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ABSTRACT An output pulse energy of 17.3 mJ has been achieved with a diode-
pumped Yb:CaF2 regenerative laser amplifier. The bandwidth of the output pulse
spectrum was 7.3 nm, being seeded with femtosecond pulses stretched to 2.2 ns. In
cw operation a tuning range of 80 nm has been observed. A maximum pulse energy
of 44 mJ at a repetition rate of 1 Hz has been obtained in Q-switched mode. The
laser damage threshold of a Yb:CaF2 crystal has been determined at a wavelength of
1064 nm and a pulse duration of 10 ns.

PACS 42.55.Ah; 42.55.Xi; 42.70.Hj

1 Introduction

Recently, ytterbium-doped
calcium fluoride (Yb:CaF2) has attracted
considerable interest for femtosecond
pulse generation [1, 2] and widely tun-
able cw-laser operation [2, 3]. Although
a well-known host material [4, 5], CaF2

doped with rare-earth ions has become
increasingly attractive as diode-pumped
laser material for a number of rea-
sons [6]. It can be easily grown by the
Czochralski, Bridgman, or temperature-
gradient techniques [7]. Undoped single-
crystalline CaF2 with optical quality
is readily available with diameters up
to 380 mm for lithographic applica-
tions [8–10]. Meanwhile, the growth of
single-crystalline samples of Yb:CaF2
with lateral dimensions of 76 mm has
been proven [7].

The substitution of trivalent ytter-
bium ions for Ca2+ and thus the ne-
cessary charge compensation leads to
a rich multi-site structure including iso-
lated ions up to clusters [11–14] and
results in broad absorption and emis-
sion bands. Furthermore, in compari-
son to various ytterbium-doped laser
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materials such as garnets, oxides, sil-
icates, vanadates, or tungstates [15],
Yb:CaF2 comprises a long fluorescence
lifetime of 2.05 ms [16], which re-
duces the number of required pumping
diodes in order to accumulate a cer-
tain amount of optical energy within the
gain medium of a pulsed laser ampli-
fier. Co-doping with Na+ prevents the
formation of Yb2+ ions [17–19], sup-
ports the homogeneous distribution of
the Yb3+ ions, and thus improves the
quantum efficiency by reduced quench-
ing effects [20].

In addition, CaF2 with a thermal
conductivity of 9.7 W m−1 K−1 is well
suited for laser systems with high rep-
etition rates and thus high average
output power [1, 21]. However, the
reduction of the thermal conductiv-
ity with increasing Yb3+ concentra-
tion has to be taken into account [22].
For example, at an Yb concentration
of 5 mol. % the thermal conductivity
decreases to 5.0 W m−1 K−1 [23]. In
general, alkaline-earth fluorides show
a wide optical transmission range, a low
dispersion behavior at small linear and
nonlinear refractive indices, and thus

limited nonlinear effects under intense
laser irradiation.

In this paper, we present to our
knowledge the first broad-band regen-
erative amplification of femtosecond
pulses to the mJ level within single-
crystalline Yb3+:CaF2. As an import-
ant application of this new laser ma-
terial, Yb:CaF2 might be attractive for
diode-pumped chirped pulse amplifier
(CPA) systems. A fundamental mile-
stone in the development of a certain
gain medium towards a favorable laser
material for ultra-short-pulse laser sys-
tems is the proof of the bandwidth at
a high gain in a laser amplifier.

2 Crystal parameters

For this work a cylindrical
Yb3+:CaF2 crystal with a diameter of
15 mm and a length of 35 mm has been
grown by the Czochralski technique
with rf heating at the Institute for Crystal
Growth (IKZ), Berlin, Germany. Fol-
lowing the binary phase diagram of
CaF2–YbF3 [24], the segregation coef-
ficient of YbF3 in CaF2 is a little below
one. Therefore, the dopant concentra-
tion of the starting material had to be
chosen somewhat higher than needed
in the crystal. Thus, in accordance with
the phase diagram, a slight segregation
takes place during crystal growth. Start-
ing with an YbF3 content of 3.5 mol. %
in the melt, the upper part of the crys-
tal contained 3.28 ± 0.01 mol. % YbF3

