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ABSTRACT We consider a new approach to the problem of
Bose—FEinstein condensation (BEC) of polaritons for atom—field
interaction under the strong coupling regime in the cavity. We
investigate the dynamics of two macroscopically populated po-
lariton modes corresponding to the upper and lower branch
energy states coupled via Kerr-like nonlinearity of atomic
medium. We found out the dispersion relations for new type of
collective excitations in the system under consideration. Various
temporal regimes like linear (nonlinear) Josephson transition
and/or Rabi oscillations, macroscopic quantum self-trapping
(MQST) dynamics for population imbalance of polariton modes
are predicted. We also examine the switching properties for
time-averaged population imbalance depending on initial con-
ditions, effective nonlinear parameter of atomic medium and
kinetic energy of low-branch polaritons.

PACS 03.75.Lm; 71.36.+c; 42.50.Fx

1 Introduction

Novel experiments on observation of Bose—Ein-
stein condensation (BEC) gives new opportunities to investi-
gate collective coherent phenomena in quantum and atomic
optics and solid state physics — see e.g. [1,2]. An import-
ant tool for that can be taken with the help of the Josephson
junction problem approach that has a long history relating to
Cooper-pair tunneling in the superconductor Josephson junc-
tion (SJJ) systems — see e.g. [3]. Various aspects of Josephson
phenomenon and superfluid behavior for two weakly linked
atomic condensates in double-well potential have been dis-
cussed in a number of papers [4—7]. However just recently
the coherent oscillations and self-trapping regime have been
observed experimentally in [8] for two condensates of 8’Rb
atoms placed in a special optical dipole trap. The principle
item is that photonic “condensate” exhibits a similar non-
linear behavior in the problem of optical Josephson junction
(OJJ) consisting of two tunnel-coupled optical fibers and/or
semiconductor waveguides (quantum wells) [9]. Another type
of Josephson coupling (nonlinear Josephson effect) for con-
densate modes has been considered in [10]. In particular,
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nonlinear dynamics like macroscopic self-trapping and inter-
modal population exchange, has been theoretically analyzed
for condensate collective modes (eigenmodes), and namely,
for ground state and first excited state modes. The effective
coupling of these modes is guarantied by atom-atom scat-
tering, i.e. by the own nonlinearity of BEC placed in highly
anisotropic trap.

However, the observation of mentioned above phenom-
ena with pure atomic BEC medium is strictly limited by
extremely low temperature (about hundred nK) conditions. At
present the problem of high-temperature quasi-condensation
phenomenon that occurs for cavity excitons and polari-
tons in so-called strong coupling regime evokes great in-
terest [1, 11-14]. Speaking more precisely the low branch
cavity polaritons can be considered as a weakly interacting
two-dimensional Bose-gas for which the Kosterlitz—Thouless
phase transition occurs at high enough temperatures due to
the extremely small mass of polaritons meg=5x 10733 g
under condition of strong coupling regime for excitons and
quantized e.m. field. Although the polariton condensate is
the non-equilibrium state and occurs in a specially controlled
situation, the macroscopic occupation of ground state with
momentum k =0 has been examined experimentally for
quantum wells inserted in a semiconductor (CdTe/CdMgTe)
microcavity —see [12] and more recent results in [13]. The co-
herence properties have been obtained in [11] for low-branch
polaritons above the threshold of generation in semiconductor
(Ga—As) microcavity. It has been demonstrated that statisti-
cal properties of the excitons can be converted to match the
excitons in coherent states.

The problem is that the BEC state in semiconductor sys-
tems, fabricated at present, is essentially limited by disorder
factor. Recently it was suggested to use a strong disorder in
the microcavity to obtain polariton quasi-condensation [15].
However it is not clear until now how it is possible to achieve
true condensation for exciton—polariton substance in semi-
conductor microcavity for this case.

In our paper [16] it has been shown that polariton true
condensation can be achieved for relatively hot atomic vapor
in the case of polariton trapping, when atoms are strongly
coupled with optical field in the resonator. The degeneration
of weakly interacting 2D-gas of polaritons can be also asso-
ciated with the effect of so-called “spectrum condensation”
observed previously for sodium atoms in the cavity.
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For some practical purposes the coherent properties of
upper branch of polaritons can be important as well. In fact,
the problem of formation of quantum entangled polariton
states from different branches [17] is connected with con-
structing algorithms of quantum cloning and storage for
optical field into the cavity polaritons being recently pro-
posed [18]. However, in the experiment [14] the upper polari-
ton branch has not been developed in the photoluminescence
when the quasi-condensation of lower polariton branch takes
place under the thermal equilibrium condition. The existence
of large energy gap (about ten of meV) between upper and
lower branches is also a reason for that.

