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Abstract Spatial and/or temporal propagation of light
waves in periodic optical structures offers a unique possi-
bility to realize in a purely classical setting the optical ana-
logues of a wide variety of quantum phenomena rooted in
relativistic wave equations. In this work a brief overview of
a few optical analogues of relativistic quantum phenomena,
based either on spatial light transport in engineered pho-
tonic lattices or on temporal pulse propagation in Bragg
grating structures, is presented. Examples include spatial
and temporal photonic analogues of the Zitterbewegung of
a relativistic electron, Klein tunneling, vacuum decay and
pair production, the Dirac oscillator, the relativistic Kronig–
Penney model, and optical realizations of non-Hermitian ex-
tensions of relativistic wave equations.

1 Introduction

Quantum–classical analogies have been explored on many
occasions to mimic at a macroscopic level many quantum
phenomena which are currently inaccessible in microscopic
quantum systems [1]. The study of analogies, besides be-
ing fruitful in gaining insights into different phenomena
in nature, provides a noteworthy strategy in research capa-
ble of transferring ideas, concepts, and techniques among
apparently unrelated physical fields. In particular, in the
past two decades engineered photonic structures have pro-
vided a useful laboratory tool to investigate and visualize
with classical optics the dynamical aspects embodied in a
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wide variety of coherent quantum phenomena encountered
in atomic, molecular, condensed-matter, and matter-wave
physics [2]. The study of quantum-optical analogies has
been greatly stimulated by the development of the field of
discrete optics, aimed to realize novel functionalized opti-
cal materials based on evanescently coupled optical waveg-
uides in which the dispersion and diffraction properties of
light can be specifically managed [3–5]. The development
of recent and reliable technologies in waveguide fabrication,
notably the one based on waveguide inscription in transpar-
ent glasses based on femtosecond laser writing [5], has en-
abled us to access in the laboratory a wide variety of fasci-
nating optical analogues of quantum systems. Such analo-
gies have also transferred into optics some important ideas
and methods for molding the flow of light originally de-
veloped in the context of quantum control [2, 6]. Among
the wide variety of quantum-optical analogies investigated
in the last two decades, we mention the optical analogues
of electronic Bloch oscillations [3, 7–12] and Zener tun-
neling [13–18], dynamic localization [19–27], coherent en-
hancement and destruction of tunneling [28–30], adiabatic
stabilization of atoms in ultra-strong laser fields [31, 32],
Anderson localization [33, 34], the quantum Zeno effect
[35–37], Rabi flopping [38, 39], coherent population trans-
fer [40–44], coherent vibrational dynamics [45, 46], geo-
metric potentials [47, 48], and dynamical (Kapitza) trap-
ping [49]. Most of such analogies are based on the for-
mal similarity between the paraxial optical wave equation
in dielectric media and the single-particle non-relativistic
Schrödinger equation, thus providing a test bed for classi-
cal analogue studies of non-relativistic quantum phenom-
ena. Optical analogues of many-body phenomena in non-
relativistic models, such as photonic analogues of the fa-
mous Bose–Hubbard model, have been proposed as well
[50–52].
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Recently, great attention has been devoted toward the
investigation of experimentally accessible and controllable
classical or quantum systems that simulate certain funda-
mental phenomena rooted in the relativistic wave equations,
such as the Dirac equation for fermionic particles. Among
others, cold trapped atoms, ions, and graphene have proven
to provide accessible systems to simulate relativistic physics
in the laboratory, and a vast literature on this subject has ap-
peared in the past few years (see, for instance, [53–71] and
references therein). In particular, low-energy non-relativistic
two-dimensional electrons in graphene obey the Dirac–Weyl
equation and behave like massless relativistic particles. This
has led to the predictions in condensed-matter physics and
atom optics of phenomena analogous to Zitterbewegung
[72] and Klein tunneling [73] of relativistic massive or mass-
less particles, with the first experimental evidence of Klein
tunneling in graphene [74, 75], carbon nanotubes [76], and
trapped ions [77] and of Zitterbewegung [78].

Photonic analogues of Dirac-type equations have also
been theoretically proposed for light propagation in cer-
tain triangular or honeycomb photonic crystals, which
mimic the conical singularity of energy bands of graphene
[79–86], as well as in metamaterials [87–89], optical su-
perlattices [90–93], Bragg gratings [94–96], and nonlinear
quadratic media [97]. Such studies have motivated extended
investigations of the properties of ‘photonic graphene’
[79–83, 85, 86, 98–102] and to the proposals of photonic
analogues of relativistic phenomena like Zitterbewegung
[84, 87–90, 97], Klein tunneling [85–89, 91, 94], decay of
the quantum vacuum and pair production [92], the Dirac
oscillator [95], and the relativistic versions of the Kronig–
Penney model and surface Tamm states [96]. Noticeably,
the introduction of gain and/or loss regions in the optical
medium can be exploited to realize in a classical setting
certain non-Hermitian relativistic models proposed in the
context of non-Hermitian quantum mechanics and quantum
field theories [103, 104].

In this article a brief overview of a few important op-
tical analogues of relativistic quantum phenomena is pre-
sented. Among the various optical realizations of relativistic
wave equations proposed in the recent literature and briefly
mentioned in the previous discussion, the present work fo-
cuses mostly on a few rather simple periodic optical struc-
tures, namely spatial light transport in evanescently coupled
waveguide arrays and temporal pulse propagation in Bragg
grating structures. Specific examples of quantum-optical
analogies discussed in the work include spatial and tempo-
ral photonic analogues of Zitterbewegung, Klein tunneling,
instability of the quantum vacuum and pair production, the
Dirac oscillator, the relativistic Kronig–Penney model, and
optical simulations of non-Hermitian relativistic wave equa-
tions.

2 Photonic Zitterbewegung

Originally predicted by Schrödinger in the study of the
Dirac equation [105], Zitterbewegung (ZB) refers to the
trembling motion of a freely moving relativistic quantum
particle that arises from the interference between the pos-
itive (electron) and negative (positron) energy states of the
spinor wave function [72, 106]. For a free electron, the Dirac
equation predicts the ZB to have an extremely small ampli-
tude (of the order of the Compton wavelength �10−12 m)
and an extremely high frequency (�1021 Hz), making such
an effect experimentally inaccessible. Moreover, the phys-
ical relevance of ZB in relativistic quantum mechanics is
a rather controversial issue, because such an effect arises
in the framework of the single-particle picture of the Dirac
equation, but not in quantum field theory. Phenomena anal-
ogous to ZB, which underlie the same mathematical model
of the Dirac equation, have so far predicted in a wide vari-
ety of quantum and even classical physical systems, as dis-
cussed in the introduction. Here we briefly present two op-
tical simulations of the relativistic ZB, based the former on
spatial light propagation in binary waveguide arrays, the lat-
ter on the frequency conversion process of optical pulses in
quadratic nonlinear media.

2.1 Photonic Zitterbewegung in binary waveguide arrays

The simplest example in optics where one can find an ana-
logue of the relativistic ZB may be the discrete transport
of light waves in a one-dimensional binary array [90]. Such
an optical system behaves, in fact, like a one-dimensional
superlattice, in which the two minibands of the superlat-
tice play the same role as the positive- and negative-energy
branches of the Dirac equation [107]. Under excitation by a
broad light beam near the Bragg angle, the discretized light
propagates along the array showing a characteristic trem-
bling motion, which mimics the relativistic ZB of the elec-
tronic wave function. Such an oscillatory motion has been
recently observed in Ref. [93] in binary arrays written in
fused silica by femtosecond laser writing technology [5],
providing the first simulation in optics of ZB.

Let us consider light propagation in a binary waveguide
array, realized by two interleaved lattices A and B, as shown
in Fig. 1a. In practice, the superlattice can be realized by
a sequence of equally spaced waveguides with alternating
deep/shallow peak refractive index changes dn1 and dn2. In
the tight-binding approximation, light transport is described
by the coupled-mode equations [90, 93]

i
dcl

dz
= −κ(cl+1 + cl−1) + (−1)lσ cl, (1)
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Fig. 1 Photonic analogue of
relativistic Zitterbewegung in a
binary waveguide array.
(a) Schematic of the optical
superlattice (refractive index
change profile n(x) − ns).
(b) Dispersion curves of the two
minibands of the superlattice,
corresponding to the electron
and positron energy branches of
the Dirac equation.
(c) Evolution of a broad
Gaussian beam (snapshot of
|cn(z)|2, left-hand panel),
exciting the binary array and
tilted at the Bragg angle, and
corresponding beam trajectory
(right-hand panel), for
parameter values κ = 1 and
σ = 0.6. (d) Same as (c), but for
σ = 1

where cl are the modal field amplitudes in the various
waveguides and 2σ and κ are the propagation constant mis-
match and the coupling rate between two adjacent waveg-
uides of the array, respectively. The superlattice supports
two minibands, separated by a narrow gap of width 2σ

(see Fig. 1b), defined by the dispersion curves ω±(q) =
±√

σ 2 + 4κ2 cos2(qa), where 2a is the lattice period and
q the Bloch wave number. Hence, in the vicinity of the
edges of the first Brillouin zone, e.g. near q = π/(2a), the
dispersion curves of the two minibands form two oppo-
site hyperbolas, and therefore mimic the typical hyperbolic
energy-momentum dispersion relation for positive-energy
and negative-energy branches of a freely moving relativis-
tic massive particle (dotted graph). This suggests that light
transport in the lattice for Bloch waves with wave number
q close to π/(2a) simulates the temporal dynamics of the
relativistic Dirac equation. When launching a tilted broad
beam E(x, z) at the Bragg angle θB � λ/(4nsa) (ns is the
substrate refractive index) into the array, only a small re-
gion around q = π/(2a) in q-space is excited. After setting
c2n(z) = (−1)nψ1(n, z) and c2n−1 = −i(−1)nψ2(n, z) and
introducing the continuous transverse coordinate ξ ↔ n =
x/(2a), the two-component spinor ψ(ξ, z) = (ψ1,ψ2)