and the lower part 3.35 ± 0.01 mol. %
YbF3 (both values measured by in-
ductively coupled plasma-optical emis-
sion spectroscopy (ICP-OES)). How-
ever, due to the flat crystal–melt inter-
face of the growing crystal the dopant
is homogeneously implemented along
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the crystal cross section. In order to
reach a single-pass absorption of 64%
at 940 nm (87% when applied at Brew-
ster’s angle), a sample crystal was cut to
a length of 7.6 mm. The surfaces (par-
allel to the 111 direction) of the crystal
samples were finished by pitch polish-
ing (Hellma Optik GmbH, Germany)
with diamond polishing compounds
(grain size 0.1 µm).

Prior to the laser experiments the
optical transmission properties such as
wave-front distortion, striae, and stress
birefringence were investigated. Striae
and inhomogeneities of the refractive
index can be detected with a striae ana-
lyzer filtering the low diffraction orders
at the Fourier plane (Fig. 1a). Figure 1b

FIGURE 1 Optical properties of the Yb3+:CaF2 crystal: (a) striae analysis, (b) polarimetry, visualiza-
tion of intrinsic stress birefringence, (c) Michelson interferometry, analysis of the wave-front distortion
(λ = 633 nm), (d) X-ray topography, visualization of grain boundaries at the crystal surface

FIGURE 2 Experimental setup: L1, cylindrical lens ( f = 115 mm); L2, spherical lens ( f = 75 mm);
M1, dichroic flat mirror (HR 1020–1060 nm, AR 930–950 nm); M2, concave mirror (radius of curvature
3000 mm); TFP, thin-film polarizer; λ/4, quarter-wave plate; PC, Pockels cell (DKDP); M3 and M4,
plane HR deflecting mirrors; λ/2, half-wave plate; FR, Faraday rotator

illustrates the white-light transmission
through the crystal between crossed po-
larizers, which gives information about
intrinsic stress between the grain bound-
aries of the crystal. A tolerable polar-
ization rotation of a maximum of 1.7◦
at single-pass transmission has been
measured. The grain boundaries close
to the crystal surface can be visualized
by X-ray diffraction within a small ac-
ceptance angle (here 0.2◦) shown in
Fig. 1d. Applying a phase-retrieval al-
gorithm a double-pass wave-front dis-
tortion of 0.42 λ around the crystal core
has been determined with a Michel-
son interferometer at a wavelength of
633 nm (Fig. 1c). Considering the re-
cency and the current state of devel-

oping Yb-doped calcium fluoride, the
investigated crystal shows a high grade
of optical quality.

3 Tunable cw-laser operation

Figure 2 shows the setup of
the laser system. The gain medium
(Yb:CaF2) was pumped by a pulse-
driven stack of 25 fast axis collimated
diode-laser bars (Jenoptik Laserdiode
GmbH, Germany), having a peak out-
put power of 2.5 kW. For re-collimation
of the slow axis the diode stack was
followed by a cylindrical lens ( f =
115 mm). The pump radiation was fo-
cused into the gain medium by a spher-
ical lens ( f = 75 mm) yielding a peak
intensity of 83 kW cm−2 at an elliptical
pump spot (1.4 mm × 1.9 mm
(FWHM)) with a Gaussian intensity
distribution. Following the specifica-
tions of the pumping diodes the max-
imum pump duration was limited to
1.5 ms at a repetition rate of 1 Hz. The
transversally cooled Yb:CaF2 crystal
was mounted in a water-cooled brass
assembly with indium foil in between,
whereas the polished surfaces were ori-
entated at Brewster’s angle to the ex-
pected laser mode. At full pump power
a polarization contrast of 1 : 400 due
to thermally induced stress birefrin-
gence has been determined at single-
pass transmission.

