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Abstract The average spreading of a linear Gaussian–
Schell model (GSM) beam array in non-Kolmogorov tur-
bulence is studied, where the coherent combination is con-
sidered. The effects of the beam number, the separation dis-
tance between two adjacent beams and the generalized ex-
ponent on the root-mean-square (rms) beam width are in-
vestigated. The results indicate that the rms beam width in
non-Kolmogorov turbulence is different from that in Kol-
mogorov turbulence, and there is an optimum beam num-
ber that leads to a minimum beam width. Further, the beam
width can reach the minimum value by adopting the opti-
mum separation distance, which decreases with the increase
of beam number. Besides, the partially coherent beam array
is less sensitive to the atmospheric turbulence than the fully
coherent one.

1 Introduction

The optical propagation through the turbulent atmosphere is
a very important subject in the case of the remote sensing,
imaging and communication systems and has attracted con-
siderable interests in the past decades. For a long time, the
Kolmogorov model has been widely used to study the ef-
fects of the atmospheric turbulence on the free-space optical
propagation. However, another type of turbulence as wide-
spread as Kolmogorov turbulence is helical turbulence [1].
In the presence of the helical turbulence, the spectral prop-
erties of passive scalar field are changed. Moreover, recent
experimental results also indicated great deviations from
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the predictions of the Kolmogorov model in some portions
of the atmosphere [2–5]. The reason is that when the at-
mosphere is extremely stable, the turbulence is no longer
homogeneous in three dimensions since the vertical com-
ponent is suppressed, that is to say, in this case the turbu-
lence is anisotropic [6]. And the anisotropic turbulence in
the stratosphere has been experimentally investigated [7, 8].
Also, investigations have indicated that the turbulence in
the shear layer created in laboratory is anisotropic. How-
ever, the properties of the turbulence in the tropopause are
similar to that in the shear layer. And the experimental re-
sults also indicated that the Kolmogorov model cannot com-
pletely describe the turbulence near the tropopause [9]. Be-
sides, the mechanisms of turbulent generation and dissipa-
tion are different at high and low altitudes, which results
in the difference in turbulent spectrum [10]. In addition,
the Kolmogorov model is valid only in the inertial sub-
range.

Thus, it is very important to find other models, which are
more general than the Kolmogorov model to describe non-
Kolmogorov turbulence. Then, a non-Kolmogorov model is
presented [11, 12], which reduces to the Kolmogorov model
only for the generalized exponent α = 3.67. Using the non-
Kolmogorov spectrum, the scintillation index, the signal-
to-noise ratio (SNR) and the bit-error rate (BER) are stud-
ied [13]. As is known, spatial partially coherent beams are
less affected by the atmospheric turbulence than the fully co-
herent beams [14]. And the average spreading of the GSM
beam propagating in non-Kolmogorov turbulence is inves-
tigated [15]. Whereas in practice the laser beam array is
widely used in many fields, such as the high-power system
and the inertial confinement fusion. In addition, the aver-
age spreading of the linear Gaussian beam array propagating
in Kolmogorov turbulence and non-Kolmogorov turbulence
are studied [16, 17], respectively. Therefore, quantitative es-
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Fig. 1 Schematic diagram of the linear GSM beam array

timations of the average spreading of the partially coherent
beam array through non-Kolmogorov turbulent atmosphere
are necessary. Besides, the study of this subject has potential
applications in improving the communication system perfor-
mance in the real atmosphere.

In this paper, the beam spreading of a linear GSM beam
array in non-Kolmogorov turbulence is investigated by us-
ing the rms beam width. The theoretical results show that
the beam number and the generalized exponent have great
effects on the beam width. Further, the beam width can
reach the minimum value by adopting the optimum sepa-
ration distance, which decreases with the increase of beam
number.