T sat-

isfies the one-dimensional Dirac equation [90, 107]

i
∂ψ

∂z
= −iκσx

∂ψ

∂ξ
+ σσzψ, (2)

where σx = ( 0 1
1 0

)
and σz = ( 1 0

0 −1

)
are the σx and σz Pauli

matrices. Equation (2) corresponds to the one-dimensional
Dirac equation for a relativistic freely moving particle of
mass m [106] provided that the formal change

κ → c, σ → mc2/� (3)

is made, and ξ and z are interpreted as the spatial and the
temporal variables, respectively. Therefore, in the optical su-
perlattice the temporal evolution of the Dirac spinor wave
function ψ is mapped onto the spatial evolution along z

of the field amplitudes ψ1 and ψ2, describing the occupa-
tion amplitudes of light in the two sub-lattices A and B
of the binary array. Correspondingly, ZB is observed as a
quivering spatial oscillatory motion of the beam center of
mass 〈n〉(z) = ∑

n n|cn|2/∑
n |cn|2. Note that the measur-

able quantity 〈n〉(z) is directly related to the expectation
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value of the position for the relativistic particle,

〈ξ 〉(z) =
(∫

dξξ
(|ψ1|2 +|ψ2|2

))/(∫
dξ

(|ψ1|2 +|ψ2|2
))

,

by the simple relation 〈n〉 � 2〈ξ 〉 + 1/2 [90]. Let us in-
dicate by E(x,0) the electric field envelope that excites
the superlattice at the z = 0 input. For beam incidence
close to the Bragg angle θB, one can write E(x,0) =
G(x) exp(2π ixnsθB/λ), where the envelope G varies slowly
over the waveguide spacing a. Under such an assumption, an
exact expression for 〈ξ 〉(z) can be derived and reads [90]

〈ξ 〉(z) = 〈ξ 〉(0)+v0z+2πκσ 2
∫

dk
(
1/ε3) sin(2εz)

∣∣Ĝ(k)
∣∣2

,

(4)

where k = 2qa − π is the shifted transverse momentum,
ε(k) = √

σ 2 + κ2k2 defines the energy-momentum dis-
persion relation of the free relativistic particle, Ĝ(k) =
(1/2π)

∫
dξG(2aξ) exp(−ikξ) is the angular spectrum of

the beam envelope (normalized such that
∫

dk|Ĝ(k)|2 =
1/4π ), and v0 = 4πκ3

∫
dk(k/ε)2|Ĝ(k)|2 is the mean par-

ticle speed. The last oscillatory term on the right-hand
side of (4), superimposed to the straight trajectory defined
by the first two terms, is the ZB. For Ĝ(k) centered at
k = 0, at leading order (4) yields 〈ξ 〉(z) � 〈ξ 〉(0) + v0z +
(κ/2σ) sin(2σz), i.e. the amplitude and frequency of the ZB
are given by

RZB = κ/(2σ) = �/(2mc), (5)

ωZB = 2σ = 2mc2/�, (6)

respectively. Therefore, ZB vanishes for either the far-
relativistic (m → 0) or the weak-relativistic (m → ∞) lim-
its: in the first case the amplitude of ZB diverges, but the
oscillation frequency ωZB goes to zero, whereas in the latter
case the frequency of ZB diverges but its amplitude van-
ishes (see, for instance, [107]). As an example, Fig. 1c and
d show the ZB as obtained by numerical simulations of the
coupled-mode equations for two values of the detuning σ

and for a broad Gaussian beam that excites the array at the
Bragg angle. The damping of the oscillations observed in the
figure is related to the spectral angular broadening of the in-
cident beam [90]. The previous analysis can be extended to
a photonic superlattice in two transverse spatial dimensions
x and y. The superlattice is composed by two interleaved tri-
angular lattices, with a propagation constant detuning σ be-
tween the guided modes, and a broad input beam is launched
at the Bragg angle. In this case, in the continuous limit the
evolution of the beam envelope along the longitudinal direc-
tion z is described by a two-dimensional Dirac-type equa-
tion, which reduces to the massless case of the previously
studied photonic graphene [79–86] in the limit σ → 0.

2.2 Photonic Zitterbewegung in nonlinear frequency
conversion

A second example of a photonic analogue of ZB is pro-
vided by the frequency-conversion process of optical pulses
in a nonlinear quadratic medium arising from group-velocity
mismatch [97]. Let us consider the propagation of three op-
tical pulses at carrier frequencies ω1, ω2, and ω3 = ω1 + ω2

in a nonlinear quadratic medium and in the presence of
group-velocity mismatch. To study the analogue of ZB in
the frequency-conversion process, we assume that at the in-
put plane z = 0 the nonlinear crystal is excited by a strong
and nearly continuous-wave pump field at frequency ω1, and
by a weak and short signal pulse at frequency ω2 and tem-
poral profile g(t). Assuming that group-velocity dispersion
is negligible and assuming perfect phase matching, in the
no-pump-depletion approximation the sum-frequency gen-
eration process in described by the two coupled wave equa-
tions
(

∂

∂z
+ 1

vg2

∂

∂t

)
A2 = −iκA3, (7)

(
∂

∂z
+ 1

vg3

∂

∂t

)
A3 = −iκA2, (8)

where Al (l = 2,3) is the amplitude of the electric field en-
velope at frequency ωl , normalized such that |Al |2 (l = 2,3)
is the photon flux at frequency ωl , vgl is the group velocity
in the medium at frequency ωl , κ = ρ

√
I1/�ω1, ρ is the

strength of the nonlinear interaction, and I1 is the intensity
of the pump field. The coupled equations (7) and (8) can be
cast in a Dirac form after introduction of the coordinates of
a moving frame

ξ = z, η = t − z/vg, (9)

where the velocity vg is defined by the relation

1

vg
= 1

2

(
1

vg2
+ 1

vg3

)
. (10)

In the moving frame, after introduction of the spinor wave
field ψ = (A2,A3)

T, (7) and (8) can be cast in the form of a
Dirac equation

i
∂ψ

∂ξ
= −iσzδ

∂ψ

∂η
+ κσxψ, (11)

where σx and σz are the Pauli matrices and where we have
set

δ = 1

2

(
1

vg2
− 1

vg3

)
. (12)
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Fig. 2 Zitterbewegung in the process of sum-frequency generation in-
duced by group-velocity mismatch. (a) and (b) show the evolution of
the signal and sum-frequency pulse intensities in a 15-mm-long PPLN
crystal for a continuous-wave pump. The crystal is excited by a Gaus-

sian signal pulse of duration τp = 0.5 ps. In (c) the evolution of the
pulse center of mass 〈η〉1 for the signal wave is depicted. The oscil-
latory behavior of 〈η〉1, arising from the group-velocity mismatch be-
tween signal and sum-frequency fields, is a signature of ZB

Note that, after the formal change

δ → c,

κ → mc2

�
, (13)

ξ → t, η → x.

Equation (11) corresponds to the one-dimensional Dirac
equation for a relativistic particle of mass m in the absence
of external fields, moving along the x axis, written in the
Weyl representation [106]. Such a representation is differ-
ent, though equivalent, to the one used in the previous sub-
section (compare (11) with (2)), the spinor components in
the two representations being related by a unitary trans-
formation. Therefore, the temporal evolution of the spinor
wave function ψ for the Dirac particle is mapped into the
spatial evolution of the envelopes A2 and A3 for signal and
sum-frequency pulses, respectively, whereas the spatial co-
ordinate of the Dirac particle is mapped into the retarded
time η of the optical pulses. In the absence of group-velocity
mismatch, the massless Dirac equation is obtained, in which
ZB vanishes. As an example, Fig. 2 shows ZB in the process
of sum-frequency generation which applies to a periodically
poled lithium niobate (PPLN) crystal with a quasi-phase-
matched grating that ensures phase matching at the wave-
lengths λ1 = 1550 nm (pump), λ2 = 810 nm (signal), and
λ3 = 532 nm (sum-frequency). The crystal is pumped by
a near-continuous-wave pump of intensity I = 1 MW/cm2

and excited at the input plane by a short Gaussian signal
pulse of duration τp = 0.5 ps. The mismatch of the group
velocities of signal and sum-frequency fields clearly results
in an oscillating motion (jitter) of the signal pulse along the
propagation in the nonlinear crystal, which is the signature
of ZB.

