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ABSTRACT For laser diode end-pumped solid-state lasers, the
pump beam can be considered to be a Gaussian distribution or
a top-hat distribution or between them. The rate equations for
Q-switched lasers have been treated before, by considering the
pump beam as a Gaussian distribution. This paper deals with
the rate equations and the solutions for Q-switched lasers under
a top-hat pump beam distribution. The normalized rate equation
is obtained and solved numerically. A group of general curves
are given and the comparison with the results under the Gaus-
sian pump beam distribution and the plane-wave approximation
is made. The results show that the solutions of the rate equations
under a top-hat pump beam distribution are different from those
under a Gaussian pump beam distribution, but the difference is
very small. The solutions of the rate equations under both situ-
ations can give much more precise theoretical results than those
under the plane-wave approximation.

PACS 42.60.Gd; 42.55.Xi; 42.55.Ah

1 Introduction

Q-switched lasers are efficacious tools to gener-
ate nanosecond and subnanosecond high-power giant pulses.
Q-switched lasers include actively Q-switched lasers and pas-
sively Q-switched lasers. Actively Q-switched lasers with
electro-optic modulators or acousto-optic modulators are
more stable and controllable, while passively Q-switched
lasers with saturable absorbers are more compact.

The standard tools for analyzing the performance of
a Q-switched laser are the rate equations. For actively
Q-switched lasers, the rate equations under the plane-wave
approximation were first given by Wagner and Kay [1, 2].
These rate equations have been widely referred to and ap-
propriately modified to make them more precise [3–9]. The
dependences of the laser pulse characteristics on the finite
lower laser level lifetime [3–5], laser energy level mani-
folds [6] and the thermalization time between levels in one
manifold [7] were analyzed successively. An optimization
analysis was made [8, 9]. Later, in 1999, the spatial varia-
tion of pumping and intracavity photon density in the rate
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equations was taken into account [10]; these space-dependent
rate equations are particularly necessary for laser diode (LD)-
pumped Q-switched lasers. For passively Q-switched lasers,
the rate equations under the plane-wave approximation were
first given by Szabo et al. [11–13]; these rate equations have
undergone a similar process of modification to make them
more precise [14–21].

For laser diode end-pumped solid-state lasers, the pump
beam can be considered to be a Gaussian distribution in some
situations and a top-hat distribution in some other situations.
Sometimes the pump beam distribution is between the above
two situations. The rate equations for passively Q-switched
lasers have been treated by considering the pump beam as
a Gaussian distribution [21]. This paper will focus on the rate
equations and solutions for Q-switched lasers under a top-hat
pump beam distribution. Because the theoretical description
of an actively Q-switched laser can be considered as one spe-
cial situation of a passively Q-switched laser in which the
saturable absorber is extremely easy to be bleached [22], we
only treat passively Q-switched lasers in this paper.

2 Rate equations

The rate equations including the transverse distri-
bution describing passively Q-switched lasers can be written
as [21]

∞∫

0

dϕ (r, t)

dt
2πr dr

=
∞∫

0

ϕ(r, t)

tr

{
2σn (r, t) l −2σgsansg (r, t) ls

−2σesa
[
ns0 −nsg (r, t)

]
ls − ln (1/R)− L

}
2πr dr , (1)

dn (r, t)

dt
= −γσcϕ (r, t) n (r, t) , (2)

dnsg (r, t)

dt
= − Sg

Ss
σgsacϕ (r, t) nsg(r, t) , (3)

where ϕ(r, t) is the intracavity photon density at the position
of the gain medium and n(r, t) is the population-inversion
density; nsg(r, t) and ns0 are, respectively, the ground-state
and total population densities of the saturable absorber; σ and
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l are, respectively, the stimulated-emission cross section and
length of the gain medium; σgsa and σesa are, respectively, the
ground-state and excited-state cross sections of the saturable
absorber; ls is the length of the saturable absorber; t is time;
tr = 2l/c is the round-trip transit time of light in the resonator
of optical length l′, c is the light speed in vacuum, R is the re-
flectivity of the output mirror, L is the remaining round-trip
dissipative optical loss; Sg and Ss are, respectively, the beam
cross-section areas in the gain medium and in the saturable
absorber; and γ is the net reduction in the population inver-
sion resulting from the stimulated emission of a single photon.
In (1)–(3) the pumping and the spontaneous emission dur-
ing the pulse formation are neglected. Since most solid-state
saturable absorbers are of slow recovery, the ground-state re-
covery of the saturable absorber during the formation of the
Q-switched pulse is also neglected.

