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Abstract The behavior of the spectral composition of a typ-
ical stochastic beam in a turbulent ocean environ is revealed.
The analysis is based on the extended Huygens–Fresnel
principle and the coherence theory in the space-frequency
domain. The optical source is assumed to be of the Gaussian
Schell-model type with a single narrow Gaussian spectral
line in the visible region. Optical turbulence in the ocean
is assumed to be driven by temperature and salinity fluctu-
ations. It is found that the well-known source correlation-
induced spectral shift is compensated by turbulence at suffi-
ciently large distances.

1 Introduction

The analysis of light colors in oceanic waters was a subject
of extensive investigations for several decades [1–6]. How-
ever the majority of such studies were devoted to the inter-
action of sun light with water and only explored the spec-
tral changes due to absorption and scattering by molecules
and particles. Also, in a few papers, the propagation of laser
light in the ocean was explored [7–9] where the accent was
made on decoherence effects due to scattering/absorption. In
these cases, i.e. either for an unbounded sun light wave, with
a very wide spectrum, or for a bounded but monochromatic
laser beam, the spectrum cannot change due to source cor-
relations. In order to have the modification in the spectrum
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due to source-correlations the generated radiation must re-
main highly directional, have a narrow initial spectrum, and
be partially coherent (stochastic). Then such beams have the
ability to modify the spectral composition on propagation,
even in a vacuum as a matter of fact, [10]. Moreover, as was
shown recently, spectrum of partially coherent beams may
exhibit even more complex behavior in some random me-
dia, such as atmospheric turbulence or human tissues [11,
12].

Spectral composition of beam-like light fields is some-
times employed as a carrier of a signal or an image, whether
for communication or remote sensing [13, 14]. It is well
known that for information transfer in random media, e.g.
turbulent atmosphere or ocean, it is often preferable to use
stochastic beams rather than deterministic [15, 16]. In the
case of stochastic beams the signal-to-noise ratio of the de-
tected signal after transmission through a random medium
can be controlled to some extent [17]. Recently the interest
in active optical underwater communications, imaging and
sensing appeared [18–22] and it has become important to
investigate how oceanic turbulence affects spectra of optical
stochastic beams. This is the main purpose of the present
work.

In this publication we only consider the case of the clean-
water oceanic turbulence, i.e. we assume that the light wave
is not affected by suspended particles, air bubbles, etc. The
optical turbulence, i.e. temporal and spatial random varia-
tions in the index of refraction will be the only mechanism
affecting the beam on propagation. As is well known, the
fluctuations in the index of refraction of the ocean waters
are induced primarily by temperature and salinity fluctua-
tions [23]. However, a tractable analytical model for a spa-
tial power spectrum accounting for both factors, which is
critical for light propagation analysis, has not appeared un-
til recently [24]. With this model in hand it becomes pos-
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sible to predict analytically how beams with arbitrary spec-
tral and intensity distributions as well as with any coherence
and polarization properties pass through the turbulent ocean
[20, 25]. All the parameters entering the model [24] can be
directly measured [26].

2 Stochastic beam propagation through oceanic
turbulence

We begin by reviewing basic formulas for calculation of
spectral changes in stochastic beams first in any linear
medium and then applied specifically for oceanic propaga-
tion. Assume that the beam is generated in the plane z = 0
by a stochastic, statistically stationary source whose fluctu-
ations are characterized by means of the cross-spectral den-
sity function [27]
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)
U(0)

(
r0

2;ω
)〉
. (1)

Here r0
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2 ,0) are two-dimensio-
nal position vectors of points in the source plane, U(0)(r;ω)

is the monochromatic realization of the optical field at an-
gular frequency ω, ∗ denotes complex conjugate, angular
brackets stand for the statistical average in the sense of co-
herence theory in the space-frequency domain [27]. Using
the relation ω = cλ/2π , where c is the speed of light in vac-
uum, λ is its wavelength, we will rewrite the cross-spectral
density function (1) as
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Then the initial spectral density

S (0)
(
r0;λ) = W (0)

(
r0, r0;λ)

analyzes the dependence on wavelength rather than on an-
gular frequency. Suppose that a beam-like field is generated
by source (2) and propagates into positive half-space z > 0
filled with turbulent water column.

It was shown in [27] that upon propagation in any linear
medium, which may be random, the optical field U(r;λ) is
a solution of a Helmholtz equation of the form

∇2U(r;λ) + k2n2(r)U(r;λ) = 0,

where k = 2π/λ is the wave number of light, and, n(r) is
the distribution of the index of refraction.