3 Photonic analogues of Klein tunneling

A remarkable prediction of the Dirac equation is that a
below-barrier electron can pass a large repulsive and sharp
potential step without the exponential damping expected for
a non-relativistic particle. Such a transparency effect, origi-
nally predicted by Klein [73] and referred to as Klein tunnel-
ing (KT), arises from the existence of negative-energy so-
lutions of the Dirac equation and requires a potential step
height ΔV of the order of twice the rest energy mc2 of
the electron [108]. Relativistic tunneling across a smooth
potential step, which describes the more physical situation
of a constant electric field E in a finite region of space of
length l, was subsequently studied by Sauter [109]. Sauter
showed that to observe barrier transparency the potential in-
crease ΔV � eEl should occur over a distance l of the order
of or smaller than the Compton wavelength λC = �/(mc),
the transmission probability rapidly decaying toward zero
for a smoother potential increase [108–110]. The required
field corresponds to the critical field for e+e− pair produc-
tion in vacuum, and its value is extremely strong making the
observation of relativistic KT for electrons very challeng-
ing. Therefore, growing efforts have been devoted to finding
experimentally accessible systems to investigate analogues
of relativistic KT, as discussed in the introduction. In par-
ticular, based on the interesting property that electrons in
graphene near a Dirac point of the band structure behave
like massless Dirac particles, solid-states analogues of KT
have been proposed and experimentally demonstrated quite
recently. In optics, several proposals of KT analogues have
been suggested as well in the past few years, as discussed
in the introduction. An important optical setup is provided
by light transport in honeycomb photonic lattices, the co-
called photonic graphene, whose band structure mimics the
one of graphene [85, 86]. However, even in simpler one-
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Fig. 3 Photonic analogue of
relativistic Klein tunneling in a
binary waveguide array with an
interface. (a) Schematic of the
optical superlattice. (b) Beam
refraction across a potential
step, corresponding to KT.
(c) Absence of beam refraction,
corresponding to inhibition of
KT, for a smooth potential
barrier. The right-hand panels in
(b) and (c) depict the
space-energy band diagram,
clearly explaining the inhibition
of tunneling in (c)

dimensional periodic optical structures one can realize op-
tical analogues of KT [91, 94]. Here we briefly discuss two
of such simple realizations. The former one is based on
monochromatic light propagation in waveguide superlattices
[91], whereas the latter one is based on temporal pulse prop-
agation in fiber Bragg gratings [94].

3.1 Photonic Klein tunneling in optical superlattices

As in Sect. 2.1, let us consider the transport of monochro-
matic discretized light waves in a binary array of waveg-
uides, realized by two interleaved lattices A and B. As com-
pared to the superlattice used to realize ZB (Fig. 1a), here a
weak modulation Rl of the index change, much smaller than

either dn1 or dn2 and equal for the interleaved lattices A
and B, i.e. such that R2l−1 = R2l , is superimposed to the lat-
tice, as shown in Fig. 3a. Light transport in the superlattice
is then described by the coupled-mode equations (compare
with (1))

i
dcl

dz
= −κ(cl+1 + cl−1) + (−1)lσ cl + Φlcl, (14)

where the weak modulation Rl of the refractive-index
change is responsible, at leading order, to a slight change
Φl of the modal propagation constants in the various waveg-
uides. For a broad beam exciting the superlattice tilted close
to the Bragg angle, in the continuous limit light transport
turns out to be described by the Dirac wave equation (com-
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pare with (2))

i
∂ψ

∂z
= −iκσx

∂ψ

∂ξ
+ σσzψ + Φ(ξ)ψ, (15)

where Φ(ξ) = Φ2l = Φ2l−1. Note that (15) is formally anal-
ogous to the one-dimensional Dirac equation for an elec-
tron of mass m in the presence of an electrostatic potential
Φ(x), once the formal substitutions (3) are made (see, for
instance, [106]). Therefore, by engineering the refractive-
index depths of the various waveguides in the array, a step-
like potential Φ(ξ) at ξ = 0 can be realized. KT can be ob-
served as a beam transmission (refraction) across the inter-
face [91]. By varying the steepness of the potential step, the
optical superlattice can be designed to demonstrate the dis-
appearance of KT in a smooth potential step as well, i.e.
the transition from KT for a steep potential to Sauter’s tun-
neling suppression for a smooth potential step. In the optical
context, Sauter’s inhibition of light tunneling at a smooth in-
terface can be explained by considering the space-dependent
band structures of the tight-binding superlattices, as shown
in Fig. 3. Such bands are similar to the energy band diagrams
of a semiconductor, in which the two superlattice minibands
(i.e. the electron and positron energy branches of the Dirac
equation) play the role of the conduction and valence bands
and the effect of the external potential Φ(ξ) is to curve the
band structure. For a sharp potential step (Fig. 3b) at the
interface ξ = 0, the electron and positron energy bands are
overlapped, and the beam does not need to cross any for-
bidden region, i.e. KT occurs. However, owing to the sharp
discontinuity of media properties, beam transmission is not
complete, and some light is reflected as in a Fresnel disconti-
nuity between two different dielectric media. Conversely, for
a smooth potential step (see Fig. 3c) the beam has to cross
a forbidden region, which behaves like a potential barrier.
The width of the potential barrier is indicated by the seg-
ment AB in Fig. 3c. Because the width AB increases as the
potential step becomes smoother, the corresponding tunnel-
ing probability, i.e. beam transmission across the interface,
rapidly decreases. This explains the inhibition of KT and the
transition to Sauter’s regime [109].

3.2 Photonic Klein tunneling in fiber Bragg gratings

Another rather simple optical realization of Klein tunnel-
ing is provided by photonic tunneling in structured fiber
Bragg gratings (FBGs) [94]. In a FBG, the effective index
of the fiber is modulated along the longitudinal z′ direction
according to n(z′) = n0 + Δnm(z′) cos[2πz′/Λ + 2φ(z′)],
where n0 is the effective mode index in the absence of the
grating, Δn 
 n0 is the peak index change of the grating,
Λ is the nominal period of the grating defining the refer-
ence frequency ωB = πc/(Λn0) of Bragg scattering, c is

the speed of light in vacuum, and m(z′) and 2φ(z′) de-
scribe the slow variation, as compared to the scale of Λ,
of normalized amplitude and phase, respectively, of the in-
dex modulation. Note that the local spatial frequency of
the grating is k(z′) = 2π/Λ + 2(dφ/dz′), so that the lo-
cal chirp rate is C = dk/dz′ = 2(d2φ/dz′2). The periodic
index modulation leads to Bragg scattering between two
counterpropagating waves at frequencies close to ωB. By
letting E(z′, t) = ϕ1(z

′, t) exp[−iωBt + ikBz′ + iφ(z′)] +
ϕ2(z

′, t) exp[−iωBt − ikBz′ − iφ(z′)] + c.c. for the elec-
tric field in the fiber, where kB = π/Λ, the envelopes ϕ1

and ϕ2 of counterpropagating waves satisfy coupled-mode
equations. After introduction of the dimensionless variables
z = z′/Z and τ = t/T , with characteristic spatial and time
scales Z = 2n0/(kBΔn) and T = Z/vg, and the new en-
velopes ψ1,2(z

′) = [ϕ1(z
′) ∓ ϕ2(z

′)]/√2, the coupled-mode
equations can be cast in the Dirac form [94]

i∂τψ = −iσx∂zψ + m(z)σzψ + V (z)ψ (16)

for the spinor wave function ψ = (ψ1,ψ2)
T, where V (z) =

(dφ/dz), vg is the group velocity at the Bragg frequency,
and σx,z are the Pauli matrices. In its present form, (16)
is formally analogous to the one-dimensional Dirac equa-
tion with � = c = 1 in the presence of an external electro-
static potential V (z), m playing the role of a dimension-
less (and generally space-dependent) rest mass (see, for in-
stance, [108, 110]). The optical analogue of the forbidden
energy region of the Dirac equation, in this case, simply cor-
responds to the photonic stop band of the periodic grating.
As the refractive-index modulation of the grating, i.e. the
mass term m in the Dirac equation (16), is decreased, the
stop-band region shrinks and the limit of a massless Dirac
equation (similar to the one describing the dynamics of elec-
trons in graphene near a Dirac point) is attained. The addi-
tional external potential V in (16), related to the phase mod-
ulation of the grating according to V (z) = dφ/dz, changes
the local position of the forbidden energy region. Therefore,
pulse propagation in a FBG with suitably designed phase
and amplitude grating profiles can be used to mimic the
relativistic tunneling of a wave packet in a potential step
V (z). A typical diagram of a structured FBG suited to re-
alize KT and the inhibition of KT for a smooth potential
step, together with the space-energy diagram of the grat-
ing [94], is shown in Fig. 4a–c. The signatures of KT and
of its inhibition for a smooth potential step are simply re-
vealed by spectrally resolved transmission measurements of
the grating. In fact, for a sharp potential step a transmis-
sion window is opened inside the band gap of the periodic
grating, whereas for a smooth potential step tunneling is pre-
vented (according to the diagram of Fig. 4c) and the trans-
mission window inside the gap vanishes. This is shown in
Fig. 4d, which depicts typical transmission spectra in three
FBGs with different chirp rates, realized to operate near
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Fig. 4 Photonic realization of
relativistic Klein tunneling in a
structured FBG. (a) Schematic
of the local period detuning
V = (dφ/dz) (upper plot) and
amplitude m (lower plot)
profiles of a FBG to observe the
optical analogue of KT. (b) and
(c) Space-energy band diagrams
of the FBG for a sharp (b) and a
smooth (c) potential step V (z)

of height ΔV . The shaded
regions are the forbidden
(stop-band) energies, the dotted
horizontal line is the frequency
Ω0 of the incoming wave
packet, and the dashed curve is
the shape of the potential step
V (z). (d) Numerically
computed spectral transmittance
of three FBGs for increasing
length of the chirped region
(from left to right). The
transmission window inside the
stop band of the grating for a
sharp potential step (left-hand
panel) is the signature of KT

the λ = 1.5 µm wavelength of optical communications (for
more details see [94]).

