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ABSTRACT We show that grey solitons, grey–grey soliton pairs,
and multi-component grey solitons can be realized in two-
photon photorefractive media. The results for soliton pairs and
multi-component solitons are derived under the assumption that
the carrier beams share the same polarization, wavelength, and
are mutually incoherent.

PACS 42.65.Tg; 42.65.Hw; 42.70.Nq

1 Introduction

Spatial solitons have attracted a great deal of atten-
tion because of their possible applications for optical switch-
ing and routing [1–22]. Besides these electromagnetic field
solitons also refractive index solitons have been investigated
in photorefractive (PR) media [23]. Several generic types
of wave-field PR solitons have been predicted and observed
thus far, including quasi-steady-state solitons [1, 2], screen-
ing solitons [3–6], photovoltaic solitons [7–10], screening-
photovoltaic solitons [11–13], and spatial solitons in PR cen-
trosymmetric materials [14, 15] and in anisotropic nonlinear
media [16, 17], all of which result from the single-photon pho-
torefractive effect. Very recently, single beam bright and dark
solitons in two-photon photorefractive materials have been
predicted, which result from the two-photon PR effect [18].
On the other hand, grey solitons and grey–grey soliton pairs
have been predicted for screening solitons [4, 19–21] and
screening-photovoltaic solitons [22] that result from the
single-photon PR effect. Consequently, it would be of interest
to explore whether grey solitons, grey–grey soliton pairs, and
multi-component grey solitons can be realized in two-photon
photorefractive crystals as well.

In the first part of this paper we derive the intensity ver-
sion of the fundamental soliton equation. Then we establish
a model for the two-photon photorefractive effect. Finally, we
show that grey solitons, grey–grey soliton pairs, and multi-
component grey solitons can be realized under steady-state
conditions by a two-photon photorefractive effect.

� Fax: +43-1-4277-51181, E-mail: romano.rupp@univie.ac.at

2 Intensity equation of solitons

In one dimension the propagation of solitons in
a perturbed medium is described by the paraxial equation of
diffraction [4]:

i
∂A

∂z
+ 1

2k

∂2 A

∂x2
+ k0∆n A = 0 . (1)

Here i is the imaginary unit, A is the optical field amplitude,
k = n0k0, k0 = ω2/c = 2π/λ, c is the universal speed limit,
λ the (vacuum) wavelength, k0∆n = k(n2 −n2

0)/2n2
0 defines

the refractive index perturbation, n = n(x) is the perturbed re-
fractive index and n0 the unperturbed refractive index. The
separation ansatz A(x, y) = ϕ(x)ψ(z) leads to the eigenvalue
equation:
(

1

2k

∂2

∂x2
+ k0∆n

)
ϕ = Γϕ , (2)

where Γ is the separation constant and the solution for ψ is
ψ = exp(iΓz). In photorefractive media ∆n is a function of
intensity. For the description we introduce here a dimension-
less intensity variable I ∝ |ϕ|2 normalized by the supremum
of the intensity, i.e. we have 0 ≤ I ≤ 1. Then (2) has the gen-
eral form:(

∂2

∂ξ2
− 1

4
f(I )

)
ϕ = 1

4
gϕ , (3)

where we introduced the dimensionless space variable ξ =
kx and the pertinent soliton (real) propagation constant g =
8Γ/k. Here f(I ) is a real function of the intensity and, pos-
sibly, of a functional of the intensity. For now, the functional
will be considered as a simple constant to be dealt with ret-
rospectively. With the ansatz ϕ(ξ) = u exp(iv), where u and v

are real functions of ξ , and a dot denoting the derivative with
respect to ξ we obtain the relationship:

v̇ = ±
√

l(l +1)

2I
. (4)

The positive proportionality constant l(l + 1) has to be
determined from the boundary conditions. For solitons we
impose the boundary condition that all derivatives vanish at
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infinity. Then from (3) the following fundamental equation for
the intensity profile of optical solitons can be deduced:

İ = ±
√

I
∫ [

f(I ′)+ g + l(l +1)

I ′2

]
dI ′ . (5)

In (5) integration is performed from I∞ = I(ξ → ∞) to I
(since İ(∞) = 0).

For all solitons considered here, we assume also İ(0) =
0. Depending on whether the extremum I0 = I(0) at ξ = 0
is a maximum or a minimum we distinguish bright/bright-
grey solitons with I0 ≥ I(x) and dark/dark-grey solitons with
I(x) ≥ I0. As a consequence, for x < 0 the positive sign refers
to bright/bright-grey, the negative sign to dark/dark-grey
solitons, and vice versa for x > 0. Because of the normaliza-
tion we have I0 = 1 for the first type and I∞ = 1 for the latter.