A plane dichroic mirror (M1) act-
ing as a wavelength coupler and a con-
cave mirror (M2) with 3 m radius of
curvature represent a hemispherical res-
onator (substrates and coatings provided
by Layertec GmbH, Germany). Due to
negative thermal lensing [21] of the co-
linearly end-pumped Yb:CaF2 crystal,
the cavity length was 95 cm for opti-
mum stability.

Prior to the pulse-amplification ex-
periments the tuning range of Yb:CaF2

with an intra-cavity SF10 prism has
been investigated. Corresponding to the
broad emission spectrum of Yb:CaF2
a tuning range of 80 nm (see Fig. 3a)
has been observed at maximum pump
power. In the case of quasi-cw operation
(pulse duration: 1 ms) a maximum aver-
age output power of 340 mW without
the intra-cavity prism at a repetition rate
of 1 Hz has been obtained. Applying the
moving knife-edge method a beam qual-
ity (M2) of 1.21 was found. In spatially
multi-mode operation where the match-
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FIGURE 3 (a) Average output power (duty cycle: 0.1%) vs. center wavelength: tuning curve of
Yb:CaF2 laser in quasi-cw operation with SF10 prism inside the optical resonator; (b) spectra of seed
(λ0 = 1030 nm) and amplified (λ0 = 1032.5 nm) laser pulses, chirped pulse amplification (CPA), pump
duration: 1.5 ms, pump power: 1.3 kW, number of round trips: 32, total gain: 1.4×103

ing of the laser mode and the elliptical
pump profile is increased, the average
output power of 340 mW is achieved
when pumping at 1.1 W (950 mW ab-
sorbed pump power).

4 Amplification and
Q-switching experiments

For Q-switched pulse gen-
eration and regenerative amplification
a thin-film polarizer (TPF), a quarter-
wave plate, and a Pockels cell were
placed in the resonator. A DKDP Pock-
els cell (QX 1020, Cleveland Crystals
Inc., USA) with 1 cm clear aperture has
been used. The Pockels cell driver al-
lows for fast switching with rise and
fall times (10%–90%) of 2.6 ns (both
driver and delay generator provided
by BME-Bergmann KG, Murnau, Ger-
many). In Q-switched operation the
laser generated pulses by cavity dump-
ing with a pulse duration down to 6.4 ns
(FWHM) and a pulse energy up to 44 mJ
before optical damage to the coating of
mirror M1 occurred. At a pump power
of 1.3 kW a build-up time of 540 ns is
required in order to achieve maximum
output pulse energy. The pulse width
was recorded with an InGaAs photodi-

ode (ET-3000, EOT Inc., USA) having
a cutoff frequency of > 2 GHz followed
by a 500-MHz digital sampling oscillo-
scope.

The seed pulses with a pulse width
of 85 fs were generated in a commer-
cial Ti:sapphire oscillator (Mira 900,
Coherent Inc., USA) which was tuned
to a center wavelength of 1030 nm.
After electro-optical pulse selection,
pulses with a pulse energy of 1.3 nJ and
a bandwidth of 18 nm were stretched to
2.2 ns by a four-pass stretcher (General
Atomics Inc., USA). The stretcher with
a hard-clip bandwidth of 32 nm incor-
porates a 14-in gold grating with 1400
lines per mm. At a repetition rate of 1 Hz
the pulses were then amplified to the
10 µJ level by a diode-pumped regen-
erative Yb:glass [25, 26] pre-amplifier
analogous to the described Yb:CaF2

system. In order to separate input and
output pulses a half-wave plate, a thin-
film polarizer (TFP), and a Faraday
rotator were placed between the am-
plifiers. Both input and output spectra
have been determined with a fiber optic
spectrometer (USB 2000, Ocean Op-
tics Inc., USA) with a spectral reso-
lution of 0.4 nm (see Fig. 3b). Major
gain narrowing of the pulse spectrum

is due to the Yb:glass pre-amplifier.
Furthermore, corresponding to the gain
spectrum of Yb:CaF2, the input spec-
trum (center wavelength: 1030 nm) was
red shifted to 1032.5 nm. A maximum
pulse energy of 17.3 mJ at 32 round
trips was determined. In order to prevent
laser-induced damage the output pulse
energy was not increased to a higher
level, whereas the gain of the amplifying
medium remained unsaturated.

