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ABSTRACT In this paper a convolution model for the harmonic
spectra and harmonic signals used in wavelength modulation
spectroscopy (WMS) with arbitrary transmission function is
given. This implies a straightforward description of the har-
monic spectra in the Fourier domain, which also allows for
anew general computation method. Furthermore, the model can
be extended to include non-ideal behavior of practical systems
by assuming a modified transmission function, e.g. a nonzero
laser linewidth, laser intensity modulation during wavelength
tuning and additional filtering of the harmonic signals. A re-
cursion formula and a mean value property for n-th harmonic
spectra has been found. The harmonic signals occurring in prac-
tical systems can be modeled with a system theoretic approach,
where these are given as the output of a filter that represents
the WMS system and the transmission is regarded as the in-
put signal of the filter. This gives a very intuitive view of WMS
systems.

PACS 42.62.Fi; 39.30.+w

1 Introduction

Laser spectroscopy is an established method for
sensitive gas detection. A common laser spectroscopy tech-
nique is wavelength modulation spectroscopy (WMS), which
uses a sinusoidal wavelength modulation with a phase sensi-
tive detection (lock-in amplifier) to measure the higher order
harmonics of the photodetector signal [1]. The higher order
harmonics are caused by the nonlinear conversion of the
frequency/wavelength modulation (FM) to amplitude modu-
lation (AM) by the gas absorption. The phase sensitive detec-
tion allows for very efficient noise and distortion suppression.
Modulation spectroscopy is sometimes called derivative spec-
troscopy because for small FM modulation amplitudes the
detected n-th harmonic spectra are similar to the n-th deriva-
tives of the absorption line shape. However, to maximize the
signal to noise ratio (SNR) a large modulation amplitude is
needed so that the harmonic spectra become distinct to the
n-th derivatives. To be able to design and implement data
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extraction algorithms, knowledge on the exact form or struc-
ture of these measured spectra is needed (Chapter 6H in [2]).
One major non-ideal effect in WMS is that the laser intensity
is not constant during wavelength tuning: the intrinsic AM of
the laser diode causes significant distortion to the first har-
monic spectrum, so thatin WMS usually second harmonic de-
tection with high modulation amplitudes for maximum SNR
is employed [1]. For the ideal case of a constant laser in-
tensity and unsaturated Lorentzian or Gaussian absorption
lines closed form analytical formulas exist for harmonic spec-
tra [3—6]. For arbitrary line shapes infinite series expansions
are available [7], but these do not converge for all practically
important cases'. For Voigt absorption profiles no closed form
expression for the harmonic spectra has been found yet, so that
curve fits have to be done with numerical calculation of the
harmonic spectra [8] or by use of approximations [9].

In this paper a general approach is used to analyze WMS
without any assumption of the shape of the transmission func-
tion, e.g. it is suitable for saturated line shapes or the case
of non-constant laser intensity. The n-th harmonic spectra are
expressed as a convolution of the transmission with a fixed
function that is given by the Chebyshev polynomials with
a square root weight function. In ESR spectroscopy convolu-
tions have been used to describe physical effects and non-ideal
behavior of the measurement system including broadening by
modulation for the first order case both approximative [8, 10,
11] and exact [12], whereas in this paper it is generalized to
higher order harmonics and applied to the WMS case with its
own specific non-ideal behavior. The convolution expression
avoids difficulties with infinities and convergence problems
and provides a description for WMS that is straightforward
to analyze and easy to integrate in the complete signal pro-
cessing model of the measurement system, since the convolu-
tion is a very well-investigated operation in Fourier analysis
and signal processing. Based on the convolution expression
a system theoretic viewpoint of WMS is presented, where the
transmission is considered as the input signal of a filter and the
output is the corresponding n-th harmonic spectrum or signal.
Another insight is that the n-th harmonic spectra at a single
point are the coefficients of the Chebyshev approximation of
the transmission function.