2 Analytical formulas

Assume a linear GSM beam array composed of N equal
beams is located in the plane z = 0 with the separation dis-
tance between two adjacent beams xd , as depicted in Fig. 1.
For simplicity, the formulas obtained below are for odd N .
For even N , the formulas are valid by changing the range of
m and n into 1−N/2 to N/2. For the coherent combination,
the cross-spectral density function of the linear GSM beam
array for odd N is defined as [18]

w0(x1, x2, z = 0)

=
(N−1)/2∑

m=−(N−1)/2

(N−1)/2∑

n=−(N−1)/2

exp

(
− (x1 − mxd)2 + (x2 − nxd)2

w2
0

)

× exp

(
−[(x1 − mxd) − (x2 − nxd)]2

2σ 2
0

)
, (1)

where w0 and σ0 are the waist width and the coherent
width of the GSM beam. Based on the extended Huygens–
Fresnel principle, the average intensity of the linear GSM
beam array propagating through non-Kolmogorov turbulent
atmosphere at the receiving plane is expressed as [17]

〈
I (x, z)

〉

= 1

λz

∫ ∞

−∞

∫ ∞

−∞
w0(x1, x2, z = 0)

× exp

{
ik

2z

[(
x2

1 − x2
2

) − 2x(x1 − x2)
]}

× 〈
exp

[
ψ∗(x, x1, z) + ψ(x, x2, z)

]〉
dx1 dx2, (2)

where the term 〈exp[ψ∗(x, x1, z) + ψ(x, x2, z)]〉 is given
by [17]

〈
exp

[
ψ∗(x, x1, z) + ψ(x, x2, z)

]〉

= exp

{
−4π2κ2z

∫ 1

0

∫ ∞

0
κφn(κ,α)

× [
1 − J0

(
κξ |x1 − x2|

)]
dκ dξ

}
,

in which k is the wave number, κ is the magnitude of two-
dimensional spatial frequency and J0 is the Bessel function
of the first kind and zero order.

The rms beam width of the linear GSM beam array prop-
agating in non-Kolmogorov turbulence is defined as [17]

w =
[

4
∫ ∞

−∞
x2〈I (x, z)

〉
dx

/∫ ∞

−∞
〈
I (x, z)

〉
dx

]1/2

. (3)

Upon substituting (2) into (3), and using the integral trans-
form technique, after tedious integral calculations, as shown
in Appendix, we obtain

w = (
A + Bz2/k2 + 8/3T z3)1/2

, (4)

where

A =
∑(N−1)/2

m=−(N−1)/2

∑(N−1)/2
n=−(N−1)/2 exp

[−( 1
2w2

0
+ 1

2σ 2
0

)
(m − n)2x2

d

][w2
0 + (m + n)2x2

d ]
∑(N−1)/2

m=−(N−1)/2

∑(N−1)/2
n=−(N−1)/2 exp

[−( 1
2w2

0
+ 1

2σ 2
0

)
(m − n)2x2

d

] ,

B =
∑(N−1)/2

m=−(N−1)/2

∑(N−1)/2
n=−(N−1)/2 4

( 1
w2

0
+ 1

σ 2
0

)
exp

[−( 1
2w2

0
+ 1

2σ 2
0

)
(m − n)2x2

d

][
1 − ( 1

w2
0

+ 1
σ 2

0

)
(m − n)2x2

d

]

∑(N−1)/2
m=−(N−1)/2

∑(N−1)/2
n=−(N−1)/2 exp

[−( 1
2w2

0
+ 1

2σ 2
0

)
(m − n)2x2

d

] ,
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Fig. 2 The rms beam width w as a function of N with z = 10 km,
C̃2

n = 1 × 10−15 m3−α , α = 3.8, σ0 = 0.01 m and xd = 0.015 m

and

T = π2
∫ ∞

0
κ3φn(κ,α)dκ.