Among these general solitons the so-called dark and bright
solitons constitute a special class that fulfill the additional
condition of a vanishing centrifugal term, i.e. l = 0. As can be
seen from (4), these are “plane wave” solitons with constant
phase. For the dark soliton with I0 = 0, the condition l = 0 is
obviously compelling (otherwise the centrifugal term would
diverge). Solitons with nonzero centrifugal term will be called
(bright- or dark-) grey solitons.

When integrating (5), the new integration constant can be
fixed by the value I0. In addition we may exploit the vanish-
ing second derivative at infinity and the vanishing derivative at
ξ = 0 to obtain the following relationships:

l(l +1) = −I2
∞[ f(I∞)+ g] (6)

and

g = I0

(I∞ − I0)2

I∞∫
I0

f(I ′)dI ′ − I∞
I∞ − I0

f(I∞) . (7)

Thus the constants g and l are fixed by the intensities at the
boundaries ξ = 0 and ξ → ∞.

As a rule, the resulting differential equation, (5) with (6)
and (7), has no analytic solution and needs to be solved by
numerical methods.

3 Material equations for two-photon
photorefraction

In the next step we derive the function f(I ) for
an electro-optic two-photon photorefractive medium with an
external electric bias voltage Vext applied parallel to its crys-
tallographic c axis. A so-called gating beam illuminates the
medium homogeneously along the x (or y) direction with con-
stant intensity I1, the x direction being parallel to the crystal-
lographic c axis. A second optical beam, the so-called soliton
beam, is polarized along the c axis, propagates along the z
axis and is only permitted to diffract along the x direction,
i.e. its intensity I2 = I2(x) is assumed to be a function of the
x coordinate.

In the following we will essentially retrace the reasoning
of [18], but with a somewhat modified model that is closer to
the situation of doped photorefractive solids as discussed, e.g.

FIGURE 1 Scheme of defect levels and transitions used to model the two-
photon photorefractive effect (VB – valence band, Nx – redox levels, CB –
conduction band, N0 – level of electron donating bivalent ions, Ni0 – inter-
mediate levels)

by Otten et al. [24]. The model assumption is that N0 biva-
lent ions have been doped into the crystal and are assumed to
be charge compensated. The example we have in mind here,
is, e.g. LiNbO3:Fe with the bivalent ions Fe2+ and Fe3+. By
reduction/oxidation treatments we can preset a specific redox
state of the crystal, which is characterized by defect centers,
such as oxygen vacancies that act as deep traps. The result-
ing equilibrium state of the crystal consists in a number of
N−

x electrons per unit volume, permanently captured away
from the bivalent ions by these redox centers, in the remaining
ND0 = N0 − N−

x bivalent ions in the lower valence state (e.g.
Fe2+), and in N+

D0 ions in the higher valence state (e.g. Fe3+).
In equilibrium, charge conservation implies N+

D0 = N−
x . Be-

tween the ground state of the ND0 ions and the conduction
band we place Ni0 intermediate levels that can either be re-
alized by excited states of the bivalent ion or other electron
accepting states such as color centers, complex oxygen va-
cancy centers, or centers introduced by double doping with
other species of bivalent ions in the oxidized state. The only
function relevant in our context is that the Ni0 levels (assumed
to be charge compensated in equilibrium) can be filled with
electrons resulting in N−

i filled intermediate states. The tran-
sition scheme of this model is shown in Fig. 1 and is described
by the following steady-state rate equations:

γ1 N−
i N+

D +γNe N+
D − (s1 I1 +β1)ND

Ni

Ni0
= 0 (8)

(s1 I1 +β1)ND
Ni

Ni0
+γ2Ne Ni −γ1 N−

i N+
D

− (s2 I2 +β2)N−
i = 0 . (9)

Here β1,2 are the thermal excitation rates, s1,2 the cross sec-
tions for photoexcitation by photons with energies hω1,2, and
γ1,2 the relaxation constants between ground state and inter-
mediate level (index 1) and intermediate level and conduction
band (index 2), respectively. The relaxation constant between
the conduction band and the ground state is denoted by γ ,
Ne is the electron density in the conduction band, ND, N+