Ie.g. for the case of Lorentzian lines with a modulation amplitude that
maximizes the SNR
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The convolution model is also capable of modeling certain
deviations of the ideally assumed WMS system by transfer-
ring them to a properly adjusted transmission function, as
outlined in Sect. 4. It is possible to recreate the behavior of
a practical system with that from an ideal system and a modi-
fied transmission function. Furthermore, with this approach
it has been possible to derive a recursion formula for har-
monic spectra and a general zero mean property of harmonic
spectra that hold for the idealized WMS system and all non-
ideal cases that can be modeled by an adjusted transmission
function.

2 Model for wavelength modulation spectroscopy
(WMS) systems

For WMS purposes the wavenumber of the laser
light is sinusoidally modulated with frequency f;, and modu-
lation amplitude v, around a center wavenumber v

V() = vacosQRm fmt) + 7. (D)

The light is transmitted through the gas that absorbs light of
specific wavenumbers, so the frequency modulation is con-
verted into an amplitude modulation. A photodetector to-
gether with a lock-in amplifier is then used to detect the in-
dividual harmonic components of the amplitude modulation.
These corresponds to the n-th Fourier series coefficient of
the periodic detector signal, and this coefficient is written as
a function of the mean wavenumber v. The variation of v
is usually realized by linearly sweeping it in a small range
around a certain wavenumber, with a frequency much lower
than the modulation frequency fi,.

The ideal WMS measurement system is classified by the
following assumptions:

1. The laser linewidth is zero.

2. The modulation frequency f;, does not affect the laser
spectrum, i.e. fr, is small enough (otherwise we have fre-
quency modulation spectroscopy (FMS) [13, 14]).

3. The laser intensity is constant during wavelength tuning.

4. The responsivity of the photodetector is not wavelength
dependent.

5. The pre-amplifier and gain stages in the measurement sys-
tem are not frequency selective.

When the mean wavenumber v is tuned, the n-th Fourier
series coefficient of the periodic detector signal forms the har-
monic spectrum S, (V). Since the harmonic spectrum is linear
with respect to the laser intensity, detector responsivity and
pre-amplifier gain, these quantities are assumed to be 1. This
yields a normalized expression for the n-th harmonic spec-
trum

T

Sa (D) = 26—;[ / T(D+ v, cos(z))e " dz 2

-7

where z = 2r fint and €, = 2 — §,,9, with the Kronecker delta
8;;. T(v) is the transmission function of the optical path in-
cluding the gas. Usually this is given by the Lambert—Beer
law with appropriate absorption profiles, but for our analy-
sis, T can have an arbitrary shape. It is important to note that
non-ideal behavior of practical systems can be modeled by

an ideal WMS system with a properly adjusted transmission
function. This includes for instance the modeling of an emis-
sion spectrum of the laser, the laser’s intensity modulation
under certain assumptions and additional filtering of the n-th
harmonic spectrum, as explained in Sect. 4.2.

2.1 Convolution model of harmonic spectra

Substituting n = —v, cos(z), the integral in (2) be-
comes a convolution

o0
Sp(v) = / Tw—nZ,(mdn=(T=*Z,)(V), 3
—00
with the kernel
€n Cu(=v/va) |V| <
Zy() =1 i . “
0 otherwise

Here C,, (x) = cos(n arccos(x)) is the Chebyshev polynomial
of degree n [15]. The convolution kernel depends on the mod-
ulation amplitude v, and the order n of the frequency com-
ponent selected by the lock-in amplifier. For various orders
n the kernel is shown in Fig. 1. A convolution is very simi-
lar to a correlation: the difference is just an additional minus
sign in the argument of the second convolved function. So
in this case the n-th harmonic spectrum is also the cross-
correlation function between the transmission and the “mir-
rored” kernel Z,(—v), that is because of symmetry equal to
(-D"Z,(v) = Z,(—v). So the n-th harmonic spectrum (ex-
cept algebraic sign) can be considered as the cross-correlation
function between the transmission and the fixed kernel Z, (v).
When applying the Fourier transform? to both sides of the
expression (3), the convolution turns into a multiplication