But the macroscopic population of the ground (low
branch) polaritonic state in atomic system can be only one
of possible ways to obtain interbranch dynamical regimes for
such a polariton system. In particular, the energy gap in atomic
system can be in 10*~103 times smaller than for semiconduc-
tor one [16, 19], and some (small) population of upper branch
does exist even under the quasi-equilibrium conditions. Upper
polaritonic branch can be populated also by using Landau—
Zener effect when the tunnelling phenomenon between two
eigenstates of the system takes place for the time-dependent
detuning —e.g. [21].

Another possibility to observe such a dynamics is deter-
mined by a special scheme of coherent excitation of polaritons
from different branches [22]. Quantum beats and Rabi oscil-
lations in exciton—photon system have been observed in this
case [23].

In the present paper we consider the problem of nonlinear
dynamics for polaritons of different branches under the mean
field approximation. Our approach has some analogy with the
problem of macroscopic quantum tunneling and interference
that takes place for atomic condensate being associated with
ground state and first excited state. Actually, low and upper
branches of polaritons represent two types of normal modes in
atom—field interaction. They can be coupled to each other due
to atomic nonlinearity.

The paper is arranged as follows. In Sect. 2 we establish
nonlinear model of interaction of two-level atoms with quan-
tized e.m. field in the cavity for both momentum and coordi-
nate representation — cf. [1, 19, 24]. The adiabatic approxima-
tion is discussed for the last case. In Sect. 3 we propose a new
approach to describe a nonlinear Josephson junction prob-
lem for both upper and lower macroscopic polariton modes
coupled in momentum space due to nonlinear (Kerr-like)
atom-field interaction. The analysis of Josephson dynamics
and switching of various regimes of polariton interaction is
presented in Sect. 4. In Conclusion we briefly summarize our
results.

2 The nonlinear model of atom-field interaction
in the cavity

To describe the interaction of two-level atomic sys-
tem with a quantum e.m. field, we consider a localized exciton
model within the framework of the Dicke-like Hamiltonian
for the interaction of the N two-level atoms with a quantized

e.m. field (cf. [1,2, 19]):
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where v, (W;I) is the annihilation (creation) operator for pho-
ton with momentum k; a (at) and b (b') are the annihilation
(creation) operators for atoms at the lower |a) and upper |b)
levels, respectively, N is the total number of particles, Ey is
the energy of atomic transition between the |a) and |b) levels
(here we neglect the motion of atoms in the cavity), Ep,(k)
defines the dispersion relation for photons in the cavity, and
g characterizes the atom—field coupling. The last term with
coefficient x in the Hamiltonian (1) takes into account a non-
linear atom—field interaction, and can be considered in the
framework of nonlinear Jeans—Cummings model. The inter-
action implies a polariton—polariton scattering from different
branches, and is determined by Kerr-like (optical) nonlinear-
ity of atomic system.

The character of interbranch polariton interaction is deter-
mined by sign of effective parameter gk N/ E,. In particular,
repulsive particle interaction (with positive scattering length)
isrealized when gk N < 0 (E, > 0). On the other hand, attrac-
tive interaction (with negative scattering length) occurs for
gk N > 0. In the paper we take into account the positive coup-
ling parameter g only.

In contrast with semiconductor systems we neglect in
Hamiltonian (1) the terms describing the nonlinear processes
of exciton—exciton scattering — see e.g. [1]. Such processes
can be reduced to parametric amplification of polaritons
and/or stimulated emission — see, e.g. [24]. Our approach is
obviously valid for ensemble of non- (or weakly) interact-
ing atomic gas for which the average interatomic separation
length is much larger than characteristic length of interaction
between the atoms [25].

For high-reflection mirrors in the cavity the normal (to the
plane of the mirrors) component of the photon wave vector
k) is quantized, i.e. k, = wm/L,y, Where L,y is the cavity
length, m is the number of modes. For the mode component in
parallel to the mirror plane k| we have a continuum. In parax-
ial approximation (kj < k) the dispersionrelation for photon
energy Epn (k) inside the cavity can be represented as follows:

h’k?
Epn(k) = helk| = hc\/@ ~ hcky + m ‘L 2
p

where my, = hk) /cis the effective photon mass in the cavity.