Considering the TEM00 laser mode, the intracavity photon
density ϕ(r, t) can be expressed as

ϕ(r, t) = ϕ(0, t) exp

(
− r2

ω2
LI

)
, (4)

where ωLI = (
√

2/2)ωL, ωL is the average radius of the in-
tracavity laser beam in the gain medium and ϕ(0, t) is the
intracavity photon density on the laser axis.

When the pump beam is supposed to have a top-hat distri-
bution, the initial population-inversion density n(r, 0) can be
expressed as

n (r, 0) = n1 (0, 0) Θ (r −ωPI) , Θ (x) =
{

1 (x ≤ 0) ,

0 (x ≥ 0) ,

(5)

where ωPI is the average pump beam radius in the gain
medium under a top-hat pump beam distribution and n1(0, 0)

is the initial population-inversion density on the laser axis.
Substituting (4) and (5) into (2), we obtain

n (r, t) = n1 (0, 0) Θ (r −ωPI)

× exp

⎡
⎣−γσc

t∫

0

ϕ(0, t)dt exp

(
− r2

ω2
LI

)⎤
⎦ . (6)

The initial saturable absorber ground state population density
is

nsg (r, 0) = ns0 . (7)

Substituting (7) and (4) into (3), we obtain

nsg (r, t) = ns0 exp

⎡
⎣− Sg

Ss
σgsac

t∫

0

ϕ (0, t) dt exp

(
− r2

ω2
LI

)⎤
⎦ .

(8)

Substituting (4), (6), and (8) into (1), we obtain

dϕ(0, t)

dt
= 2σl

tr
ϕ(0, t)n1(0, 0)

×

exp
[
−γσc

∫ t
0 ϕ(0, t)dt exp

(
−ω2

PI
ω2

LI

)]

− exp
[
−γσc

∫ t
0 ϕ(0, t)dt

]

γσc
∫ t

0 ϕ(0, t)dt

− 2
(
σgsa −σesa

)
ls

tr
ϕ (0, t) ns0

×
1 − exp

[
− Sg

Ss
σgsac

∫ t
0 ϕ(0, t)dt

]
Sg
Ss

σgsac
∫ t

0 ϕ(0, t)dt

− ϕ(0, t)

tr

[
ln

(
1

R

)
+ σesa

σgsa
ln

(
1

T 2
0

)
+ L

]
. (9)

By using t = 0 and dϕ(0, t)/dt = 0, we can obtain the initial
population-inversion density on the laser axis:

n1(0, 0) =
ln

( 1
R

)+ ln
(

1
T 2

0

)
+ L

2σl

[
1 − exp

(
−ω2

PI
ω2

LI

)] . (10)

Substituting (10) into (9), and introducing some normalized
parameters, we can obtain the normalized rate equation under
a top-hat pump beam distribution:

dΦ(0, τ)

dτ

= Φ(0, τ)

exp
[
−A (τ) exp

(
−ω2

PI
ω2

LI

)]
− exp [−A(τ)]

A (τ)

[
1 − exp

(
−ω2

PI
ω2

LI

)]

−
(

1 − 1

N

)
Φ(0, τ)

1 − exp [−αA(τ)]
αA(τ)

− Φ(0, τ)

N
,

(11)

where Φ(0, τ) is the normalized photon intensity on the laser
axis, τ is normalized time, α is a parameter indicating how
easily the saturable absorber can be bleached; the larger α, the
more easily the saturable absorber can be bleached [18–21];
and τ , α, N, Φ(0, τ), and A(τ) can be written as

τ = t

tr

[
ln

(
1

R

)
+ ln

(
1

T 2
0

)
+ L

]
, (12)

α = σgsaSg

γσSs
, (13)

N =
ln

(
1
R

)+ ln
(

1
T 2

0

)
+ L

ln
(

1
R

)+
(

σesa
σgsa

)
ln

(
1

T 2
0

)
+ L

, (14)