S,k) = T(k)- Z, (k) , (5)

whereby the following definition of the Fourier transform is
used

[o.¢]

X(k) = / X()e 7™ gy, (6)
—00

The transform of the fixed kernel has a closed form that con-

tains the Bessel function of the first kind J,(x) (Chapter 9
in [15])

Zn(k) = €i" I, 27kvy) . (7)

2.2 Computation of the n-th harmonic spectra

When the Fourier transform of the transmission
function is known, the Fourier transform of the n-th harmonic
spectrum is given by multiplication with the Bessel function
of order n (see (5) and (7)). This simple structure allows for

2 The Fourier transform of a function is denoted by a hat accent. The
conjugate variable to wavenumber v (unit cm™!) is chosen to be k (unit
cm).



HANGAUER et al. Modeling of the n-th harmonic spectra used in wavelength modulation spectroscopy and their properties

BT
o P
- 1 ] 4
L f i ]
L ? i’ 4
~ r | ]
Z F ]
o o B . 4
N C ; e 1
O RS o .
-2F ]
_al I Ll I 1 I ]
—? 5 -1 -0.5 0 0.5 1 1.5
viv
a
FIGURE 1 The convolution kernel Z,, for various orders n. The solid, bro-

ken and dotted line resemble kernels for the zeroth (Zy), second (Z,) and
fifth (Z5) harmonic spectra, respectively. All functions have a singularity at
|[v/va| = 1 and have odd and even symmetry depending on the parity of n

a fast computation of the n-th harmonic spectra in the Fourier
domain. Evans et al. [8, 12] used a similar method to compute
the first harmonic spectra (i.e. n = 1), whereas in this paper
the general case is given, which allows for computation of
harmonics of all orders. The Fourier transform of the trans-
mission in (5) is either computed with the help of the FFT al-
gorithm, or in the case of unsaturated Voigt lines, directly with
known analytical formulas (which are briefly summarized in
Sect. 4.1). This also works when non-ideal behavior of a prac-
tical system is modeled by an adjusted transmission function,
as outlined in Sect. 4. The advantage of the computation in the
Fourier domain is that all points of the n-th harmonic spec-
trum are computed in one step and that it works for arbitrary
transmissions. However, care must be taken when using dis-
crete Fourier transform algorithms to approximate continuous
Fourier transforms.

2.3 System theoretic view on WMS for harmonic signals

In practical systems the n-th harmonic spectrum
usually appears as a time signal, which is due to the slow linear
sweep of the mean wavenumber ¥

U(f) = Bt + Vmin » ®)

with 8 = (Vmax — Vmin)/ To being the sweep rate in wavenum-
bers per second. The tuning range [Vmin, Vmax] 1S swept
through in one measurement time interval [0, Tp], whereas
the time for one period Ty is much higher than one sinusoidal
modulation period (Tp >> 1/ fu). The n-th harmonic signal?
S’ (t) := S,(¥(¢)) and n-th harmonic spectrum S, (V) are es-
sentially the same except for a linear change of variables, and
the n-th harmonic signal is the one that occurs in practical
systems.

Since the WMS system is described by a convolution, it is
subject to systems theory, which is widely used in electrical
engineering to describe dynamic systems like filters. Mathe-
matically, all filters perform a convolution with their impulse

3 Signals that represent spectra in systems with a wavenumber time
sweep are denoted with the same symbol as the corresponding spectra but
marked with an apostrophe.
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FIGURE 2 The WMS measurement system. The transmission is consid-
ered as the input signal and the output signal is the corresponding n-th
harmonic signal. The WMS system is a filter with the frequency response
shown in Fig. 3

response. So (3) allows for a new system theoretic viewpoint
for WMS measurement systems: the transmission function is
regarded as the input of the WMS system and the output is the
n-th harmonic signal. Therefore the transmission function is
considered as a time signal 77(¢). The WMS system that out-
puts the n-th harmonic signal S/, (¢) is then simply a filter with
impulse response Z/, (1)