Upon propagation from the source plane to any plane
with z > 0 the cross-spectral density function takes the form
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where K is the propagator, being the correlation of the
Green’s functions G(r0, r;λ) of the medium, i.e.
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Here angular brackets with subscript m stand for the ensem-
ble average of the realizations of the fluctuating medium.
If the beam travels in random medium then the propagator
generally takes the form [28]
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In expression (3) the terms in the first line describe the effect
of the free-space diffraction on the beam, and those in the
second line include the perturbation of the complex phase
ψ(r0, r, λ) caused by the refractive-index fluctuations of
random medium between points r0 and r at wavelength λ. It
was shown that if the source fluctuations are much stronger
than those of random medium, which we assume to be the
case in our study, then the phase term of (3) takes the form
[29, 30]
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where Φn(κ) is the spatial power spectrum of refractive-
index fluctuations [28].

In our analysis we will employ the model developed in
[24] for clear-water oceanic turbulence which combines ef-
fects of temperature and salinity fluctuations in the water
column. A particular case is considered here, when the eddy
thermal diffusivity and the diffusion of the salt are equal.
Then

Φn(κ) = 0.388 × 10−8ε−1/3κ−11/3

× [
1 + 2.35(κη)2/3]f (κ,w,χT ), (4)

where ε is the rate of dissipation of turbulent kinetic en-
ergy per unit mass of fluid which may vary in range from
10−1 m2/s3 to 10−10 m2/s3 (cf. [6], p. 25), η = 10−3 m be-
ing the Kolmogorov micro scale (inner scale), and

f (κ,w,χT ) = χT

w2

(
w2e−AT δ + e−ASδ − 2we−AT Sδ

)

with χT being the rate of dissipation of mean-square tem-
perature taking values in the range from 10−4 K2/s to
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Fig. 1 Log–log plot of the oceanic power spectrum Φn(κ), calculated
from (4) and normalized by the Kolmogorov power-law κ−11/3, for
w = −0.1 (solid curve), w = −2.5 (dotted curve), w = −4.9 (dashed
curve)

10−10 K2/s (cf. [6], p. 26), AT = 1.863 × 10−2, AS =
1.9 × 10−4, AT S = 9.41 × 10−3, and δ = 8.284(κη)4/3 +
12.978(κη)2, w (non-dimensional) being the relative strength
of temperature and salinity fluctuations, which in the ocean
waters can vary in the interval [−5;0], attaining the lower
bound for the maximum temperature-induced optical turbu-
lence.

While parameters χT and ε primarily influence the height
of the spectrum, the balance parameter w affects its shape.
To illustrate typical dependence on w we show in Fig. 1 the
spectrum (4) as a function of wave number κ , for several
values of w.

3 Spectral changes in Gaussian Schell-model beams in
turbulent ocean

In order to illustrate the dependence of the spectral changes
on the parameters numerically, we will employ the isotropic
Gaussian Schell-model beams [27]. The cross-spectral den-
sity matrix of such a beam in the source plane z = 0 has the
form
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The parameters σ and δ characterize the rms source radius
and the rms width of the spectral degree of coherence of the
source, respectively. I0 is the initial spectral composition
consisting of a single Gaussian spectral line, i.e.

I0(λ) = exp
[−(λ − λ0)

2/
(
2Λ2)],

with a peak value of one, being centered at wavelength λ0

and having r.m.s. width Λ. In order for a field to possess a

beam-like structure the following inequality must be satis-
fied [27]:
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On substituting the expression for the cross-spectral den-
sity source (5) and for the propagator the expression for the
cross-spectral density function W (r1, r2;λ) can be derived
(see [30], formula (B.12)):
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In what follows we will be interested in evaluation of the
normalized spectral density of the beam at distance z ≥ 0
from the source plane and at any transverse location (x, y),
given by the expression [27]

SN(r;λ) = S(r;λ)
/∫ ∞

0
S(r;λ)dλ,

where S(r;λ) = W (r, r;λ) is the spectral density of the
field at position r = (x, y, z). Further, the shifted central fre-
quently of the beam can be found from the expression [31]

λ1(r) =
∫ ∞

0
λS(r;λ)dλ

/∫ ∞

0
S(r;λ)dλ. (6)

The normalized spectral shift at position r may be quantified
by �(r) = λ1(r)−λ0

λ0
being blue if its value is positive and red
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Fig. 2 Density plots of actual spectral shift λ1 overlapped with con-
tour plots of normalized spectral shift � = λ1−λ0

λ0
as a function of

z (horizontal axis, in meters) and r (vertical axis, in meters) for

(a) χT = 10−10 K2/s; (b) χT = 10−5 K2/s, (c) χT = 10−4 K2/s;
(d) χT = 10−2 K2/s; ε = 10−4 m2/s3, w = −4.5

if it is negative. In (6) λ0 is the central wavelength of the
source, which we assume to be position-independent.