4 Optical simulation of vacuum decay and pair
production

Electron–positron pair production due to the instability of
the quantum electrodynamics (QED) vacuum in an exter-
nal electric field is another remarkable prediction of Dirac
theory and regarded as one of the most intriguing nonlin-
ear phenomena in QED, whose experimental observation
is still lacking (see, for instance, [111, 112]). In intuitive
terms and in the framework of one-particle Dirac theory, the
pair-production process can be simply viewed as the transi-
tion of an electron of the Dirac sea occupying a negative-
energy state into a final positive-energy state, leaving a va-
cancy (positron) in the negative-energy state. There are ba-
sically two distinct transition mechanisms: the Schwinger
mechanism, induced by an ultra-strong static electric field,
and dynamic pair creation, induced by time-varying electric

fields. The Schwinger mechanism [113] is basically a tun-
neling process through a classically forbidden region, bear-
ing a close connection to Klein tunneling discussed in the
previous section. The other mechanism, namely dynamic
pair creation, was originally proposed by Brezin and Itzyk-
son [114] for oscillating spatially homogeneous fields, and
has recently attracted great attention because of its potential
implementation using counterpropagating ultra-strong laser
fields. Dynamic pair production is closely related to such
intriguing phenomena like Rabi oscillations of the Dirac
sea (see, for instance, [112]). In the framework of the one-
particle Dirac theory of vacuum decay, a simple picture of
pair production is represented by the time evolution of an
initially negative-energy Gaussian wave packet, represent-
ing an electron in the Dirac sea, under the influence of
an oscillating electric field [115]. When the e+e− pair is
produced, a droplet is separated from the wave packet and
moves opposite to the initial one [115]. The droplet is a
positive-energy state and represents the created electron. In
a recent work [92], it was shown that light transport in a
binary waveguide array with a sinusoidally curved optical
axis provides a classical simulator of the dynamic pair pro-



Classical simulation of relativistic quantum mechanics in periodic optical structures 461

Fig. 5 Photonic realization of
dynamic e+e− pair production
in a binary waveguide array
with bent optical axis. The
figure shows the probability of
pair production after the
application of a single-cycle
ultra-strong laser pulse for
increasing values of the
amplitude Φ0. The insets show
the detailed beam evolution
along the array corresponding to
the amplitudes of A, B, and C.
The fractional beams deflected
at opposite angles correspond to
states in the negative (positron)
and positive (electron) energy
branches of the Dirac equation

duction process, in which pair production is visualized as a
breakup of an initial Gaussian wave packet, composed by a
superposition of Bloch modes of the lowest lattice miniband
and representing an electron in the Dirac sea. Periodic axis
bending of the waveguides mimics the effect of an exter-
nal ac field, which induces transitions into the upper lattice
miniband (the electron energy branch). The optical structure
proposed to simulate dynamic pair production is basically
the binary superlattice of Fig. 1a; however, the optical axis
of the waveguides is now periodically bent along the prop-
agation direction z. If the array is excited by a broad beam
tilted close to the Bragg angle, the continuous limit of the
coupled-mode equations now leads to the following Dirac
equation for the spinor ψ [92] (compare with (2)):

i
∂ψ

∂z
= −iκσx

∂ψ

∂ξ
+ σσzψ − 2κΦ(z)σxψ, (17)

where Φ(z) accounts for the waveguide axis bending and
reads explicitly [92]

Φ(z) = 2πnsa(dx0/dz)

λ
. (18)

In the previous equation, a is the distance between two ad-
jacent waveguides, ns is the bulk refractive index, λ is the
wavelength of light, and x0(z) is the axis bending profile.
Note that, after the formal change

κ → c,

σ → mc2

�
,

ξ → x, (19)

Φ → eAx

2�c
,

z → t.

Equation (17) corresponds to the one-dimensional Dirac
equation for an electron of mass m and charge e in the pres-
ence of a spatially homogeneous and time-varying vecto-
rial potential A = (Ax,0,0), which describes the interac-
tion of the electron with an external oscillating electric field
Ex(t) = −(∂Ax/∂t) in the dipole approximation (see, for
instance, [106]). Because of momentum conservation, in the
spatially homogeneous and time-dependent field the prob-
lem of pair creation can be reduced to the transition be-
tween two states consisting of a negative- and a positive-
energy state coupled by the external field. Within the two-
level model, pair production generally occurs as a multi-
photon resonance process enforced by energy conservation,
with interesting effects such as Rabi oscillations of the quan-
tum vacuum. Pair production induced by an ultra-strong and
ultra-short laser pulse can be mimicked by assuming, for in-
stance, a single cycle of the ac field (Φ(z) = Φ0 sin(2πz/Λ)

for 0 < z < Λ, Φ(z) = 0 for z < 0 and z > Λ). As an ex-
ample, Fig. 5 shows the behavior of the transition proba-
bility P , after the interaction with a single-cycle pulse, as
obtained by numerical simulations of the Dirac equation for
κ = 2, σ = 1.817, Λ = 0.6676, momentum q = π/(4a), and
for increasing values of the field amplitude Φ0. The detailed
beam evolution of an initial Gaussian wave packet along
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a waveguide array with single-cycle modulated axis, corre-
sponding to the three conditions A, B, and C of Fig. 5, are
depicted in the insets of the figure. The input wave packet is
mostly composed by Bloch modes belonging to the lowest
miniband of the array, i.e. it belongs to the Dirac sea (the
negative-energy branch of the Dirac equation). Owing to the
modulation, excitation of the upper miniband, correspond-
ing to the creation of a e+e− pair, is clearly observed. Note
that, as the wave packets belonging to the two minibands re-
fract at different angles, they separate from each other after
some propagation distance. Such a splitting is precisely the
signature of e+e− pair production, as discussed in [115].

5 Optical simulation of the Dirac oscillator

The relativistic extension of the quantum harmonic oscilla-
tor, the so-called Dirac oscillator (DO) [116–118], provides
a paradigmatic and exactly solvable model in relativistic
quantum mechanics. Originally proposed in quantum chro-
modynamics in connection to quark confinement models in
mesons and baryons [119], the DO has received great in-
terest in relativistic many-body theories and supersymmet-
ric relativistic quantum mechanics (see [117, 118, 120–122]
and references therein). The DO model is obtained from the
free Dirac equation by the introduction of the external po-
tential via a non-minimal coupling [116, 118, 122]. Since
the resulting equation is linear in both momentum and po-
sition operators, in the non-relativistic limit a Schrödinger
equation with a quadratic potential is then obtained. In spite
of the great amount of theoretical studies, the DO model in
relativistic quantum mechanics and particle physics remains
far from any experimental consideration. In a recent work
[95], a photonic realization of the DO, based on light prop-
agation in structured FBGs, has been proposed. The main
idea is that, as shown in Sect. 3.2, coupled-mode equations
describing forward and backward light coupling in a Bragg
grating structure have the form of a Dirac equation. Us-
ing the same notation as in Ref. [95] and with reference
to Fig. 6a, let us consider light propagation in a FBG with
an index grating n(z) = n0 + Δnh(z) cos[2πz/Λ + φ(z)],
where n0 is the effective mode index in the absence of the
grating, Δn 
 n0 is a reference value of the index change
of the grating, Λ is the nominal grating period defining the
Bragg frequency ωB = πc/(Λn0), c is the speed of light
in vacuum, and h(z) and φ(z) describe the amplitude and
phase profiles, respectively, of the grating. To study Bragg
scattering of counterpropagating waves at frequencies close
to ωB, let E(z, t) = {u(z, t) exp(−iωBt + 2π izn0/λ0) +
v(z, t) exp(−iωBt − 2π izn0/λ0) + c.c.} be the electric field
in the fiber, where λ0 = 2n0Λ is the Bragg wavelength, and
the envelopes u and v of counterpropagating waves satisfy
coupled-mode equations. After introduction of the dimen-
sionless variables x = z/Z and τ = t/T , with characteristic

spatial and time scales Z = λ0/(πΔn) and T = Z/vg (vg

is the group velocity at the Bragg frequency), and the new
envelopes ψ1,2(z) = [u(z) ∓ v(z)]/√2, the coupled-mode
equations can be cast in the Dirac form [95]

i∂τψ = σx

{
px − if (x)σz

}
ψ + σzm(x)ψ (20)

for the spinor wave function ψ = (ψ1,ψ2)
T, where σx and

σz are the Pauli matrices, px = −i(d/dx), and

m(x) = h(x) cos
[
φ(x)

]
, f (x) = −h(x) sin

[
φ(x)

]
. (21)

In its present form, (20) is analogous to the one-dimensional
Dirac equation [106], written in atomic units (� = c = 1),
with a space-dependent mass m and with the momentum
operator px substituted with px − if (x)σz. The space de-
pendence of the particle mass m is known to describe the
particle interaction with a scalar Lorentz potential, whereas
the substitution px → px − if (x)σz corresponds to a non-
minimal coupling which is essential to describe the rela-
tivistic DO (see, for instance, [122]). To realize the one-
dimensional analogue of the DO, let us choose the amplitude
h and phase φ profiles of the grating such that h cosφ = m0

and h sinφ = −f (x) = ωsm0x, i.e. (see Fig. 6b)

h(x) = m0

√
1 + (ωsx)2, φ(x) = atan(ωsx), (22)

where m0 and ωs are two arbitrary constants, correspond-
ing to the particle rest mass and oscillation frequency of
the DO in the non-relativistic limit [122]. Analytical expres-
sions of the energy spectrum for the one-dimensional DO
and of corresponding bound states can be derived following
a standard procedure detailed e.g. in Ref. [122]. Assuming
for the sake of definiteness that ωs > 0, the positive-energy
spectrum (electron branch) of the DO is given by