T'(t) :=T(v()) 9
Z,(v) := BZ,(B1) (10)
SH() = (T'*Z,) (@) . (11)

This viewpoint is depicted in Fig. 2. Filters have the property
that a sinusoidal input signal always gives a sinusoidal out-
put signal, but with a phase shift and certain amplitude ratio,
which are both frequency dependent. The Fourier transform
of the impulse response of a filter is its complex valued fre-
quency response, that describes this phase shift and amplitude
ratio. The Fourier transform of the output signal is the Fourier
transform of the input signal times the frequency response.
This is in agreement with (5) for the Fourier transform of the
harmonic spectrum. For some values of n the frequency re-
sponse is shown in Fig. 3.

To visualize the meaning of Z/,(7) being an “impulse re-
sponse”, a Dirac impulse shaped transmission can be imag-
ined. This is an infinitely narrow bandpass filter, which has an
infinite gain to compensate for the infinitely narrow band. The
n-th harmonic spectrum in this case will be equal to the con-

.............
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FIGURE 3 The WMS system frequency response /Z\; for various orders n,
that are essentially Bessel functions J,,. These are, except for a linear change
of variable (k8 = f), equal to the Fourier transform of the convolution kernel
Z,. The solid, broken and dotted curves resemble the response for the zeroth
(Zy), second (Z3) and fifth (Zs) harmonic spectra, respectively. To obtain
areal valued plot the phase factor i” has been omitted here



252 Applied Physics B — Lasers and Optics

volution kernel Z, (v) that is centered at wavenumber of the
Dirac impulse. Therefore Z(v) is also the amplitude density
distribution for a sine wave with amplitude v,.

3 Basic properties of the harmonic spectra

Due to the convolution structure of the harmonic
spectra many of the properties of the kernel apply to the har-
monic spectra as well.

The Fourier transform of the kernel is zero for k = 0 and
n # 0: Z,,(0) = 0. This causes all harmonic spectra withn > 0
to have a zero mean value.

oo

/Sn(f))df):O, for n#0.

—00

12)

Since the Bessel functions fulfill a recursion property with
respect to order n, the harmonic spectra do as well. When in
the relation (Eq. 9.1.27 in [15])

2n
o1 () = ?Jn @) =Jp1 (x) . (13)
J, (x) is replaced by Z, (k) (see (7)) and multiplied with the
Fourier transform of the transmission, the following recursion
formula for the Fourier transform of the n-th harmonic spectra
is obtained

né€py1

Spi k) =— S, (k) + E"*‘ Si1(k) . (14)

6nvaiﬂk n—1

After transforming back, a recursion formula for the harmon-
ics is found. Note that the multiplication with 1/(2iwk) corres-
ponds to an integration, because n.S, (0) is zero for all n.

/ Su(P)dv+

—00

2n€n+1 €nt1

€n—1

Spp1(V) =— Sp1(V). (15)

nVa

It is important to remark that for n = 1 prior to application
of (15) the offset of the zeroth harmonic spectrum has to be re-
moved. This is due to the fact that in (14) the limit for k =0
is mathematically incompatible with a generalized function
Dirac delta in T (k):

lim <1 In (x)) 8(x) # lim ! Jn (x) 8(x)) . (16)
x—>0 \ X x—>0 X

The Dirac delta in f(k) is created from the Fourier transform
of the offset of the transmission 7(k). However, it is not severe
because the general shape of the (n + 1)-th harmonic spectrum
is always predicted correctly. Also this only occurs at n = 1
and affects the offset of the predicted second harmonic spec-
trum because (14) is just at k = 0 possibly incorrect.