Φ(0, τ) = ϕ(0, τ)
γσctr

ln
( 1

R

)+ ln
(

1
T 2

0

)
+ L

, (15)

A(τ) =
τ∫

0

Φ(0, τ)dτ . (16)
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When α approaches infinity, once the laser action begins, all
the ground-state population will be excited to the first excited
state (which we can see from (8) by setting σgsa → ∞, which
corresponds to α → ∞). Owing to the excited-state absorp-
tion, the transmission of the saturable absorber will be

Tb = exp (−σesans0ls) = T
σesa/σgsa
0 , (17)

and the threshold population-inversion density on the laser
axis will be

nth(0, t) =
ln

( 1
R

)+
(

σesa
σgsa

)
ln

(
1

T 2
0

)
+ L

2σl

[
1 − exp

(
−ω2

PI
ω2

LI

)] . (18)

From (10), (14), and (18) it can be seen that N is the ratio
of the initial population-inversion density to the threshold
population-inversion density in the case of α → ∞.

We can conclude from (11)–(16) that the solutions of (11)
depend on three composite parameters: α, N, and ωPI/ωLI.
Numerically solving (11), we can obtain a group of lines
describing the laser pulse characteristics varying with these
three parameters. The pulse energy E, pulse peak power Pm,
and pulse width W can be written as

E = πω2
Lhν

4σγ
ln

(
1

R

)
Φinteg = πω2

Lhν

4σγ
ln

(
1

R

) ∞∫

0

Φ(0, τ)dτ ,

(19)

Pm = πω2
Lhν

4σγtr

[
ln

(
1

R

)
+ ln

(
1

T 2
0

)
+ L

]
ln

(
1

R

)
Φm , (20)

W = ∆τtr

ln
( 1

R

)+ ln

(
1

T 2
0

)
+ L

, (21)

where hν is the photon energy, ∆τ is the width of Φ(0, τ)

(FWHM), and Φm is the maximum value of Φ(0, τ).
In [21], the initial population-inversion density was sup-

posed to be a Gaussian distribution, and n(r, 0) was written
as

n(r, 0) = n2(0, 0) exp

(
− r2

ω2
PI

)
, (22)

where ωPI = (
√

2/2)ωP, ωP is the average radius of the pump
beam in the gain medium under a Gaussian pump beam distri-
bution. The normalized rate equation obtained under a Gaus-
sian pump beam distribution by Zhang et al. [21] was written
as

dΦ(0, τ)

dτ
= Φ(0, τ)

1∫

0

exp
[−A(τ)yβ

]
dy −

(
1 − 1

N

)

×Φ(0, τ)
1 − exp [−αA(τ)]

αA(τ)
− Φ(0, τ)

N
, (23)

where β is a parameter associated with the ratio of the pump
beam radius to the intracavity beam radius; y is only a transi-
tion parameter, and will disappear during numerically solving
the equation

β = 1

1 + (ωLI/ωPI)2
. (24)

The initial population-inversion density on the laser axis was
written as

n2(0, 0) =
ln

( 1
R

)+ ln

(
1

T 2
0

)
+ L

2σl

(
1 + ω2

LI

ω2
PI

)
. (25)

Equations (19)–(21) can also be used to estimate the pulse en-
ergy, peak power, and pulse width when both the pump beam
and the intracavity photon density are Gaussian distributions.

Under the plane-wave approximation, the pump beam and
the intracavity beam are assumed to be uniform on the laser
cross section:

ϕ(r, t) = ϕ(0, t) , (26)

n(r, 0) = n3(0, 0) . (27)

Using the same normalizing process, we can obtain the nor-
malized rate equation under the plane-wave approximation:

dΦ

dτ
= Φ exp [−A (τ)] −

(
1 − 1

N

)
Φ exp [−αA(τ)]− Φ

N
.