In the paper we impose a strong coupling regime for
which the cavity modes are coherently coupled with collec-
tive atomic exitations that can be introduced with the help of
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annihilation (¢) and creation (¢ ') operators as (cf. [18]):
N be

N T
Z’T ¢l = Z 3)

The low (or zero) density limit which is used for excitons
in semi-conductor structures (see e.g. [1]) corresponds to two-
level atomic system without inversion. In this case the atomic
excitation operators ¢ and ¢! in (3) obey to usual commu-
tation relation [¢, ¢'] ~ 1 for Bose system when the atoms
occupy mainly a ground state |a) of energy.

Let us consider the system (1)—(3) of atom—field interac-
tion in the cavity in coordinate representation. In this case we
can introduce appropriate Lagrangian density L in the form:
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where the ¥ = W(r, r) function (i.e. the order parameter) de-
scribes both the time evolution and spatial distribution of opti-
cal field in the cavity. In paraxial approximation (2) under the
mean field theory condition the value of @ = @(¢) is the C-
number that characterizes a macroscopic excitation in time of
atomic system (here we neglect the motion and space distribu-
tion of atomic cloud in the cavity). In (4) we also introduce the
external (harmonic) potential Uyp; = Uop(x, ¥) for the photon
trapping — cf. [16].

Using (4) under the variational approach (see e.g. [9]) we
obtain the following coupled equations for the field ¥ and the
atomic excitation @ respectively:
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Let us consider a solution of (5) and (6) under the adiabatic
approximation for which we suppose d®/d¢ = 0 for atomic
excitation. Eliminating the @ variable from (6) we arrive to
self-consistent generalized Schrodinger equation for the order
parameter ¥ that has the form:

ha+aw— ” 82+82 + Uopi(x. y)
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where u = —4gk/Ey, d = —3k?/Ey. Here we also omit the
term with g2/ E,, that can be also eliminated with help of sim-
ple unitary transformation.

Equation (7) describes a behavior of optical beam inter-
acting with nonlinear atomic medium in the cavity. The last
term in (7) can be discarded within the limit |d| |¥|?> < |u| that
corresponds to phenomenological (macroscopic) approach
for weakly interacting Bose-gas of photons in the cavity —
cf. [26]. The coefficient u that is determined by Kerr-like non-
linearity of atomic vapor is a control parameter for that.

The coefficient d that is always negative in (7) character-
izes a quintic nonlinearity of the medium. Recently a super-
fluid behavior has been considered for such a system in [27].
In particular, formation of stable vortex lattices for “photonic
condensate” has been numerically proposed even for the case
without the external trapping potential Uyp (x, y) use.

In general case when both relaxation rate of optical field I';
and atomic excitations dephasing rate I are under consider-
ation the adiabatic approach is valid when an inequality

T > It ®)

is hold —cf. [28].

In the present paper we consider the atom—field interaction
in the limit when the rates I, and I} are the same order of
magnitude. In this case we can examine the system described
by Hamiltonian (1) using in fact the two macroscopically pop-
ulated polaritonic modes from different brunches.

3 Boson Josephson junction (BJJ) model
for polaritons in the cavity

Let us consider a Josephson dynamics for two
modes, i.e. upper and low branch polaritons, those are coher-
ently excited in the cavity — cf. [23]. We suppose that one
quantum optical mode (with k = 0 as a limit) is only macro-
scopically occupied. Thus, in Hamiltonian (1) we switch over
to macroscopic (continuous) variable (k) for optical field
describing this mode. In this case we introduce the time-
dependent classical wave functions ®; »(f) = /Ny (H)el?.2®
as:

1
D =—(k)—9), 9
1 ﬁwo ®) (©))
1
Dy = —(Yk , 10
2 ﬁ(lﬂ()+¢) (10)

that characterizes the bosonic quasi-particles in atomic
medium corresponding to upper and lower branch polaritons;
N 2(¢) is the time dependent average number of polaritons for
upper (N;) and lower (V) branches respectively, 6, and 6, are
the phases.

Now we introduce the new variables ¢ and 6 as

N-N,
NCX

, 0=6,-01, (11

that characterize a fractional state population imbalance ()
and relative phase (8) for polaritonic modes respectively,
Nex = N1 + N is the total number of polaritons in the cavity.