δn =
√

m2
0 + 2m0ωs(1 + n), n = 0,1,2,3, . . . , (23)

whereas the negative-energy spectrum (positron branch) is
given by

δn = −
√

m2
0 + 2m0ωsn, n = 0,1,2,3, . . . . (24)

The corresponding eigenfunctions ψ±(x) can be simply ex-
pressed in terms of Hermite polynomials multiplied by a
Gaussian function. Note that the negative (positron) en-
ergy spectrum of the DO is not obtained from the positive
(electron) energy spectrum by sign reversal (δ → −δ), the
positron branch possessing an additional bound state with
energy δ = −m0. In our FBG realization of the DO, bound
states with positive and negative energies should correspond
to trapped light states in the FBG with resonance frequencies
above (δ > 0) and below (δ < 0) the Bragg frequency ωB,
respectively. In a FBG of finite length, the ideal amplitude
profile h(x), defined by (22), must be truncated, i.e. one has
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Fig. 6 Photonic realization of
the Dirac oscillator in a fiber
Bragg grating. (a) Schematic of
a FBG. (b) Example of FBG
amplitude and phase profiles
that realize the analogue of the
Dirac oscillator (m0 = 1,
ωs = 0.5, L/Z = 10).
(c) Numerically computed
power transmission (dB units)
of a lossless FBG with
amplitude and phase profiles
shown in (b) (left-hand panel),
and corresponding reflection
band diagram (dashed area,
right-hand panel) with a few
low-order intensity profiles of
trapped modes in the electron
and positron branches

h(x) = 0 for |x| > L/(2Z), where L is the grating length
(see Fig. 6b). The effect of grating truncation is twofold.
First, the bound states of the DO become resonance modes
with a finite lifetime, which should thus be observable as
narrow transmission peaks embedded in the stop band of
the grating. Second, the number of resonance modes sus-
tained by the grating is finite owing to grating truncation.
As an example, Fig. 6c shows a typical transmission spec-
trum (power transmission versus normalized frequency de-
tuning δ = (ω − ωB)T ) for a FBG with length L/Z = 10
for parameter values m0 = 1 and ωs = 0.5. In the figure, the
corresponding reflection band diagram (dashed area) of the
grating in the (x, δ) plane, together with the electron (δ > 0)
and positron (δ < 0) levels and a few eigenstates of the DO,
are also depicted. The transmission peaks visible in the spec-
trum of Fig. 6c, embedded in the stop band of the FBG, oc-
cur precisely at the values δn predicted by (23) and (24).
Note the asymmetry of the transmission spectrum around
δ = 0, with an additional resonance in the positron (δ < 0)
branch of the spectrum with no counterpart in the electron
(δ > 0) branch. In an experiment, the resonant states of the
DO and the asymmetry of the spectrum can be simply de-

tected from spectrally resolved transmission measurements
of the grating using standard techniques.

6 Photonic realization of the relativistic Kronig–Penney
model and relativistic surface Tamm states

The Kronig–Penney model for the non-relativistic
Schrödinger equation [123] is one among the simplest mod-
els in solid-state physics that describes the electronic band
structure of an idealized one-dimensional crystal. Relativis-
tic extensions of the Kronig–Penney model (also referred to
as the Dirac–Kronig–Penney model) have been discussed
by several authors (see, for instance, [124–135] and ref-
erences therein), and the impact of relativity on the band
structure and localization, such as shrinkage of the bulk
bands with increasing band number, have been highlighted
on many occasions. In earlier studies, the Dirac–Kronig–
Penney model also attracted some attention and caused a
lively debate about the existence of so-called Dirac sur-
face states, i.e. relativistic surface Tamm states which dis-
appear in the non-relativistic limit [125, 129, 136–141]. In
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Ref. [96], a photonic realization of the relativistic Kronig–
Penney model and relativistic surface Tamm states has been
proposed, which is based on light propagation in superstruc-
ture FBGs with phase defects. Light propagation in a FBG
with a periodic sequence of phase slips was shown to simu-
late the relativistic Kronig–Penney model, the band structure
of which being mapped into the spectral transmission of the
FBG. Similarly, a semi-infinite FBG with phase defects in-
terfaced with a uniform FBG with a different modulation
period was shown to support Tamm surface states analo-
gous to the relativistic Tamm states. Such surface states are
responsible for narrow resonance peaks in the transmission
spectrum of the grating.

Using the same notation as in Sect. 3.2, light propaga-
tion in a superstructure FBG is described by the Dirac equa-
tion (16), where the scalar (m) and vectorial (V ) potential
terms entering in the equation are defined by the apodization
and phase profiles of the grating, respectively. The Dirac–
Kronig–Penney model for an infinitely extended lattice cor-
responds to a constant mass m(z) = m0 and to a potential
V (z) given by the superposition of equally spaced δ-like
barriers, namely [124]

V (z) = V0

∞∑

n=−∞
δ(z − na), (25)

where V0 > 0 is the area of the barrier and a is the lattice
period. Stationary solutions ψ(z, τ ) = ψ0(z) exp(−iEτ) to
the Dirac equation (16) in the periodic potential (25) with
energy E are of Bloch–Floquet type, i.e. ψ0(z + a) =
ψ0(z) exp(iqa), where q is the Bloch wave number which
varies in the first Brillouin zone (−π/a ≤ q < π/a). The
corresponding energy spectrum is composed by a set of al-
lowed energy bands E = E(q), which are defined by the
following implicit equation (see, for instance, [139]):

cos(qa) = cos(V0) cos(κa) + E

κ
sin(V0) sin(κa), (26)

where we have set

κ =
√

E2 − m2
0. (27)

Equation (26) defines the dispersion relation of the relativis-
tic Kronig–Penney model, which has been investigated by
several authors (see, for instance, [124, 126, 129]). The or-
dinary non-relativistic limit of the Kronig–Penney model
is attained from (26) and (27) for V0 
 1 and for ener-
gies E close to m0, for which the energy-momentum re-
lation (27) reduces to the non-relativistic one (E � m0 +
κ2/(2m0)); in this regime, the dispersion relation (26) re-
duces to cos(qa) = cos(κa) + (m0V0/κ) sin(κa), which is
the ordinary dispersion relation encountered in the non-
relativistic Kronig–Penney model. For larger energies E

but still for a low barrier area V0 
 1, non-relativistic ef-
fects come into play as perturbative effects, which modify
positions and widths of the allowed energy bands. Non-
relativistic effects deeply modify the band structure of the
crystal for potential strengths V0 of the order ∼1. In particu-
lar, if V0 is an integer multiple of π , all band gaps disappear
and the dispersion relation reduces to the one of a relativistic
free particle ((16) with V (z) = 0), as if the δ barriers were
absent. In a FBG, the Dirac–Kronig–Penney model simply
corresponds to an infinitely extended uniform FBG with a
superimposed periodic sequence of lumped phase slips of
equal amplitude Δφ = 2V0 and spaced by the distance a.
The circumstance that the effects of the δ barriers disappear
in the Dirac–Kronig–Penney model when V0 is an integer
multiple of π is simply due to the fact that, under such a con-
dition, the phase slips are integer multiplies of 2π , and thus
the grating has no phase defects and mimics the dynamics
of a one-dimensional free relativistic Dirac particle. A spe-
cial case of the Dirac–Kronig–Penney model corresponds
to the case V0 = π/2. In this case, the resulting superstruc-
ture FBG comprises a periodic sequence of π phase slips,
which has been proposed and demonstrated to realize slow-
ing down of optical pulses [142, 143]. The band structure of
the Dirac–Kronig–Penney model is simply mapped into the
alternation of stop/transmission bands observed in spectrally
resolved transmission measurements of the FBG. An exam-
ple of the spectral transmission features of a superstructure
FBG with periodic π phase slips, in which the allowed spec-
tral transmission bands reproduce the band structure of the
Dirac–Kronig–Penney model, is shown in Fig. 7.

If the periodic potential V (z) is truncated, surface Tamm
states do appear. Such states for the relativistic Kronig–
Penney model attracted some interest in earlier papers by
several authors [125, 129, 136–141], and a lively debate was
raised about the proper boundary conditions that should be
imposed to the relativistic wave function at a δ barrier. As
earlier works [125, 136–138] suggested that the relativistic
treatment yields a new class of surface states (the so-called
Dirac surface states) which do not correspond to the com-
mon Tamm states in the non-relativistic limit, it was subse-
quently realized that application of more physical boundary
conditions does not yield any surface state which violates
the Tamm condition in the non-relativistic limit [139]. The
relativistic extension of the Tamm model is defined by the
potential (see, for instance, [129, 139])

V (z) =
{

V1, z < 0,

V0
∑∞

n=1 δ(z − na), z > 0.
(28)

Surface states are found as localized solutions to (16), near
the surface z = 0, satisfying the appropriate boundary con-
ditions, as discussed in [139]. In our photonic system, the
potential V (z) defined by (28) and supporting the surface
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Fig. 7 Photonic realization of the Dirac–Kronig–Penney model in a
superstructure FBG comprising a periodic sequence of π phase slips.
The figure shows the spectral power transmission of the grating with
amplitude and phase profiles given in the upper insets. Parameter val-
ues are V0 = π/2, a = 2, m0 = 1, and L = 50. The dashed areas are
the stop bands of the corresponding Dirac–Kronig–Penney infinite lat-
tice

Tamm states at the z = 0 boundary is basically realized by
two adjacent sections of uniform grating regions but with
different grating periods, with the second grating region (at
z > 0) comprising a sequence of equally spaced phase slips,
at a distance a, equal to Δφ = 2V0. The existence of surface
states can be simply recognized by the appearance of nar-
row resonance peaks embedded in a stop-band region of the
transmission spectrum of the grating (for more details we
refer the reader to [96]).