(28)

The initial population-inversion density under the plane-wave
approximation is

n3(0, 0) =
ln

( 1
R

)+ ln

(
1

T 2
0

)
+ L

2σl
. (29)

3 Solution of equations

Equation (11) is the normalized rate equation under
a top-hat pump beam distribution. The solutions of (11) de-
pend on three composite parameters: α, N, and ωPI/ωLI.
Equation (23) is the normalized rate equation under a Gaus-
sian pump beam distribution. The solutions of (23) also de-
pend on three composite parameters: α, N, and ωPI/ωLI.
Equation (28) is the normalized rate equation under the plane-
wave approximation. The solutions of (28) depend on only
two composite parameters: α and N. The plane-wave approx-
imation method cannot reflect the influence caused by the
variation of ωPI/ωLI.

Figures 1 and 2 show the variation of Φinteg and ∆τ

with ωPI/ωLI for a Gaussian pump beam distribution and
a plane-wave approximation, respectively. Under a Gaus-
sian pump beam distribution, Φinteg increases with increasing
ωPI/ωLI while ∆τ decreases with increasing ωPI/ωLI. Under
the plane-wave approximation, Φinteg and ∆τ are independent
of ωPI/ωLI. We can easily see the big difference between the
results under a Gaussian pump beam distribution and those
under the plane-wave approximation.

The difference between (11) and (23) is reflected by the
first term. This difference varies with the variation of ωPI/ωLI.
When ωPI � ωLI and ωPI � ωLI, the difference disappears.
Equations (11) and (23) can be converted to the same equation
when ωPI � ωLI and ωPI � ωLI:
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FIGURE 1 Relation between Φinteg and ωPI/ωLI for different α in the case
of N = 3, under Gaussian pump beam distribution: (a1) α → ∞, (a2) α = 4,
(a3) α = 2; under plane-wave approximation: (b1) α → ∞, (b2) α = 4, (b3)
α = 2

FIGURE 2 Relation between ∆τ and ωPI/ωLI for different α in the case of
N = 3, under Gaussian pump beam distribution: (a1) α → ∞, (a2) α = 4, (a3)
α = 2; under plane-wave approximation: (b1) α → ∞, (b2) α = 4, (b3) α = 2

dΦ

dτ
= Φ

1 − exp [−A(τ)]
A(τ)

−
(

1 − 1

N

)
Φ

1 − exp [−αA(τ)]
αA(τ)

− Φ

N
, ωPI � ωLI , (30)

dΦ

dτ
= Φ exp [−A(τ)]−

(
1 − 1

N

)
Φ

1 − exp [−αA(τ)]
αA(τ)

− Φ

N
, ωPI � ωLI . (31)

When ωPI � ωLI, the initial population-inversion density be-
comes uniform in the gain medium under both Gaussian and
top-hat distributions. ωPI � ωLI represents the situation of
flashlamp-pumped or laser diode side-pumped lasers. When
ωPI � ωLI, the pump beam is near a line along the laser axis,
which does not exist in reality. For a laser diode end-pumped
laser, if ωPI � ωLI, the thermal effect will be serious, which
should be avoided. So, we will not discuss the situation of
ωPI � ωLI in this paper.

FIGURE 3 Relation between Φinteg and N for different α in the case of
ωPI � ωLI, under top-hat pump beam distribution and Gaussian pump beam
distribution: (a) α → ∞, (b) α = 4, (c) α = 2

FIGURE 4 Relation between Φinteg and N for different α in the case of
ωPI = ωLI, under Gaussian pump beam distribution: (a1) α → ∞, (a2) α = 4,
(a3) α = 2; under top-hat pump beam distribution: (b1) α → ∞, (b2) α = 4,
(b3) α = 2

When ωPI and ωLI are comparable, the two pump beam
distributions exhibit different influences on the laser pulse
characteristics. When ωPI = ωLI, (11) and (23) can be con-
verted into the following equations (32) and (33), respec-
tively:

dΦ

dτ
= Φ

exp
[−A(τ) exp(−1)

]− exp [−A(τ)]

A(τ)
[
1 − exp(−1)

]

−
(

1 − 1

N

)
Φ

1 − exp [−αA(τ)]
αA(τ)

− Φ

N
, top-hat , (32)

dΦ

dτ
= Φ

2

A(τ)

{
1 − exp [−A(τ)]

A (τ)
− exp [−A(τ)]

}

−
(

1 − 1

N

)
Φ

1 − exp [−αA (τ)]
αA(τ)

− Φ

N
, Gaussian .