Considering the inner-scale and outer-scale effects, the non-
Kolmogorov spectrum is defined as [19]

φn(κ,α) = A(α)C̃2
n · exp

(−κ2/κ2
m

) · (κ2 + κ2
0

)−α/2
,

0 ≤ κ < ∞, 3 < α < 4, (5)

where A(α) = 
(α − 1) · cos(απ/2)/(4π2), κ0 = 2π/L0

and κm = c(α)/ l0, in which c(α) = {
[(5 − α)/2] · A(α) ·
2π/3}1/(α−5)

, l0 is the inner scale and L0 is the outer scale.
Using the non-Kolmogorov spectrum, after some tedious
mathematical manipulation, the term T is expressed as [15]

T = π2A(α)C̃2
n

/[
2(α − 2)

] · [κ2−α
m

(
2κ2

0 − 2κ2
m + ακ2

m

)

× exp
(
κ2

0 /κ2
m

) · 
(
2 − α/2, κ2

0 /κ2
m

) − 2κ4−α
0

]
,

where 
 denotes the Gamma function.

3 Analysis and results

In numerical simulations, for simplicity, we choose λ =
850 nm, w0 = 0.01 m, L0 = 1 m and l0 = 0.01 m. With typ-
ical parameters, z = 10 km, C̃2

n = 1 × 10−15 m3−α , α = 3.8,
σ0 = 0.01 m and xd = 0.015 m, the influences of N on the
rms beam width for different xd are depicted in Fig. 2. It
shows that there is an optimum N that leads to a minimum
rms beam width and the optimum N decreases with the in-
crease of xd . The existence of the optimum N can be under-
stood as follows. For given xd , when N is relatively small,
the beams of the beam array interfere with each other, which
leads to a smaller rms beam width w, compared with N = 1.
However, when N is large enough, some beams may become
independent of each other, which results in a larger w. The
variation of w with xd for different N is shown in Fig. 3.

Fig. 3 w as a function of xd for different N with z = 10 km,
C̃2

n = 1 × 10−15 m3−α , α = 3.8 and σ0 = 0.01 m

Fig. 4 A,Bz2/k2 and w2 as a function of xd with z = 10 km,
C̃2

n = 1 × 10−15 m3−α , α = 3.8, σ0 = 0.01 m and N = 10

For multiple beams (N ≥ 2), there is an optimum separa-
tion distance xdm which leads to a minimum w and this xdm

depends strongly on N .
In this paper, we concentrate on the discussion of the

optimum separation distance for the reason that it is more
controllable than the beam number in the experiments, es-
pecially for lasers with high power. The existence of the op-
timum separation distance is investigated analytically and
physically. The three terms in the bracket on the right-hand
side of (4) denote the equivalent beam width of the linear
GMS beam array at z = 0, the diffractive spreading of the
beam array in free space and the spreading resulting from
the atmospheric turbulence, respectively. The first term A

is a monotonically increasing function of xd and the sec-
ond term Bz2/k2 is not a monotone function of xd . Further,
the atmospheric part (the third term) is independent of xd , so
that the xdm has no relation with the atmospheric parameters
C̃2

n and α, which can be demonstrated by (4). Therefore, it
is not necessary to consider the effects of the atmospheric
parameters on xdm for designing the optical communication
system.

A,Bz2/k2 and w2 as a function of xd with N = 10 are
plotted in Fig. 4. The result shows that the optimum separa-
tion distance xdm results from the second term in the bracket
on the right-hand side of (4). Therefore, when the second
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Fig. 5 zmax and zmin as a function of xd with σ0 = 0.01 m and N = 10,
(a) C̃2

n = 1 × 10−15 m3−α , α = 3.8 and (b) C̃2
n = 1 × 10−14 m3−α ,

α = 3.67

term Bz2/k2 is relatively larger than the first term A and the
third term 8/3T z3, the optimizing effect of xd will be rather
obvious, otherwise the optimization may still exist but not
obvious enough. In order to achieve the better optimizing ef-
fect, the effective range of z can be obtained by Bz2/k2 > A

and Bz2/k2 > 8/3T z3. Based on the analysis above, the ef-
fective range of z is expressed as

zmin = √
A/B · k < z < 3B/

(
8T k2) = zmax. (6)

Equation (6) indicates that when the propagation distance z

is in the effective range of zmin to zmax, the optimizing effect
of xd on the rms beam width will be rather obvious. The
effective range of z as a function of xd is plotted in Fig. 5(a).
It can be seen that z = 10 km is in the effective range of
zmin to zmax for xd = 0.015 m, and so the optimizing effect
of xd is rather obvious, which is the reason for choosing
z = 10 km in our simulations.