7 Photonic realizations of non-Hermitian relativistic
wave equations

Since the seminal paper by Bender and Boettcher [144],
great attention has been devoted toward the investigation of
non-Hermitian extensions of quantum mechanics and quan-
tum field theories. Indeed, many works have remarked that
the Hermiticity of the underlying Hamiltonian can be re-
laxed, and that a consistent quantum theory can be con-
structed for a broader class of Hamiltonians [145–148],
in particular those possessing parity–time (P T ) symme-
try. Non-Hermitian Hamiltonians are also very often found
in reduced descriptions of open Hermitian quantum sys-
tems, with important applications to atomic, molecular,
and condensed-matter physics [149–151]. Several recent

works have shown that optical structures in media with
a complex refractive index can provide an experimentally
accessible test bed to simulate in a purely classical set-
ting non-Hermitian features rooted in the non-relativistic
Schrödinger equation with a complex potential [152–161].
Recently, non-Hermitian extensions of relativistic wave
equations [162–171] and non-Hermitian quantum field the-
ories [172–175] have attracted an increasing interest as well;
however, their physical realizations remain mostly unex-
plored. In Ref. [103], optical simulations of non-Hermitian
wave equations have been proposed, which are based on
light propagation in distributed-feedback (DFB) optical
structures with controlled gain and/or loss regions.

Let us indicate by n(z) = n0 − Δnh(z) cos(2πz/Λ +
2θ(z)) the effective index grating of the DFB structure,
where n0 is the modal refractive index in the absence of
the grating, Δn 
 n0 and Λ are the peak index change
and the nominal period of the grating, respectively, and
h(z) and 2θ(z) are the normalized amplitude and phase pro-
files, respectively, of the grating. For a pure index grat-
ing, h(z) is real valued, whereas for a pure gain grating
h(z) is purely imaginary; in the most general case h(z)

can be taken to be complex valued [176]. The periodic
modulation of the refractive index leads to Bragg scatter-
ing between two counterpropagating waves at frequencies
close to the Bragg frequency ωB = πc/(Λn0). The linear
space-dependent absorption coefficient of counterpropagat-
ing waves in the structure is indicated by α0(z) (α0 > 0 in
lossy regions, α0 < 0 in gain regions). In a semiconductor
DFB structure, gain and loss regions could be tailored by a
judicious control of current injection across the active layer
[176]. Indicating by E(z, τ ) = ψ1(z, τ ) exp[−iωBτ + ikBz+
iθ(z)]+ψ2(z, τ ) exp[−iωBτ − ikBz− iθ(z)]+ c.c. the elec-
tric field propagating in the DFB structure, where kB = π/Λ,
the envelopes ψ1 and ψ2 of counterpropagating waves sat-
isfy coupled-mode equations [176]. After introduction of the
scaled space and time variables x = z/Z and t = τ/T , with
Z = 2n0Λ/(πΔn) and T = Z/vg, where vg � c/n0 is the
group velocity of light at frequency ωB, the envelopes ψ1

and ψ2 satisfy the following Dirac-type equation in the Weyl
representation [103]:

i∂tψ = −iσz∂xψ + σxm(x)ψ + V (x)ψ ≡ Hψ (29)

with complex-valued mass m and vector potential V given
by

m(x) = h(x), V (x) = dθ

dx
− iγ (x), (30)

where γ (x) = Zα0(x) is the dimensionless absorption coef-
ficient and σx,z are the Pauli matrices. In a DFB structure,
both m(x) and V (x) have a limited support over a spatial
length L (the grating region), i.e. m = V = 0 for |x| > L/2.
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Since H is non-Hermitian, its spectrum is generally com-
plex valued; however, it could happen that, in spite of non-
Hermiticity, the energy spectrum remains real valued, like
in P T symmetric Hamiltonians in the unbroken symme-
try phase. In addition, because of the non-self-adjointness
of H , spectral singularities could arise in the spectrum of
H , which correspond to either a zero-width resonance in
the transmission/reflection spectrum of the DFB (the thresh-
old for self oscillation) [103, 157] or to a perfect absorp-
tion of radiation under a suitable two-port coherent excita-
tion of the DFB structure [103, 177, 178]. Examples of non-
Hermitian Dirac Hamiltonians showing such two different
kinds of spectral singularities were discussed in Ref. [103]
assuming a pure index grating (i.e. h(x) real valued) for
either P T -invariant or P T -non-invariant DFB structures.
Another interesting example of a non-Hermitian relativistic
wave equation is obtained by considering a purely gain grat-
ing (h purely imaginary) in the absence of absorption losses
and chirp (V = 0). In this case, for an infinitely long grat-
ing (L → ∞, m = im0 constant, with m0 real valued) (29)
represents a superluminal extension of the relativistic Dirac
equation [179–181] describing a freely moving hypothetical
tachyonic particle, corresponding to a negative mass square
at rest (see e.g. [182, 183]). A remarkable property of such
an equation, in addition to enabling a kind of superluminal
propagation, is the possibility to make a DFB structure fully
transparent, as recently discussed in Ref. [184]. Tachyonic
extensions of Dirac equations can be realized as well in two-
dimensional honeycomb photonic lattices made of coupled
waveguides with alternating gain and loss regions (a com-
plex photonic graphene), as recently proposed in Ref. [104].

8 Conclusion and outlook

In this article, a brief overview of the possibility offered
by light transport in periodic photonic structures to simu-
late in a purely classical setting the optical analogues of a
wide variety of quantum phenomena rooted in relativistic
wave equations has been presented. Spatial or temporal light
transport in engineered photonic lattices and Bragg grating
structures can simulate the Zitterbewegung of a relativis-
tic electron, Klein tunneling, vacuum decay and pair pro-
duction, the Dirac oscillator, the relativistic Kronig–Penney
model, and certain non-Hermitian extensions of the Dirac
equations, including superluminal (tachyonic) wave equa-
tions. Further quantum-optical analogies are expected to
be investigated and to be implemented in experiments us-
ing waveguide lattices and passive/active Bragg grating and
DFB structures.

Acknowledgements The author acknowledges financial support by
the Italian MIUR (Grant No. PRIN-2008-YCAAK, project ‘Analogie
ottico-quantistiche in strutture fotoniche a guida d’onda’).

References

1. D. Dragoman, M. Dragoman, Quantum–Classical Analogies
(Springer, Berlin, 2004)

2. S. Longhi, Laser Photonics Rev. 3, 243 (2009)
3. D.N. Christodoulides, F. Lederer, Y. Silberberg, Nature 424, 817

(2003)
4. F. Lederer, G.I. Stegeman, D.N. Christodoulides, M. Segev, G.

Assanto, Y. Silberberg, Phys. Rep. 463, 1 (2008)
5. A. Szameit, S. Nolte, J. Phys. B 43, 163001 (2010)
6. S. Longhi, in Dynamical Tunneling: Theory and Experiment, ed.

by S. Keshavamurthy, P. Schlagheck (CRC Press/Taylor & Fran-
cis, Boca Raton, 2011), pp. 311–338

7. U. Peschel, T. Pertsch, F. Lederer, Opt. Lett. 23, 1701 (1998)
8. R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg, Y. Sil-

berberg, Phys. Rev. Lett. 83, 4756 (1999)
9. T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, F. Lederer, Phys.

Rev. Lett. 83, 4752 (1999)
10. G. Lenz, I. Talanina, C.M. de Sterke, Phys. Rev. Lett. 83, 963

(1999)
11. N. Chiodo, G. Della Valle, R. Osellame, S. Longhi, G. Cerullo,

R. Ramponi, P. Laporta, U. Morgner, Opt. Lett. 31, 1651 (2006)
12. H. Trompeter, W. Krolikowski, D.N. Neshev, A.S. Desyat-

nikov, A.A. Sukhorukov, Yu.S. Kivshar, T. Pertsch, U. Peschel,
F. Lederer, Phys. Rev. Lett. 96, 053903 (2006)

13. R. Khomeriki, S. Ruffo, Phys. Rev. Lett. 94, 113904 (2005)
14. H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel,

A. Bräuer, U. Peschel, Phys. Rev. Lett. 96, 023901 (2006)
15. A. Fratalocchi, G. Assanto, K.A. Brzdakiewicz, M.A. Karpierz,

Opt. Lett. 31, 1489 (2006)
16. A. Fratalocchi, G. Assanto, Opt. Express 14, 2021 (2006)
17. S. Longhi, Europhys. Lett. 76, 416 (2006)
18. F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A.

Tünnermann, S. Longhi, Phys. Rev. Lett. 102, 076802 (2009)
19. S. Longhi, Opt. Lett. 30, 2137 (2005)
20. S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta,

E. Cianci, V. Foglietti, Phys. Rev. Lett. 96, 243901 (2006)
21. R. Iyer, J.S. Aitchison, J. Wan, M.M. Dignam, C.M. de Sterke,

Opt. Express 15, 3212 (2007)
22. F. Dreisow, M. Heinrich, A. Szameit, S. Döring, S. Nolte, A.