We will use the following parameters for the source,
unless other parameters are specified in the figure cap-
tions: λ0 = 0.5435 × 10−6 m, Λ = λ0/6; σ = 10−2 m;
δ = 10−4 m.

4 Results

We will now investigate by means of colored density plots,
the influence of several parameters of oceanic waters on
spectral composition of propagating Gaussian Schell-model
beams. In Fig. 2 the dependence of central wavelength and
relative spectral shifts on the position of a point in the propa-
gating beam is shown. In particular, the colored density plots
provide the optical color corresponding to the central wave-
length λ1 and the contours correspond to level curves of the
relative shift σ . Here four cases, (a)–(d), are considered in

which different values of the dissipation rate of the mean-
square temperature χT are assumed, from χT = 10−10 K2/s,
corresponding to a very weak turbulence (virtually vacuum)
to χT = 10−2 K2/s, which is associated with a fairly strong
fluctuations. We included the numerical examples for the
cases when χ is in the range 10−4 K2/s to 10−2 K2/s be-
cause the experimental data can easily be obtained with the
error of two orders of magnitude ([6], p. 179). Parameter
χT has the strongest influence on the beam, having simi-
lar meaning to the refractive-index structure parameter C2

n

used in the atmospheric turbulence. We find from Fig. 2 that
unlike for free-space propagation [see Fig. 2(a)] where the
spectrum of the beam undergoes a blue shift (more so on
the optical axis) for larger values of χT such shift is being
suppressed by turbulence, leading to the spectral switch.

From Figs. 2(b)–2(d) we see that for larger values of χT

(high local fluctuations of the refractive index) the switch
moves toward the source and can occur within the first ten
meters of propagation. In Fig. 2(d) the turbulence is so
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Fig. 3 Density plots of actual spectral shift λ1 overlapped with
contour plots of normalized spectral shift � = λ1−λ0

λ0
as a func-

tion of z (horizontal axis, in meters) and (a) χT , on a log scale
for ε = 10−4 m2/s3, w = −2.5, (b) w for ε = 10−4 m2/s3,
χT = 10−4.5 K2/s, (c) ε, on a log scale (vertical axis) for
χT = 10−4.5 K2/s, w = −2.5; r = 0

strong that practically no change in central wavelength oc-
curs, since the source-induced spectral shift is effectively
mitigated very close to the source.

Figure 3 shows evolution of the central wavelength λ1

(density plot) and relative wavelength shift σ (contours) on
the optical axis (r = 0) as a function propagation distance z

from the source, and three major parameters of oceanic tur-
bulence: (a) temperature mean-square dissipation rate χT ;
(b) temperature–salinity balance parameter w and (c) en-
ergy dissipation rate ε. Figure 3(a) suggests that the tran-
sition values for χT at which the turbulence is capable of
suppressing the source correlation-induced spectral change
is on the order of 10−5 K2/s. On the other hand, we see
from Fig. 3(b) that temperature–salinity parameter w must
be fairly large (close to zero) in order to mitigate initially

induced spectral change. This implies that salinity-induced
optical turbulence must be minimal for fast reconstruction of
the initial spectrum. Finally, Fig. 3(c) shows that the spectral
changes are also sensitive to the kinetic energy dissipation
rate ε, perhaps in a lesser degree: for given choice of χT and
w the spectral shifts can only be reduced regardless of the
value of ε.

5 Summary

In conclusion we have investigated the evolution of spec-
tra of Gaussian Schell-model beams with initial Gaussian
spectral profile on propagation in turbulent ocean. Under the
assumptions of a strongly fluctuating source [29] and the
temperature–salinity ocean spectrum model [24] we found
that with propagation distance the spectral composition,
which originally modifies due to the source correlations, can
self-reconstruct after relatively short distances, on the order
of tens of meters. Similar effect was recently predicted for
the same class of beams on propagation on atmospheric tur-
bulence [11], however for much longer range, on the order
of tens of kilometers. We also note that the reconstruction ef-
fect for the beam spectrum in the ocean is similar to that for
polarization properties [25]. The origin of such a recovery
is in the competition of source and turbulence correlations:
while the former modifies the spectrum at some short prop-
agation range, the atter affects it more at larger propagation
distances.

Our results are of importance for optical underwater
imaging and communications, in situations where spectral
encoding and spectral diversity techniques are employed.
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