A physical understanding of the existence of xdm is that
when xd is relatively small, the interference of the beams
with each other makes the intensity of the beam array more
focused and a smaller w is obtained. When xd is too large,
some beams may become independent of each other and a
larger w is obtained. For xd = 0, the beams overlap with
each other, i.e., the beam array is equal to a single beam,
and then the cases with different N have the equal rms beam
widths, as shown in Fig. 3. The dependence of the optimum
separation distance xdm on N is also manifested in Fig. 3.
The specific relation between xdm and N is shown in Fig. 6,
which indicates that xdm decreases with the increase of N .

The analysis above only consider the case of α = 3.8.
However, the generalized exponent α is variable as the lin-
ear GSM beam array propagates through non-Kolmogorov
turbulent atmosphere. Next, the effects of C̃2

n and α are stud-
ied. As shown in Fig. 7, when α is smaller than 3.67 and not
close to 3, there is a larger w compared with α = 3.67 and
when α is close to 3, w decreases rapidly since in this case,

Fig. 6 The optimum separation distance xdm as a function of N with
z = 10 km, C̃2

n = 1 × 10−15 m3−α , σ0 = 0.01 m and α = 3.8

Fig. 7 w as a function of α with z = 10 km, C̃2
n = 1 × 10−15 m3−α ,

σ0 = 0.01 m, N = 10 and xd = 0.015 m

A(α) begins to decrease to zero. Besides, when α is larger
than 3.67, there is a smaller w.

Although the optimum separation distance xdm is inde-
pendent of C̃2

n and α, the optimizing effect of xd has great
dependence on C̃2

n and α. It can be understood by that
with the increase of C̃2

n and the variation of α, z = 10 km
may be not in the effective range of zmin to zmax, which
can be demonstrated by (6). When C̃2

n = 1 × 10−14 m3−α ,
α = 3.67, N = 10 and xd = 0.015 m, z = 10 km is not in
the effective range of zmin to zmax, as shown in Fig. 5(b). In
this case, the optimizing effect of xd will be weakened, as
shown in Fig. 8.

We know that the partially coherent beams are less af-
fected by the turbulence than the fully coherent ones. Thus,
an interesting question arises: does the result hold true for
the partially coherent beam array? Figure 9 plots the rms
beam width w as a function of the propagation distance z

for different C̃2
n and σ0. Through comparing the differences

between w in the turbulence and that in free space (C̃2
n = 0)

for σ0 = 0.01 m and σ0 = ∞, it can be indicated that the
partially coherent beam array is also less sensitive to the tur-
bulence than the fully coherent one, especially for the long-
distance communication. Further, the influence of the turbu-
lence on w increases with increasing z. It can be understood
by that the influence of the turbulence on the beam array
propagation accumulates along the propagation path.
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Fig. 8 w as a function of xd for
different C̃2

n with z = 10 km,
σ0 = 0.01 m, N = 10,
(a) α = 3.3, (b) α = 3.67 and
(c) α = 3.8

Fig. 9 w as a function of the propagation distance z for different C̃2
n

and σ0 with α = 3.8, N = 10 and xd = 0.015 m

4 Conclusions

In summary, the effects of the beam number N , the gen-
eralized exponent α and the separation distance xd on
the rms beam width of the linear Gaussian beam array
propagating in non-Kolmogorov turbulence are investigated.
The theoretical results indicate that the rms beam width in
non-Kolmogorov turbulence is different from that in Kol-
mogorov turbulence with α = 3.67, and there is an optimum
beam number that leads to a minimum w. Further, the beam