In the paper we pay our attention to the problem of po-
lariton interaction along the cavity length under the atom-—
field resonance condition A = E, — hclk, | = 0. The Hamilto-
nian (1), describing the superfluid dynamics of the polaritons
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in momentum representation, can be evaluated in the terms of
new variables ¢ and 6 as

H = Actifs” — Aerip(v/1 — 62 cos 6 —+/1+ £2)
x+/1—¢%cos+ AEegc,

where § = Ey/|g| is the scaled (normalized) energy of po-
laritons in transverse plane, Ey; = hzkﬁ /(2mpq)) is their kinetic
energy producing the effect of quantum pressure, m o) 2~ 2m
is the mass of polaritons in the cavity. It is possible to define
Josephson-like length Ay = /|B[/k| that specifies a spatial
control parameter in the system — cf. [3, 5]. For strong coup-
ling regime with the value of atom—field coupling parameter
g~ 0.05meV the length Ay >~ 11 wum. The result is the same
as for atomic BEC in the BJJ problem — cf. [5]. The cru-
cial dimensionless parameter Acg = kNey/[2]g](1 4 BH)] =
A/(1+ B?) determines a nonlinear Josephson coupling be-
tween polaritons of different branches (the parameter A < 0,
i.e. kNex < 0, for positive scattering length of polaritons).

In (12) for Hamiltonian H we define an effective zero-
point energy difference A E¢ as

(12)

AEer = — Aegry/1 — ¢2(1 — p*) cos 0,

where we have made a denotation o = /1 + B2(1 + Aegr).
Physically, the parameter « characterizes the energy gap be-
tween polariton branches, i.e. determines the unalterable zero
point energy difference when condition 8 = 1 takes place.

Using the Hamiltonian (1) and definition (13) for A Eg
one can obtain the following equations for canonically conju-
gated variables ¢ and 6:

13)

d
= = —Aar(s(1 =) — BV 1+ P
+2By/1—¢2cosb)y/1—¢?sin6, (14)
de A 1-2¢2 P
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where t = gt/h is the dimensionless time coordinate.

Thus, the set of equations (14), (15) represents an exten-
sion of the BJJ model in nonlinear dynamics approach with
the phenomenon of tunneling for polaritons from different
branches. In the case § = 0 (14) and (15) describe the polari-
ton arising effect along the cavity length only.

Obviously, it is possible to establish some link between
the system of (14) and (15) describing the polariton dynam-
ics in the cavity and the other Josephson dynamical systems
— cf. [3-10]. In particular, (14) characterizes the interbranch
current / for polaritons. In general it has a complex form.
However we can represent the current / for small values of
as

I~ —I.\/1—¢c2sinf+ Jicy/1 —¢2sinf + I.(1 — ¢?) sin 20,

(16)

where I. = |k|Nex Ey/(2]g]h) is the positive critical current
for polaritons in transverse plane (we took Agr < 0), J; =
|| Nex/(2h) is the current characterizing the polaritons along
the cavity length.

In general the interbranch current / is essentially nonlinear
one; the case is quite different from the Cooper-pair current in
the SJJ problem — cf. [3, 4]. From (16) it is easy to see that the
first term, describing the supercurrent of polaritons in trans-
verse plane, is completely similar to the BJJ inertrap current
occurring for atomic condensates. The last term in (16) repre-
sents a nondissipative current determined by interaction of the
polaritons inside the cavity. Physically, this term can be asso-
ciated with the second order contribution to Josephson current
due to the effect of tunneling for atoms in condensate state
to noncondensate quasiparticles in the BJJ problem [7]. For
small population imbalance |¢| < 1 the contribution to the
current of polaritons along the cavity length can be neglected .

Energy difference AE.y defined in (13) plays a princi-
pal role in total polariton dynamics. In respect of the atomic
BJJ problem the zero-point energy difference A E is deter-
mined by both the geometry of the trap and the nonlinearity
of the atomic condensates [5,6]. The energy A E.s, deter-
mined by applied voltage across the junctions, results in os-
cillations being in analogy with the ac-Josephson frequency
wye ~ A Egr in the SJJ problem. However in the case of po-
laritons, the energy difference A E.g in (13) is mostly depends
on dynamical variables ¢ and 6 in general. Physically, such
abehavior is caused by nonlinear (Kerr-like) cross-interaction
of polaritons from different branches in the cavity. The en-
ergy difference A E defined in (13) can be suppressed for the
case Acgr < 0. For example, we have A E¢r = O for the values
B =1, A = —1 whatimplies the polaritons with momentum
ky >~ 1/xy and kinetic energy E\ = |k|Nex /4. This condition is
compatible with the requirement for definition of the healing
(or coherent) length & that plays an important role for super-
fluid systems — cf. [25]. In particular, a typical length scale
&, for that is determined by the condition when the E en-
ergy is of the order of the interaction energy for condensate
atoms (determined by the k Nex parameter). For the case under
discussion we have the coherent length &; ~ A;.