In a next step a direct amplification
of the un-stretched oscillator pulses has
been investigated. Without the stretcher
and pre-amplifier the center wavelength
could be slightly tuned and the full os-
cillator bandwidth of 18 nm has been
available. The fs pulses at the nJ level
have been amplified to 50 µJ without
optical damage. Owing to the intra-
cavity dispersion (mostly the DKDP
crystal of the Pockels cell) the pulses
were stretched to 550 fs, which has
been measured by a second-order auto-
correlation. When seeded at a center
wavelength of 1045 nm an output band-
width of 13.4 nm at a total gain of
4 ×104 has been achieved (see Fig. 4).
Both the bandwidth and the shift of the
center wavelength are plotted vs. the
seed center wavelength in Fig. 5. Dur-
ing the experiment the input and output
pulse energies were constant. As a result
the red shift of the output center wave-
length as well as the bandwidth increase
at lower wavelengths. The achieved
total gain as well as the single-pass gain
are similar to those values observed at
regenerative amplification in Yb-doped
laser glass (Yb:glass pre-amplifier, see
Fig. 1). Compared to many other Yb-
doped host materials (e.g. Yb-doped
garnets or tungstates) Yb:CaF2 exhibits
a low emission cross section at the
laser wavelength, which in general com-
plicates efficient pulse energy scaling.
Thus, the presented amplification ex-
periment can be considered to be a proof
of principle in order to apply Yb:CaF2
as gain medium in diode-pumped fem-
tosecond CPA systems.

Finally, in order to estimate the suit-
ability of Yb:CaF2 for high-power laser
systems the optical damage threshold of
the gain medium has been determined.
According to ISO 11254-1 1-on-1 meas-
urement [27], we have measured the
damage threshold in single-shot tests
with a beam diameter of 30 µm.
A Q-switched Nd:YAG laser with 1.2 J
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FIGURE 4 Spectra of seed (λ0 = 1045 nm) and amplified (λ0 = 1046 nm) laser pulses, direct amplifi-
cation of oscillator pulses, pump duration: 1.5 ms, pump power: 1.3 kW, number of round trips: 49, total
gain: 4×104

FIGURE 5 Bandwidth (FWHM) and center wavelength vs. seed center wavelength, direct amplifica-
tion of oscillator pulses, seed bandwidth: 18 nm, output pulse energy: 50 µJ, total gain: 4×104

maximum output pulse energy (Power-
lite Precision II 8000, Continuum Inc.,
USA) was followed by an attenuator
and a focusing lens with a focal length
of 50 cm. During our investigation we
have defined the damage threshold Fthr

as the fluence where damage barely
occurs. At a pulse duration of 10 ns
(FWHM) and a center wavelength of
1064 nm the surface damage threshold
of fused silica (139 J cm−2) and dif-
ferent ytterbium-doped laser materials
such as Yb:YAG (16 J cm−2), Yb:KGW
(23 J cm−2), and Yb:fluoride–phosphate

glass (32 J cm−2) has been measured
for comparison. In the case of Yb:CaF2

a damage threshold of 52 J cm−2 at the
same laser parameters has been found.

5 Conclusion

We have shown the amplifi-
cation of chirped fs pulses within a re-
generative Yb:CaF2 amplifier at the
mJ level. When seeded with pulses
at the 10 µJ level an output pulse en-
ergy of 17.3 mJ and a bandwidth of
7.3 nm (FWHM) have been achieved.

The bandwidth of the output pulses al-
lows us to re-compress the pulses down
to 215 fs. In the case of seeding with un-
chirped fs pulses a bandwidth of up to
16 nm (FWHM) at a high gain up to the
50 µJ level has been observed. Thus, the
potential of Yb:CaF2 for diode-pumped
fs-pulse amplification was successfully
demonstrated. Furthermore, Yb:CaF2

shows a high damage threshold for ns
pulses, which gives an optimistic per-
spective towards being a promising gain
medium in diode-pumped lasers for
high pulse energies.
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