(33)

Figures 3 and 4 show the relations between Φinteg and N
for different α in the cases of ωPI � ωLI and ωPI = ωLI under
top-hat and Gaussian pump beam distributions, respectively.
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FIGURE 5 Relation between Φinteg and ωPI/ωLI for different α in the case
of N = 4, under Gaussian pump beam distribution: (a1) α → ∞, (a2) α = 4,
(a3) α = 2; under top-hat pump beam distribution: (b1) α → ∞, (b2) α = 4,
(b3) α = 2

FIGURE 6 Same as Fig. 5 except for N = 3

Figures 5–7 show the relations between Φinteg and ωPI/ωLI for
different α under top-hat and Gaussian pump beam distribu-
tions in the cases of N = 4, 3, and 2, respectively. It can be
seen that, for given N and α, Φinteg for a top-hat distribution
is smaller than that for a Gaussian distribution when ωPI/ωLI
is relatively small. When ωPI/ωLI is relatively large, Φinteg for
a top-hat distribution is larger than that for a Gaussian distri-
bution. However, the differences between the values of Φinteg

for the two pump beam spatial distributions are much smaller
than the differences between the values of Φinteg under a top-
hat pump beam distribution and those under the plane-wave
approximation.

Figures 8 and 9 show the variation of ∆τ with N for dif-
ferent α in the cases of ωPI � ωL and ωPI = ωLI, respectively.
Figures 10–12 show the variation of ∆τ with ωPI/ωLI for dif-
ferent α in the cases of N = 4, 3, and 2, respectively. It can be
seen that, for given N and α, ∆τ under a top-hat distribution is
smaller than that under a Gaussian distribution when ωPI/ωLI

is relatively small and it becomes larger when ωPI/ωLI is rela-
tively large. However, the differences between the values of

FIGURE 7 Same as Fig. 5 except for N = 2. Since the Q-switching can-
not be realized for α = 2 in the case of ωPI/ωLI < 4 and N = 2, there are no
curves (a3) and (b3) in this figure

FIGURE 8 Relation between ∆τ and N for different α in the case of
ωPI � ωLI, under top-hat pump beam distribution and Gaussian pump beam
distribution: (a) α → ∞, (b) α = 4, (c) α = 2

FIGURE 9 Relation between ∆τ and N for different α in the case of ωPI =
ωLI, under Gaussian pump beam distribution: (a1) α → ∞, (a2) α = 4, (a3)
α = 2; under top-hat pump beam distribution: (b1) α → ∞, (b2) α = 4, (b3)
α = 2
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FIGURE 10 Relation between ∆τ and ωPI/ωLI for different α in the case of
N = 4, under Gaussian pump beam distribution: (a1) α → ∞, (a2) α = 4, (a3)
α = 2; under top-hat pump beam distribution: (b1) α → ∞, (b2) α = 4, (b3)
α = 2

FIGURE 11 Same as Fig. 10 except for N = 3

∆τ for the two pump beam spatial distributions are much
smaller than the differences between the values of ∆τ under
a top-hat pump beam distribution and those under the plane-
wave approximation.

4 Conclusion

We have obtained the normalized rate equations for
passively Q-switched lasers under a top-hat pump beam dis-
tribution, a Gaussian pump beam distribution, and the plane-
wave approximation. These normalized rate equations have
been solved numerically and a group of general curves have
been generated. The results show that the solutions of the rate
equations under a top-hat pump beam distribution have a dif-
ference from those under a Gaussian pump beam distribution,
but the difference is very limited. The solutions of the rate
equations under both situations are far from those under the
plane-wave approximation. This is because the plane-wave
approximation method cannot reflect the influence caused by

FIGURE 12 Same as Fig. 10 except for N = 2. Since the Q-switching can-
not be realized for α = 2 in the case of ωPI/ωLI < 4 and N = 2, there are no
curves (a3) and (b3) in this figure

the variation of ωPI/ωLI. The validity of considering a Gaus-
sian pump beam distribution has been proved in [21]. We
believe that the solutions of the rate equations under both top-
hat and Gaussian pump beam distributions can give much
more precise theoretical results than those under the plane-
wave approximation.
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