4 Nonlinear superfluid dynamics
for trapped polaritons
4.1 Small-amplitude oscillations

We start our analysis from the case of non-
interacting (ideal) gas of polaritons when A = 0. The solu-
tions of (14) and (15) are simply presented in the form:

AE
9=gv1+ﬂ2t57t, ¢ =¢(0),

where AE =2g./1+ 2% is the energy splitting for non-
interacting polaritons, ¢(0) is the initial population difference.
Thus, in the case under consideration the polariton branches
are not overlapped and therefore the polaritons arising in the
problem are still uncoupled.

Now let us consider a small-amplitude oscillations case
for population imbalance ¢ when the time average values
(8) = 0 (“zero phase” oscillations) or (#) = & (“mw-phase” os-
cillations). Linearizing (14) and (15) in respect of the ¢ and 6

7)
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variables we arrive to equation

d’s 2

@ +90,n5 = FOJF ’
where two parameters, i.e. dimensionless angular frequencies
of oscillations £2y , and external forces Fy r, are defined as

(13)

202 = (‘QJZPO,Jr + lezo,n)m’ (19)
2ipox =+ EyTELT (20)
Prox = Aetr(l — B2) (@ F Aer £ Acrtf?) 1)
Fox =—E"™ (aF e £ AciB?) . (22)

In (19)-(22) we introduce two characteristic (dimension-
less) parameters, i.e. the Josephson coupling energy E ;0’") =
AerBQR F /14 B2) >~ I, and “capacitive” energy Eg)’”) =
AetrB(4 F /1 + B?) that describe the polariton nonlinear in-
teraction for different branches — cf. [8].

Equations (19)—(21) determine the dispersion relations for
a new type of collective excitations arising in the cavity for
polariton interaction (we stress here the fact that f-parameter
is proportional to momentum as §§ ~ kﬁ). Nevertheless it is
useful to establish some link between the problem consid-
ered here and some other Josephson junction systems. In par-
ticular, the small amplitude oscillation frequency regime, de-
scribed by (19), has the same structure as a frequency of small
oscillations for the atomic population imbalance occurring
for Bose—Einstein condensate confined in the W-potential [5].
The second term in (19) characterizes the linearized Rabi os-
cillations with frequency §2r, - of the population imbalance.
The angular frequency £2jp in (19) and (20) can be considered
as an analog of the plasma frequency for Josephson plasmon
in the problem of a Cooper pair macroscopic tunneling pro-
cess across the junction — cf. [3,29]. The driving force Fy
depends on B-parameter that determines quantum pressure of
polaritons in transverse spatial plane.

We distinguish two principal regimes of collective am-
plitude oscillations for the cavity polaritons. Namely, within
the limit £2g > £2yp so called Rabi regime occurs. For quasi-
particles with a small momentum k; (i.e. for B* <« 1) the
population imbalance oscillates with angular frequency 2 ~

\/4.5A§ff 2 —0.5AcB%+ Aer vs. T under the zero phase
regime. In the case of absence of polaritons in transverse plane
(8 = 0) we have 2y = 2rg = v/ A (for A > 0). Equation (20)
and numerical simulation show that the Josephson coupling
energy Ej is vanished, and the contribution of Rabi frequency
g in (19) is important for parameter § — 1.7.

On the other hand, the Josephson regime is realized for
the polaritons in the cavity within the limit £2r < £25p. Such
aregime of polariton oscillations is achieved for the parameter
B=1

In the limit of large B (8% > 1), i.e. for the quasiparticles
with large momentum k|, the frequency of amplitude oscil-

lations is 20 =/ A% +| Actl > = /T At BE2r + 23
(for Aer < 0) that is in good agreement with the oscillation
frequency expression obtained for atomic population imbal-
ance in the BJJ problem [29]. Thus, crossover to Rabi oscilla-

tions with frequency £2r > /| Aegr| 83 (for | Aege] B < 1) can be

easily achieved by varying, for example, of the A-parameter
(i.e. the intensity of laser field).
The solution of (18) is given by following expression:

(0,m)

Go,r = Ccos(2027) + Gy > (23)

where C is the constant determined by initial conditions,
(co.x(7)) = gé?s‘”) = For/ .Q&n characterizes the displace-
ment for the time average fractional population imbalance (¢)
in respect of the zero value. The displacement gd(?s‘”) =0and
the driving forces Fj =0 for B=0o0r B =1, Aesr=—1.1In
this case small amplitude oscillations of the ¢ variable occur
around the value (¢) = 0.