width can reach the minimum value by adopting the opti-
mum separation distance, which decreases with the increase
of beam number. Besides, the optimizing effect of xd on the
rms beam width has great dependence on C̃2

n and α, which
manifests that the spreading and focusing ability of the lin-
ear GSM beam array propagating in non-Kolmogorov tur-
bulence is so different from that in Kolmogorov turbulence
that a specific treatment is required when non-Kolmogorov
turbulence exists. Therefore, the non-Kolmogorov spectrum
should be considered in real system optimization. In addi-
tion, the partially coherent beam array is less sensitive to the
atmospheric turbulence than the fully coherent beam array.
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Appendix: Derivation of (4)

With the new integral variables u = (x1 + x2)/2, v =
x2 − x1, (2) can be rewritten as

〈
I (x, y, z)

〉 = k

2πz

(N−1)/2∑

m=−(N−1)/2

(N−1)/2∑

n=−(N−1)/2

∫ ∞

−∞

∫ ∞

−∞
exp

[
ik

z
(xv − uv)

]
dudv

× exp

[
−2u2 + v2/2 − 2(m + n)xdu + (m − n)xdv + (m2 + n2)x2

d

w2
0

]

× exp

[
−v2 + 2(m − n)xdv + (m − n)2x2

d

2σ 2
0

]
exp

{
−4π2k2z

∫ 1

0

∫ ∞

0
κφn(κ,α)

[
1 − J0(κξv)

]
dκ dξ

}
. (A.1)

Equation (3) can be written as

w = (F1/F2)
1/2, (A.2)
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where

F1 = 4
∫ ∞

−∞
x2〈I (x, z)

〉
dx, (A.3)

F2 =
∫ ∞

−∞
〈
I (x, z)

〉
dx. (A.4)

Upon substituting (A.1) into (A.3) and recalling the integral formula
∫ ∞
−∞ x2 exp(iμxs) dx = −2π/μ3δ′′(s), we obtain

F1 = −4

(
z

k

)2 (N−1)/2∑

m=−(N−1)/2

(N−1)/2∑

n=−(N−1)/2

∫ ∞

−∞

∫ ∞

−∞
exp

(
− ik

z
uv

)
dudv

× exp

[
−2u2 + v2/2 − 2(m + n)xdu + (m − n)xdv + (m2 + n2)x2

d

w2
0

]
exp

[
−v2 + 2(m − n)xdv + (m − n)2x2

d

2σ 2
0

]

× exp

{
−4π2k2z

∫ 1

0

∫ ∞

0
κφn(κ,α)

[
1 − J0(κξv)

]
dκ dξ

}
δ′′(v). (A.5)

Recalling the integral formulas
∫ ∞
−∞ exp(−β2x2 + γ x)dx = √

π/β exp[γ 2/(4β2)] and
∫ ∞
−∞ f (x)δ′′(x) dx = f ′′(0),

(A.3) can be rewritten as

F1 =
√

π

2
w0

(N−1)/2∑

m=−(N−1)/2

(N−1)/2∑

n=−(N−1)/2

exp

{
−

(
1

2w2
0

+ 1

2σ 2
0

)
(m − n)2x2

d

}

×
{[

w2
0 + (m + n)2x2

d

] + 4

k2

(
1

w2
0

+ 1

σ 2
0

)[
1 −

(
1

w2
0

+ 1

σ 2
0

)
(m − n)2x2

d

]
z2 + 8

3
π2z3

∫ ∞

0
κ3φn(κ,α)dκ

}
. (A.6)

Following the same procedure, (A.4) can be rewritten as

F2 =
√

π

2
w0

(N−1)/2∑

m=−(N−1)/2

(N−1)/2∑

n=−(N−1)/2

exp

{
−

(
1

2w2
0

+ 1

2σ 2
0

)
(m − n)2x2

d

}
. (A.7)

Upon substituting (A.6) and (A.7) into (A.2), (4) can be derived.
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