4 Including non-ideal behavior in the ideal WMS
model

In this section it will be shown how to include non-
ideal behavior of practical systems in the model for ideal

WMS by assuming a special transmission function. The n-th
harmonic spectra for a real (i.e. non-ideal) WMS system will
be written as S, (v). A real WMS system, for example, uses
a laser that changes the light intensity during wavelength tun-
ing, has a nonzero linewidth or performs additional filtering
of the n-th harmonic signal. Of course the harmonic spectra
in such a WMS system are not the same as in an ideal system.
Now the goal is to find a function T (v), so that the output of the
ideal WMS system with an assumed transmission 7'(v) gives
the harmonic spectrum S, (v) for the non-ideal case, i.e.

Siw) = (T*2,) ). (17)
The true transmission of the optical path will still be called
T(v), and firstly, the model for the true gas transmission is
presented. The analytical expression of the Fourier transform
of the harmonic spectra (7) together with the presented line
profiles and modeling of non-ideal behavior can be used to
compute efficiently the n-th harmonic spectrum with the help
of a numerical Fourier transform algorithm.

4.1 Transmission of the gas

The optical transmission function 7(v) of a gas is
given by the Lambert-Beer law

T(v) = exp(—Cla(v)) . (18)

C is the gas concentration, / the optical path length and a(v)
the absorption coefficient. For small (i.e. unsaturated) absorp-
tions (Cla(v) « 1) this can be approximated by

Tw)~1—_Cla(v). (19)
The absorption coefficient is given as the sum of the individual
absorption lines

a(v) =Zngo(v—vj;oej). (20)
J

Here ¢ is the normalized line profile, v; the center wavenum-
ber and L; and o; the line strength and line width of the j-th
absorption line, respectively.

Due to the exponential function in (18) the Fourier trans-
form of the transmission can not be analytically simplified
in the general case. However, in the case of unsaturated ab-
sorptions, the Fourier transform of the transmission can be
expressed in terms of Fourier transform of the line profiles:

Tk~ 8(k) = IS Lig(ks ap)e 27 .
j

2D

v; is usually independent of gas temperature and pressure
in contrast to the line strength and line broadening coefficient
which both depend on these factors. The temperature or pres-
sure range determines which line profile to choose. For room
temperature usually three different line shapes are of impor-
tance. The Gauss line shape models broadening due to the
Doppler effect, the Lorentz profile pressure broadening and
the Voigt profile the combination of both effects:

oL/m

—_ 22
aﬁ+v2 @2)

pL(v; o) ==
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exp (—In2 (v/ag)?) (23)
(24)

wc(v; ag) ==

J/In2/m
aG

oy (v; aL, ag) == (gL *pc) (V) ,

whereby o and «g are the half width at half maximum
(HWHM) of the Lorentz and Gauss profile, respectively.
Their Fourier transform is given by

PLlk) = e~ ol 03
ZﬁG k) = e*(na(‘,k)2/1n2 , 06)
av (k) = e*melele*(nac,k)Z/an ) @

It is important to note that the convolution of two Lorentz
and Gauss profiles form a Lorentz or Gauss profile again, re-
spectively. The HWHMSs simply add in the first case and are
the square mean in the second case.

4.2 Adjustment of the transmission to include non-ideal
behavior

4.2.1 A nongzero laser linewidth. If a laser with center wave-
number vy has an emission spectrum of L (v — vp) and the light
is passed through a transmission 7(v), the detector will detect
an intensity that is proportional to

oo

1(vy) = f T(W)L(v—vo)dv = (T(v) x L(=v))(vo) . (28)

—00

It can be clearly seen that the harmonic spectra in a system
with a laser linewidth would be the same as the spectra in
an ideal system (laser with no linewidth) with a transmis-
sion function 7 (vy) = (T(v) * L(—v))(vo) that is the convo-
lution of the real transmission and the mirrored laser line
profile. Usually the spectrum of a cw (continuous wave) laser
is Lorentzian i.e. L(V) = @p(V; 0paser) With o6 being the
HWHM of the emission spectrum. Since the convolution of
two Lorentz functions is simply a Lorentz function again, the
integration of the linewidth effect in the model with unsatu-
rated Lorentz or Voigt shaped absorption lines is very sim-
ple. The laser linewidth simply adds to the Lorentzian half
width of the gas absorption. Similar considerations can be
made if the laser spectrum has both Lorentzian and Gaussian
components.