Tünnermann, S. Fahr, F. Lederer, Opt. Express 16, 3474 (2008)
23. A. Szameit, I.L. Garanovich, M. Heinrich, A.A. Sukhorukov, F.

Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, Y.S. Kivshar, Nat.
Phys. 5, 271 (2009)

24. A. Joushaghani, R. Iyer, J.K.S. Poon, J.S. Aitchison, C.M. de
Sterke, J. Wan, M.M. Dignam, Phys. Rev. Lett. 103, 143903
(2009)

25. S. Longhi, Phys. Rev. B 80, 235102 (2009)
26. G. Della Valle, S. Longhi, Opt. Lett. 35, 673 (2010)
27. A. Szameit, I.L. Garanovich, M. Heinrich, A.A. Sukhorukov, F.

Dreisow, T. Pertsch, S. Nolte, A. Tunnermann, S. Longhi, Y.S.
Kivshar, Phys. Rev. Lett. 104, 223903 (2010)

28. I. Vorobeichik, E. Narevicius, G. Rosenblum, M. Orenstein, N.
Moiseyev, Phys. Rev. Lett. 90, 176806 (2003)

29. G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta,
S. Longhi, Phys. Rev. Lett. 98, 263601 (2007)

30. A. Szameit, Y.V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch,
S. Nolte, A. Tünnermann, V.A. Vysloukh, F. Lederer, L. Torner,
Phys. Rev. Lett. 102, 153901 (2009)

31. S. Longhi, D. Janner, M. Marano, P. Laporta, Phys. Rev. E 67,
036601 (2003)

32. S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E.
Cianci, V. Foglietti, Phys. Rev. Lett. 94, 073002 (2005)

33. T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 55
(2007)



Classical simulation of relativistic quantum mechanics in periodic optical structures 467

34. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N.
Christodoulides, Y. Silberberg, Phys. Rev. Lett. 100, 013906
(2008)

35. S. Longhi, Phys. Rev. Lett. 97, 110402 (2006)
36. P. Biagioni, G. Della Valle, M. Ornigotti, M. Finazzi, L. Duó, P.

Laporta, S. Longhi, Opt. Express 16, 3762 (2008)
37. F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A.

Tünnermann, S. Longhi, Phys. Rev. Lett. 101, 143602 (2008)
38. Y.V. Kartashov, V.A. Vysloukh, L. Torner, Phys. Rev. Lett. 99,

233903 (2007)
39. K. Shandarova, C.E. Ruter, D. Kip, K.G. Makris, D.N.

Christodoulides, O. Peleg, M. Segev, Phys. Rev. Lett. 102,
123905 (2009)

40. E. Paspalakis, Opt. Commun. 258, 31 (2006)
41. S. Longhi, G. Della Valle, M. Ornigotti, P. Laporta, Phys. Rev. B

76, 201101(R) (2007)
42. Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D.N.

Christodoulides, Y. Silberberg, Phys. Rev. Lett. 101, 193901
(2008)

43. F. Dreisow, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tün-
nermann, S. Longhi, Opt. Lett. 34, 2405 (2009)

44. F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S.
Nolte, A. Tunnermann, S. Longhi, Appl. Phys. Lett. 95, 261102
(2009)

45. S.G. Krivoshlykov, I.N. Sissakian, Opt. Quantum Electron. 11,
393 (1979)

46. S. Longhi, Opt. Lett. 34, 2736 (2009)
47. A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tun-

nermann, S. Longhi, Phys. Rev. Lett. 104, 150403 (2010)
48. G. Della Valle, S. Longhi, J. Phys. B 43, 051002 (2010)
49. S. Longhi, Opt. Lett. 36, 819 (2011)
50. S. Longhi, J. Phys. B 44, 051001 (2011)
51. S. Longhi, Phys. Rev. A 83, 034102 (2011)
52. S. Longhi, Phys. Rev. A 83, 043835 (2011)
53. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Kat-

snelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature
(London) 438, 197 (2005)

54. S.Y. Zhou, G.-H. Gweon, J. Graf, A.V. Fedorov, C.D. Spataru,
R.D. Diehl, Y. Kopelevich, D.-H. Lee, S.G. Louie, A. Lanzara,
Nat. Phys. 2, 595 (2006)

55. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620
(2006)

56. C.W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008)
57. A.H. Castro Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K.

Geim, Rev. Mod. Phys. 81, 109 (2009)
58. P.M. Alsing, J.P. Dowling, G.J. Milburn, Phys. Rev. Lett. 94,

220401 (2005)
59. J. Schliemann, D. Loss, R.M. Westervelt, Phys. Rev. Lett. 94,

206801 (2005)
60. A. Bermudez, M.A. Martin-Delgado, E. Solano, Phys. Rev. A 76,

041801(R) (2007)
61. L. Lamata, J. Leon, T. Schatz, E. Solano, Phys. Rev. Lett. 98,

253005 (2007)
62. G. Juzeliunas, J. Ruseckas, M. Lindberg, L. Santos, P. Ohberg,

Phys. Rev. A 77, 011802(R) (2008)
63. M. Johanning, A.F. Varón, C. Wunderlich, J. Phys. B 42, 154009

(2009)
64. N. Goldman, A. Kubasiak, A. Bermudez, P. Gaspard, M. Lewen-

stein, M.A. Martin-Delgado, Phys. Rev. Lett. 103, 035301
(2009)

65. S.L. Zhu, B.G. Wang, L.M. Duan, Phys. Rev. Lett. 98, 260402
(2007)

66. T.M. Rusin, W. Zawadzki, Phys. Rev. D 82, 125031 (2010)
67. K.L. Wang, T. Liu, M. Feng, K. Wang, Phys. Rev. A 82, 064501

(2010)
68. Q. Zhang, J.B. Gong, C.H. Oh, Phys. Rev. A 81, 023608 (2010)

69. D. Braun, Phys. Rev. A 82, 013617 (2010)
70. J. Casanova, J.J. Garcia-Ripoll, R. Gerritsma, C.F. Roos, E.

Solano, Phys. Rev. A 82, 020101 (2010)
71. J.I. Cirac, P. Maraner, J.K. Pachos, Phys. Rev. Lett. 105, 190403

(2010)
72. K. Huang, Am. J. Phys. 20, 479 (1952)
73. O. Klein, Z. Phys. 53, 157 (1929)
74. A.F. Young, P. Kim, Nat. Phys. 5, 222 (2009)
75. N. Stander, B. Huard, D. Goldhaber-Gordon, Phys. Rev. Lett.

102, 026807 (2009)
76. G.A. Steele, G. Gotz, L.P. Kouwenhoven, Nat. Nanotechnol. 4,

363 (2009)
77. R. Gerritsma, B.P. Lanyon, G. Kirchmair, F. Zähringer, C.

Hempel, J. Casanova, J.J. García-Ripoll, E. Solano, R. Blatt, C.F.
Roos, Phys. Rev. Lett. 106, 060503 (2011)

78. R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt,
C.F. Roos, Nature (London) 463, 68 (2010)

79. F.D.M. Haldane, S. Raghu, Phys. Rev. Lett. 100, 013904 (2008)
80. R.A. Sepkhanov, Ya.B. Bazaliy, C.W.J. Beenakker, Phys. Rev. A

75, 063813 (2007)
81. O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, D.N.

Christodoulides, Phys. Rev. Lett. 98, 103901 (2007)
82. O. Bahat-Treidel, O. Peleg, M. Segev, Opt. Lett. 33, 2251 (2008)
83. T. Ochiai, M. Onoda, Phys. Rev. B 80, 155103 (2009)
84. X. Zhang, Phys. Rev. Lett. 100, 113903 (2008)
85. O. Bahat-Treidel, O. Peleg, M. Grobman, N. Shapira, T. Pereg-

Barnea, M. Segev, Phys. Rev. Lett. 104, 063901 (2010)
86. O. Bahat-Treidel, O. Peleg, M. Segev, H. Buljan, Phys. Rev. A

82, 013830 (2010)
87. D.Ö. Güney, D.A. Meyer, Phys. Rev. A 79, 063834 (2009)
88. L.-G. Wang, Z.-G. Wang, J.-X. Zhang, S.-Y. Zhu, Opt. Lett. 34,

1510 (2009)
89. L.-G. Wang, Z.-G. Wang, S.-Y. Zhu, Europhys. Lett. 86, 47008

(2009)
90. S. Longhi, Opt. Lett. 35, 235 (2010)
91. S. Longhi, Phys. Rev. B 81, 075102 (2010)
92. S. Longhi, Phys. Rev. A 81, 022118 (2010)
93. F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S.