Developed above approach can be violated, for example,
for running-phase regime when, first, the phase difference
6 grows unrestrictedly and, second, the essentially nonlin-
ear oscillations of population imbalance ¢ take place. We are
also emphasis here some difficulties to obtain so-called Fock
regime by using the Hamiltonian (1) when fulfillment of the
inequality E. > Eyisrequired — cf. [29].

4.2 Stationary states of polaritons

First, we focus our attention on the out-of-phase
stationary states of polaritons in the cavity determined by the
conditions sin 8 # 0, cos 6 #~ 0. From (14) and (15) itis easy to
obtain the following solutions

B A+2
Go=—"r :
VN
A—pB*+1
0y = arccos Ft , (24)
sgn(A)/ A2 —4B2(A+1)

that represents unstable saddle point with energy Hp =
—%(A + 1). The existence of solutions (24) implies fulfill-
ment of conditions for population imbalance ¢ and phase 6,
ie. |¢| <1, |cosf| < 1. The fact results in certain condition
for parameters B and A that looks like:

1
A<—§(,32+1). (25)
Second, we consider another out-of-phase solution of (14)
and (15) with sin & = £1. For stationary fractional population
imbalance ¢ and energy H of the system we find:

Sr2==1,
B +1 ( B )
H,=+/B+1+ 1+ ., (26
R R )
CBVBHL . A+ DB
§3 = s = 2AB )
133

H; (27)
The solutions (26) and (27) do exist if the parameters 8 and
A fulfill the conditions:

B+ D"

A= 7
128+ B2 +1

forgi o, (28)
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and

A=p>—1 forcs, (29)

where g € [ — %; %] Thus, the solutions (26) and (27) rep-
resent the unstable saddle points in phase portrait.

Third, (14) and (15) have zero-phase (in-phase) and 7-
phase stationary solutions with the phase 6 determined by the
condition sin 8 = 0. The stationary points in this case can be

found out from solution of algebraic equation

Argt+ AP + As6P + Aug +As =0 (30

for fractional population imbalance ¢, where the real coeffi-
cients A; = A;(A, B) are the functions of A and 8 (we are not
directly represent them in the paper due to complexity of the
relevant expressions). In general, there exist four roots of (30)
of which only the real solutions are of interest. Note, that one
of the solutions of (30) may become a saddle point if the con-
dition (25) is not fulfilled.

4.3 Phase plane portrait description

From mathematical point of view (14) and (15)
describe an undamped nonrigid pendulum with phase 6
and canonical momentum py = ¢. In the paper we consider
a phase-space description to understand the dynamics of the
polariton interaction in the cavity. In Fig. 1 the evolution of
the phase portraits for various values of normalized kinetic
energy B of polaritons is presented for the same nonlinear
A-parameter. The trajectories are plotted for different values
of initial conditions for the population imbalance and the
phase with A and 8 parameters kept constant. Closed loop
trajectories in the gray area marked in Fig. 1 correspond to
periodic oscillations of pendulum coordinate and phase in
terms of nonlinear pendulum analogy. The stationary points
S;(j=1,...,6)correspond to the roots of (30). White color
regions 1 in Fig. 1 determine the running phase regimes that
correspond to anharmonic rotation of nonrigid pendulum with
relative phase —0o < 6 < +o0. Stationary saddle points P »
at the separatrixes in Fig. 1a and b are determined from (24)
respectively.

For arbitrary value of zero-point energy difference A Eg
defined in (13) the phase-plane portraits are asymmetric as
a rule. However, the phase portrait established in Fig. 1b
becomes completely symmetric for AE.; = 0. In particu-
lar, the small amplitude zero phase Josephson oscillations
of fractional population imbalance take place here in the
region 5 with the frequency §2p = §2jp around the average
value (¢) =0 with zero displacement. The fact is in agree-
ment with (19)—-(23). Two symmetric regions numerated as 2
in Fig. 1b characterize the large-amplitude (7 -phase) oscilla-
tions of pendulum around the top of vertical axis. A complete
energy transfer between polaritons from different branches
takes place in this case approximately. For small initial values
of the fractional population imbalance ¢?(0) < 1 we obtain
the small-amplitude -phase oscillations with frequency £2,
—see (19).