D
are the number densities of the bivalent ion that can donate
or accept electrons, respectively, Ni, N−

i the intermediate lev-
els that are empty or occupied, respectively, and the rela-
tionships N0 = ND + N+

D and Ni0 = Ni + N−
i establish their

dependence. From (8) and (9) the electron density in the con-
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duction band is obtained:

Ne = s1 I1 +β1

[(s2 I2 +β2)/Ni0 +γ1γ2/γ ]Ni +γ1 N+
D

× (s2 I2 +β2)ND Ni

γN+
D Ni0

. (10)

In a crystal with sufficiently strong doping we may approxi-
mate in first order ND ≈ ND0, N+

D ≈ N+
D0 = N−

x , and Ni ≈ Ni0.
In this approximation

Ne = Ne1
I +b

I +a +b
, (11)

with the dimensionless constants

a = γ1 N+
D0 +γ1γ2 Ni0/γ

s2 Is
,

b = β2/s2 Is ,

and the photoelectron density

Ne1 = (s1 I1 +β1)

γ

ND0

N+
D0

that would have resulted if there were a direct transition into
the conduction band. Here we introduced again the dimen-
sionless intensity variable I(x) = I2(x)/Is normalized by the
supremum Is = sup(I2(x)) (i.e. the peak intensity Is) , so that
0 ≤ I ≤ 1.

In this approximation Poisson’s equation is not needed for
the description of charge transport. The continuity equation

J = eµNe E + eD
∂Ne

∂x
= const. (12)

and Kirchhoff’s law

+L/2∫
−L/2

E dx + RSJ + Vext = 0 (13)

are sufficient. Here e is the elementary charge, µ the mobil-
ity, D the electron diffusion coefficient, R and S are resistance
and cross section of the external circuit, respectively, and L
is the length of the sample in x direction. Since LiNbO3 in
principle might exhibit a bulk photovoltaic contribution to the
current density, one might wonder why we have omitted such
a term in (12). The reason is that the photovoltaic current is
connected to electronic transition from suitable centers to the
conduction band. But, although we consider photovoltaically
active Fe2+ donors as an example for our model, note that their
transitions transfer electrons to the intermediate level where
electrons are localized and thus do not contribute directly to
charge transport. On the other hand, the transitions from the
intermediate level to the conduction band arise from centers
that as a rule are not photovoltaically active.

Usually the experimental situation is such that the external
resistance is negligibly small, hence we put R = 0. Defining
the external field by Eext = Vext/L and the electron density

functional N[I] of the intensity by

N[I] =
⎛
⎜⎝ 1

L

+L/2∫
−L/2

dx

Ne(I(x))

⎞
⎟⎠

−1

, (14)

the electric field is given by

E = − N[I]
Ne

Eext − D

µ

∂ ln Ne

∂x
. (15)

In deriving (15) we have assumed that I(x) is a symmetric
function of x which is the case for the soliton solutions that we
are interested in. Since the diffusion contribution to the elec-
tric field is in the order of magnitude of kBT/ew, where kBT
is the thermal energy and w the width of the soliton, it usually
can be neglected for solitons at sufficiently strong bias field
Eext. The electric field, with this approximation given by:

E = − N[I]
Ne1

(
1 + a

I +b

)
Eext , (16)

induces a perturbation ∆n of the refractive index in electro-
optic media.

In our case we have n0 = ne, where ne is the extraordinary
index of refraction,

∆n = −n3
er33 E

2
,

and r33 is the electro-optic coefficient. This leads to

f(I ) = ∆n0
N[I]
Ne1

(
1 + a

I +b

)
. (17)

The sign of ∆n0 = 4n2
er33 Eext depends on the direction of the

external field Eext while all other quantities in (17) are posi-
tive.

With F(I ) = ∆n0(N[I]/Ne1)[I +a ln(I +b)]+gI − l(l+1)
I

the differential equation for the intensity profile reads as:

I ′ = ±√
[F(I )− F(I∞)] I . (18)

4 Numerical results

From numerical integration one can get solutions
that depend on the input parameter N[I]. In principle one has
then to use (14) to single out the real soliton from these solu-
tions by the requirement of consistency.