Longhi, A. Szameit, Phys. Rev. Lett. 105, 143902 (2010)
94. S. Longhi, Phys. Res. Int. 2010, 645106 (2010)
95. S. Longhi, Opt. Lett. 35, 1302 (2010)
96. S. Longhi, Cent. Eur. J. Phys. 9, 110 (2011)
97. S. Longhi, J. Phys. B 43, 205402 (2010)
98. S.H. Nam, J. Zhou, A.J. Taylor, A. Efimov, Opt. Express 18,

25329 (2010)
99. M.I. Molina, Y.S. Kivshar, Opt. Lett. 35, 2895 (2010)

100. S. Bittner, B. Dietz, M. Miski-Oglu, P. Oria Iriarte, A. Richter, F.
Schäfer, Phys. Rev. B 82, 014301 (2010)

101. M. Shen, L.X. Ruan, X. Chen, Opt. Express 18, 12779 (2010)
102. S.H. Nam, A.J. Taylor, A. Efimov, Opt. Express 18, 10120

(2010)
103. S. Longhi, Phys. Rev. Lett. 105, 013903 (2010)
104. A. Szameit, M.C. Rechtsman, O. Bahat-Treidel, M. Segev,

arXiv:1103.3389 (2011)
105. E. Schrödinger, Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. 24,

418 (1930)
106. W. Greiner, Relativistic Quantum Mechanics (Springer, Berlin,

1990)
107. F. Cannata, L. Ferrari, G. Russo, Solid State Commun. 74, 309

(1990)
108. A. Calogeracos, N. Dombey, Contemp. Phys. 40, 313 (1999)
109. F. Sauter, Z. Phys. 69, 742 (1931)
110. P. Christillin, E. d’Emilio, Phys. Rev. A 76, 042104 (2007)
111. E.S. Fradkin, D.M. Gitman, Sh.M. Shvartsman, Quantum Elec-

trodynamics with Unstable Vacuum (Springer, Berlin, 1991)
112. H.K. Avetissian, Relativistic Nonlinear Electrodynamics

(Springer, New York, 2006)

http://arxiv.org/abs/arXiv:1103.3389


468 S. Longhi

113. J. Schwinger, Phys. Rev. 82, 664 (1951)
114. E. Brezin, C. Itzykson, Phys. Rev. D 2, 1191 (1970)
115. M. Ruf, G.R. Mocken, C. Müller, K.Z. Hatsagortsyan, C.H. Kei-

tel, Phys. Rev. Lett. 102, 080402 (2009)
116. M. Moshinsky, A. Szczepaniak, J. Phys. A 22, L817 (1989)
117. M. Moshinsky, Y.F. Smirnov, The Harmonic Oscillator in Mod-

ern Physics (Harwood, Amsterdam, 1996)
118. R.P. Martinez-y-Romero, H.N. Nunez-Yepez, A.L. Salas-Brito,

Eur. J. Phys. 16, 135 (1995)
119. D. Ito, K. Mori, E. Carrieri, Nuovo Cimento 51A, 1119 (1967)
120. J. Bentez, R.P. Martnez-y-Romero, H.N. Nuez-Yepez, A.L.

Salas-Brito, Phys. Rev. Lett. 64, 1643 (1990). Erratum, Phys.
Rev. Lett. 65, 2085 (1990)

121. R.P. Martriaanez-y-Romero, M. Moreno, A. Zentella, Phys. Rev.
D 43, 2036 (1991)

122. F. Dominguez-Adame, M.A. Gonzalez, Europhys. Lett. 13, 193
(1990)

123. R.L. de Kronig, W.G. Penney, Proc. R. Soc. Lond. Ser. A 130,
499 (1931)

124. F. Dominguez-Adame, Am. J. Phys. 55, 1003 (1987)
125. S.G. Davison, M. Streslicka, J. Phys. C 2, 1802 (1969)
126. B.H.J. McKellar, G.J. Stephenson, Phys. Rev. A 36, 2566 (1987)
127. F. Dominguez-Adame, J. Phys., Condens. Matter 1, 109 (1989)
128. I.M. Mladenov, Phys. Lett. A 131, 313 (1989)
129. G.J. Clerck, B.H.J. McKellar, Phys. Rev. C 41, 1198 (1990)
130. C.L. Roy, C. Basu, J. Phys. Chem. Solids 52, 745 (1991)
131. F. Dominguez-Adame, A. Sanchez, Phys. Lett. A 159, 153

(1991)
132. G.J. Clerck, B.H.J. McKellar, Phys. Rev. B 47, 6942 (1993)
133. C. Basu, C.L. Roy, E. Macia, F. Dominguez-Adame, A. Sanchez,

J. Phys. A 27, 3285 (1994)
134. F. Dominguez-Adame, E. Macia, A. Khan, C.L. Roy, Physica B

212, 67 (1995)
135. M. Barbier, F.M. Peeters, P. Vasilopoulos, J.M. Pereira, Phys.

Rev. B 77, 115446 (2008)
136. M.L. Glasser, S.G. Davison, Int. J. Quant. Chem. 4, 867 (1970)
137. S.G. Davison, J.D. Levine, Solid State Phys. 25, 32 (1970)
138. M. Steslicka, S.G. Davison, Phys. Rev. B 1, 1858 (1970)
139. R. Subramanian, K.V. Bhagwat, J. Phys. C 5, 798 (1972)
140. S. Yuyi, Surf. Sci. 108, L477 (1981)
141. C.L. Roy, J.S. Pandey, Physica 137A, 389 (1986)
142. D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi,

M. Belmonte, Phys. Rev. E 72, 056605 (2005)
143. S. Longhi, D. Janner, G. Galzerano, G. Della Valle, D. Gatti, P.

Laporta, Electron. Lett. 41, 1075 (2005)
144. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)
145. C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. Lett. 89,

270401 (2002)
146. A. Mostafazadeh, J. Math. Phys. 43, 2814 (2002)
147. C.M. Bender, Rep. Prog. Phys. 70, 947 (2007)
148. A. Mostafazadeh, Int. J. Geom. Methods Mod. Phys. 7, 1191

(2010)
149. N. Moiseyev, Phys. Rep. 302, 211 (1998)

150. J.G. Muga, J.P. Palao, B. Navarro, I.L. Egusquiza, Phys. Rep.
395, 357 (1998)

151. I. Rotter, J. Phys. A 42, 1 (2009)
152. A. Ruschhaupt, F. Delgado, J.G. Muga, J. Phys. A 38, L171

(2005)
153. R. El-Ganainy, K.G. Makris, D.N. Christodoulides, Z.H. Mussli-

mani, Opt. Lett. 32, 2632 (2007)
154. K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Mussli-

mani, Phys. Rev. Lett. 100, 103904 (2008)
155. A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-

Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Phys.
Rev. Lett. 103, 093902 (2009)

156. S. Klaiman, U. Günther, N. Moiseyev, Phys. Rev. Lett. 101,
080402 (2008)

157. A. Mostafazadeh, Phys. Rev. Lett. 102, 220402 (2009)
158. S. Longhi, Phys. Rev. Lett. 103, 123601 (2009)
159. S. Longhi, Phys. Rev. B 80, 235102 (2009)
160. S. Longhi, Phys. Rev. A 81, 022102 (2010)
161. C.E. Rüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides,

M. Segev, D. Kip, Nat. Phys. 6, 192 (2010)
162. C. Mudry, B.D. Simons, A. Altland, Phys. Rev. Lett. 80, 4257

(1998)
163. H. Egrifes, R. Sever, Phys. Lett. A 344, 117 (2005)
164. A. Sinha, P. Roy, Mod. Phys. Lett. A 20, 2377 (2005)
165. C.S. Jia, A. de Souza Dutra, J. Phys. A 39, 11877 (2006)
166. F. Cannata, A. Ventura, Phys. Lett. A 372, 941 (2008)
167. O. Mustafa, S.H. Mazharimousavi, Int. J. Theor. Phys. 47, 1112

(2008)
168. C.-S. Jia, A. de Souza Dutra, Ann. Phys. 323, 566 (2008)
169. C.-S. Jia, P.-Q. Wang, J.-Y. Liu, S. He, Int. J. Theor. Phys. 47,

2513 (2008)
170. V.G.C.S. dos Santos, A. de Souza Dutra, M.B. Hott, Phys. Lett.

A 373, 3401 (2009)
171. F. Cannata, A. Ventura, J. Phys. A 43, 075305 (2010)
172. C.M. Bender, K.A. Milton, V.M. Savage, Phys. Rev. D 62,

085001 (2000)
173. C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. Lett. 93,

251601 (2004)
174. C.M. Bender, S.F. Brandt, J.-H. Chen, Q. Wang, Phys. Rev. D 71,

065010 (2005)
175. A. Mostafazadeh, Int. J. Mod. Phys. A 21, 2553 (2006)
176. J. Carroll, J. Whiteaway, D. Plumb, Distributed Feedback Semi-

conductor Lasers (The Institution of Electrical Engineers, Lon-
don, 1998)

177. S. Longhi, Phys. Rev. A 82, 031801(R) (2010)
178. Y.D. Chong, L. Ge, A.D. Stone, Phys. Rev. Lett. 106, 093902

(2011)
179. A. Chodosa, A.I. Hausera, Phys. Lett. B 150, 431 (1985)
180. J. Ciborowski, J. Rembielinski, Eur. Phys. J. C 8, 157 (1999)
181. T. Chang, G. Ni, Fizika B 11, 49 (2002)
182. G. Feinberg, Phys. Rev. Lett. 159, 1089 (1967)
183. O.M.P. Bilaniuk, E.C.G. Sudarshan, Phys. Today 22, 43 (1969)
184. S. Longhi, Opt. Lett. 35, 3844 (2010)


	Classical simulation of relativistic quantum mechanics in periodic optical structures
	Abstract
	Introduction
	Photonic Zitterbewegung
	Photonic Zitterbewegung in binary waveguide arrays
	Photonic Zitterbewegung in nonlinear frequency conversion

	Photonic analogues of Klein tunneling
	Photonic Klein tunneling in optical superlattices
	Photonic Klein tunneling in fiber Bragg gratings

	Optical simulation of vacuum decay and pair production
	Optical simulation of the Dirac oscillator
	Photonic realization of the relativistic Kronig-Penney model and relativistic surface Tamm states
	Photonic realizations of non-Hermitian relativistic wave equations
	Conclusion and outlook
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>

    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