Other regions in Fig. 1b and all of them in Fig. 1a and c
specify so-called macroscopic quantum self-trapping regimes
(MQST) for which a fractional population imbalance ¢ os-

cillates around the non-zero value (¢) # 0. It implies that
population of either of polariton branches is never completely
depleted. In fact, in our case a macroscopic quantum self-
trapping behavior of polaritonic modes takes place, first, as
a result of nonlinear interaction of macroscopically large
number of polaritons from different branches. Second, the
MQST regime occurs as a result of the “external force” ac-
tion (see (18) and (23)) depending on effective difference
AEeff ;ﬁ 0in (13)

In first case, the dependence on normalized time t for frac-
tional population imbalance ¢ is presented in Fig. 2 to visual-
ize the various MQST regimes. In fact, the MQST effect at the
phase 6 = 0 occurs for several cases: in two regions 3 and 5 in
Fig. 1a,inregions 3 and 4 in Fig. 1b, and in region 3 in Fig. lc.
The curve 1 in Fig. 2 demonstrates a self-trapping behavior
of polariton interaction for last case. The regimes discussed
here appear for localized (periodically) phase. A similar dy-
namic MQST behavior occurs for nonlinear interaction of two

2 1.5 o5 0705 1
¢ O/x
FIGURE 1 Phase-plane portraits of the variables ¢ and 6/m for: (a) 8 =

0.15, (b) B=1, (¢) B=2.08475. For all cases the parameter A = —2.
The points S; and P; are the stationary points. The regions numerated as
‘1,2,...,5 determine the various dynamical regimes separated by dashed
curves (separatrixes)
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(ctf. [6]):
() <<(0) (31)
for I type of MQST, and
(5) > c(0) (32)

FIGURE 2  Fractional population imbalance ¢ against scaled dimensionless
time t. The parameters are: § = 2.08475, ¢(0) = —0.97, 6(0) =0 for curve 1,
B =0.15, ¢(0) =—-0.5, 6(0) = for curve 2, B =2.08475, ¢(0) =0.9,
6(0) = 7 for curve 3 and B =1, ¢(0) = —0.259, 6(0) = O for curve 4. For all
cases the parameter A = —2

atomic BEC modes (fundamental and first excited) under the
coupled two-mode approximation —cf. [10].

The second kind of the MQST regime associated with so
called w-phase MQST mode is presented in Fig. 1 for rela-
tive phase values & = . The gray-color regions marked as 2
and 4 in Fig. la and as 2 in Fig. 1c are responsible for that and
characterize the 7-phase pendulum rotations with closed loop
trajectories around the value (¢) # 0 — cf. [5]. In Fig. 2 the
curves 2 and 3 demonstrate the MQST dynamics discussed in
respect of the regions taken from Fig. 1a and c. The curve 3 de-
scribes the large amplitude MQST oscillations appearing here
for the time-averaged population imbalance (¢) # 0 displace-
ment as a result of presence of zero-point energy difference
AEq #0.

We are emphasis here the two types of the w-phase modes
occurring in the MQST regions in Fig. 1a and c for the phase
values 6 = £m. Two various dynamical trapping regimes
(above and beyond the stationary ¢-symmetry breaking value
of population imbalance ¢s) have been firstly discussed for
macroscopic atomic trapping in the BJJ problem [5]. The
modified conditions for that can be represented as follows

0.8

0.7t
0.6t
0.5t
3 04t
o3t

0.2r

0.

cO 02 04 06 08 12 14 16 18

1
a 5(0)c,

for II type of MQST. At the stationary (threshold) point ¢; we
have (¢) = ¢(0) = g, i.e. the average population imbalance
coincides with it initial value ¢(0).

In contrast with the BJJ problem in our case for atomic
condensate 7 -phase modes one can obtain a new type of zero-
phase MQST modes when the system demonstrates the self-
trapping effect according to the conditions (31) and (32). In
fact, we speak about the MQST states appearing in the re-
gions 3 and 5 (Fig. 1a), in regions 3 and 4 (Fig. 1b) and in
region 3 (Fig. 1c). For stationary points S 4 in Fig. 1b we have
(¢) =¢s.

Finally, third kind of the MQST dynamical regime occurs
for various running phase modes with unbounded phase 6.
The case is presented by white-color regions 1 in Fig. 1. The
curve 4 in Fig. 2 characterizes the MQST appearing in the re-
gion 1 in Fig. 1b.