4.2.2 Laser intensity modulation. For tunable lasers the laser
intensity practically also changes when the frequency of the
light is tuned. If there is a unique relation between instanta-
neous wavenumber and instantaneous intensity for the laser
used, the intensity modulation can be included in this model.
Let P(v) be the intensity of the laser at a given wavenumber.
Then the n-th harmonic spectrum of the real WMS system is
equal to the output of the ideal system with an assumed trans-
mission of

T(v) =TW) PV). (29)
The assumption of a unique relation between wavenumber
and intensity is usually fulfilled when there is no dynamic ef-
fect in the frequency or intensity modulation, i.e. there is no

phaseshift between frequency and intensity modulation and
no drop in wavelength modulation efficiency.

However in the other case no convolution form like (3)
can exist for S, (V). This can be overcome when a general-
ized convolution is used where either the convolution kernel
or the assumed transmission function 7 depend on the second
variable v. The first case is given as

5,0 = / T — ) Zy(3, nyd. (30)
where

~ M

Z,@,m =) An(®)Zn() . (31)

m=0

This is because the real harmonic spectrum S‘;, (v) with arbi-
trary laser AM effects can be expressed as a weighted sum
of several ideal harmonic spectra Sy, (V) [16, 17]. The weight
factors A, (V) are defined through the relationship

M
5:0) = An(0)Su (D)

m=0

(32)

and can be determined with the theory given in [16, 17].

4.2.3 Subsequent filtering of the n-th harmonic signal. In
a practical system additional filtering of the n-th harmonic
signal may occur, i.e. the n-th harmonic signal is passed
through some analog or digital filter. Since the WMS sys-
tem can be modeled as a filter and the order of the filters can
be exchanged, the additional filtering can be applied to the
transmission function. Let /(7) be the impulse response and
H(f) the frequency response of the additional filter. The ideal
model with the following transmission function 7 reproduces
the additional filtering:

~ 1
T(v) = — (T xh(n/p)) (v).

33
Bl 49

Note that the Fourier transform of T(v) is given as the prod-
uct of the Fourier transform 7 (k) and the frequency response
H(kp) of the filter. This allows for an easy determination of
how much distortion by the additional filter is added to the
transmission.

5 Conclusion

A general convolution model for the harmonic
spectra (and harmonic signals) used in wavelength modula-
tion spectroscopy has been developed. It expresses the har-
monic spectra as a convolution of transmission function with
a fixed function that depends on the modulation amplitude and
the order of the harmonic spectra.

The basic concept is to examine an ideal WMS system
and to investigate the properties the n-th harmonic spectra
have for an arbitrary transmission function. It has been shown
that some non-ideal behavior can be reproduced with an ideal
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WMS system with a modified transmission function. This
approach has the essential advantage, that all properties for
the ideal harmonic spectra are also valid for the given non-
ideal cases. It was found out that the description of the n-th
harmonic spectra in the Fourier domain has a significant ad-
vantage because explicit expressions for the Fourier transform
of different absorption profiles exist. Secondly, a computa-
tion of n-th harmonic spectra in the Fourier domain has the
advantage that the complete harmonic spectrum is obtained
in one step. It has been shown that all higher harmonic spec-
tra (n > 0) for arbitrary transmission always have a mean
value of zero. Furthermore, a recursion formula that allows
expression of the (n +2)-th harmonic spectrum in terms of
the two previous ((n + 1)-th and n-th) harmonic spectra was
found.
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