consistently with
values reported in literature, while for the mixture 1791A

the minimum power required to observe a soliton was about
800 µW (last row second column in Fig. 6). Remarkably,
the experiments confirm the dependence of the nonlinear-
ity on the square of εa [see Sect. 2, (8)]; in fact, the mini-
mum soliton power in E7 is about four times bigger than in
1791A, in agreement with Δn in 1791A being twice larger
Δn in E7. Similarly, the minimum soliton power is about
15 times larger in 1550 than in E7 due to a four times larger
anisotropy. We stress that, in such a comparison, using the
same effective elastic constants for all the mixtures is a valid
assumption because, according to (8), the nonlinear coeffi-
cient n2H depends on ε2

a/K . Since the optical anisotropy is
known in each NLC mixture and the measured nonlinear ef-
fect scales with its square, the effective scalar constant K

can be assumed equal in all three samples. The use of one
single elastic constant is consistent with other approxima-
tions implicitly invoked by our model of nematicon propa-
gation, e.g. scattering losses.

Finally, we pinpoint that the different nonlinearities of
E7 and 1791A are also witnessed by the different breath-
ing periods at fixed power [the case P = 3 mW is shown in

Fig. 7 (a) Measured beam trajectories in the plane yz and (b) nor-
malized waist w/w0 (input waist w0 ≈ 3 µm) versus z for 1550
(Δn = 0.06, blue squares), E7 (Δn = 0.2, red circles) and 1791A

(Δn = 0.4, green triangles) mixtures. In (a) the measured linear
walk-off angles are δ ≈ 2.5◦, 6.5◦, 12◦, respectively. In (b) the solid
lines correspond to P = 0.1 mW and the dashed lines to P = 3 mW

Fig. 7(b)], with faster oscillations in 1791A due to its higher
birefringence.

5 Conclusions

We investigated the role of material parameters in the gener-
ation and propagation of spatial optical solitons in nematic
liquid crystals. We studied theoretically the behavior of lin-
ear and self-confined waves versus refractive indices, evalu-
ating the properties of nematicons and their dependence on
birefringence through the introduction of an equivalent non-
local Kerr parameter. Numerical simulations based on a two-
dimensional model and encompassing the main physics con-
firm our theoretical findings, allowing a more direct compar-
ison with experiments where the input profiles are fixed and
the scattering losses are unavoidable. We carried out experi-
mental characterization of three NLC samples featuring dif-
ferent birefringences, obtaining a good agreement with the-
oretical and numerical results. Our findings demonstrate the
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validity of the theoretical tools developed for nematicons,
and our results address for the first time the role of physi-
cal parameters (dielectric tensor and intermolecular elastic
forces) in light self-trapping and self-guiding, enabling to
optimize the choice of materials based on the specific appli-
cations to be implemented.
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