44 Switching dynamics for polaritons

The MQST regimes under consideration can be
achieved by different ways depending on the crucial par-
ameters 8, A and also on the values of initial conditions
for relative phase 6(0) and fractional population imbalance
5(0). Practically we can vary one of them keeping others
unchanged. For example, let us consider transition from the
regime 5 of the Rabi oscillations in Fig. 1b upward, i.e. to the
MQST regime 1 with unbounded running phase. We can es-
tablish the condition for such a transition in this particular case
in the form:

H((0),6(0)) > Heep (33)

b ' B
FIGURE 3 Time-averaged population imbalance (¢) versus (a) ¢(0)/¢. and (b) S-parameter. The parameters for (a) are: ¢. >~ 0.2588, 8 =1, and for (b):
¢(0) =0.2. In all cases parameter A = —2 and initial phase 6(0) =0
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where H(s(0), 6(0)) is the initial (conserved) energy of the
system defined in (12), the energy Hep = —%(1 + A) char-
acterizes the state that corresponds to two separatrixes going
through the points P » in Fig. 1b. For instance, in the case
when the parameters A, 8 and initial phase 8(0) are un-
changed the bound energy H, = 0.5 determines a critical
value of fractional relative population imbalance ¢. & 0.2588.
The MQST dynamics occurs in the case when initial value
5(0) > g.

In Fig. 3a we plot the dependence for time-averaged popu-
lation imbalance (¢) as a function on ratio ¢(0)/¢.. The value
(¢) = 01in Fig. 3a characterizes a polariton interaction for the
region 5 in Fig. 1b. Sharp changing of population imbalance
at ¢(0) = ¢, implies the “phase transition” to the MQST state
with (¢) # 0 (region 1). By similar manner one can obtain
a switching effect for dynamical regimes by varying of the
A-parameter.

In Fig. 3b we establish a switching phenomenon for the
time-averaged population imbalance (¢) depending on S-
parameter (i.e. on kinetic energy of polaritons in transverse
plane). The points A, B and C mark the values of g-parameter
for the phase portraits presented in Fig. 1. Initial value of
(¢) at B = 0 characterizes the average fractional population
imbalance for polaritons along the cavity length when the
supercurrent /. = 0 —see (16). The curve A B determines the
transition from the MQST regions in Fig. 1a to the region 5
of the Josephson oscillations in Fig. 1b. Then, with increas-
ing the absolute value of B-parameter, the regions 5 and 4
are unified in phase plane and form a new drop-like region
where the system is self-trapped (is not shown in Fig. 1). Such
an evolution of the phase portrait in phase-plane is accompa-
nied by sharp transition presented in Fig. 3b near the value
of B~ 1.2. Therefore, the drop-like region is collapsed to
stationary point S, in Fig. 1c with further expanding of the
B-parameter. The curve BC in Fig. 3b describes a switch-
ing effect from the MQST state with locked phase to the
running phase MQST states determined by the region 1 in
Fig. lc.

The switching dynamics of polaritons depending on the
B-parameter has an important feature in the framework of po-
lariton condensation problem for atomic system. In particular,
for initially non-equilibrium state of polaritons in the cav-
ity with large momentum k, the variation of A-parameter
can be used in experiment to achieve a quasi-condensation
with kj = 0 for low-branch polaritons. In turn, the last pa-
rameter can be easily varied in the experiment by chang-
ing the total number N of polaritons in the cavity (we can
change, for example, the intensity of laser field interacting
with the atoms). Thus, observed dynamical regimes for both
fractional population imbalance ¢ and relative phase 0 allow,
first, to estimate the fraction of condensed polaritons in the
cavity taking into account the relevant expression (16) for the
current /. and, second, to manipulate with those coherence
properties.

5 Conclusion

In the paper we developed a quantum theory of
Josephson dynamics for two macroscopic polariton modes
(belonging to upper and lower energy branches being coupled

together due to Kerr-like nonlinearity of atomic medium). The
phenomenon can be used to examine the macroscopic super-
fluid properties of condensed polariton state as well. The anal-
ogy with nonrigid pendulum behavior has been carried out
to understand the different regimes of polariton interaction.
We found out the dispersion relations and the characteristic
frequencies for various regimes of collective excitations in
the cavity including the several effects, i.e. the Josephson and
Rabi oscillations, different kinds of the MQST states for frac-
tional relative population imbalance ¢. Some of them can be
represented as the new one, and have not been considered
yet.

The realization of macroscopic tunneling and interbranch
interaction for polariton modes is important to study in experi-
ment the relative phase coherence in the presence of polariton
condensation (and/or quasi-condensation).
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