However, for grey solitons that have narrow width w

compared with the sample dimension L, we may use the ap-
proximation N[I] ≈ Ne(I∞) and hence N[I]/Ne1 ≈ (I∞ +
b)/(I∞ + a + b) as a first estimate. For LiNbO3 with
(see [18, 25]) ne = 2.2, r33 = 3 ×10−11 mV−1, and Eext =
±1.7 ×106 V m−1 we have ∆n0 = 1 ×10−3 for the refrac-
tive index change parameter that will be used in the simula-
tions. To estimate the other parameters we use [18, 25]: β1 =
β2 = 1 ×10−20 J s−1, s1 = s2 = 1 ×10−6 m2, γ = γ1 = γ2 =
6 ×10−36 J m3s−1, ND0 = 1 ×1023 m−3, and N+

D0 = Ni =
1 ×1022 m−3. This gives a ≈ 10−7 W m−2/Is and b ≈ 10−14
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FIGURE 2 Normalized intensity profiles of dark-type grey solitons for m =
0.1, 0.3 and 0.6, ∆n0 = 1×10−3, a = 100, b = 0.01

W m−2/Is. Although the parameters of real photorefractive
crystals still may deviate by several orders of magnitude from
these values, it is plausible that the parameter b will be negli-
gible in most cases. For high power the nonlinearity gets lost
since f(I ) → ∆n0 = const. for a, b 	 1, i.e. this is an unfa-
vorable regime for soliton observation. The interesting regime
occurs for a ≥ 1 or Is ≤ 10−7 W m−2. Intensity profiles for dif-
ferent greyness of dark-type grey solitons parameterized by
m = I0/I∞ are provided in Fig. 2 for a = 100 at b = 0.01.

Now we turn to the discussion of incoherently coupled
grey solitons in two-photon photorefractive media. For all
beams the polarization is assumed to be parallel to the x axis,
the propagation direction along the z axis and centered at
x = 0, and the frequency to be (nearly) the same. The as-
sumption of mutual incoherence of all beams means that the
solitons propagate independently but in a refractive index pro-
file created by the total intensity, i.e. the sum of the intensities
of all propagating solitons. Hence the amplitude of the ith
field fulfills the equation:

(
1

2k

∂2

∂x2
+ k0∆n

)
ϕi = Γϕi, i = 1, . . . , N , (19)

FIGURE 3 Normalized intensity profiles of both components of a grey–
grey soliton pair with the parameters θ = 30◦, m = 0.2, a = 1.3×106,
b = 0.2, and ∆n0 = −1.2×10−3

FIGURE 4 Normalized intensity profiles for a soliton consisting of N = 4
components with intensities αj Ij , j = 1, . . . , 4 (parameters: θ1 = 40◦, θ2 =
45◦, θ3 = 60◦, m = 0.2, a = 1.3×106, b = 0.1, and ∆n0 = −1.2×10−3)

where the coupling results from dependence of ∆n on the
total intensity I2,tot, which is the sum of the intensities of
all solitons. We describe this total intensity by the supre-

mum Is and the normalized intensity variable I =
N∑

j=1
αj Ij ≤ 1.

Here the individual intensity profiles are given by an inten-
sity variable Ij that is normalized to 1 and the coefficient

αj = sin2 θj

j−1∏
k=0

cos2 θk characterizing the maximum intensity

of each of the solitons with θ0 = 0, appropriately chosen num-
bers θ1, . . . , θN−1, and θN = π/2. For simplicity we choose
all Ij to be equal and thus end up with (18) because of the

normalization
N∑

j=1
αj = 1 and hence Ij = I . It is obvious that

N = 1 represents the single soliton case already discussed. We
consider therefore now the case N = 2, i.e. the case of two
overlapping solitons, where I1 = I cos2 θ and I2 = I sin2 θ

and θ is an arbitrary projection angle. For a demonstration
we have chosen θ = 30◦, and m = 0.2: Fig. 3 shows a grey–
grey pair with the parameters a = 1.3 ×106, b = 0.2, and
∆n0 = −1.2 ×10−3 that correspond to the parameters σ =
a/b = 1.3 ×106, � = b−1 = 5, and β = (kx0)

2∆n0/8 = −178,
respectively, of the paper of Hou et al. [18]. With the same
parameters a = 1.3 ×106, b = 0.2, and ∆n0 = −1.2 ×10−3

Fig. 4 depicts the normalized intensity profiles of a multi-
component composite grey soliton with N = 4 and the param-
eters θ1 = 40◦, θ2 = 45◦, and θ3 = 60◦, respectively.

5 Conclusion

In conclusion, we have shown that grey solitons,
grey–grey soliton pairs, and multi-component grey solitons
can be realized in two-photon photorefractive media under
steady-state conditions. In the derivation we have presup-
posed that the carrier beams share the same polarization and
wavelength, and are mutually incoherent.
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