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ABSTRACT The particle size distribution within an aerosol
containing refractory nanoparticles can be inferred using time-
resolved laser-induced incandescence (TR-LII). In this pro-
cedure, a small volume of aerosol is heated to incandescent
temperatures by a short laser pulse, and the incandescence of the
aerosol particles is then measured as they return to the ambient
gas temperature by conduction heat transfer. Although the cool-
ing rate of an individual particle depends on its volume-to-area
ratio, recovering the particle size distribution from the observed
temporal decay of the LII signal is complicated by the fact that
the LII signal is due to the incandescence of all particle size
classes within the sample volume, and because of this, the par-
ticle size distribution is related to the time-resolved LII signal
through a mathematically ill-posed equation.

This paper reviews techniques proposed in the literature for
recovering particle size distributions from TR-LII data. The
characteristics of this problem are then discussed in detail, with
a focus on the effect of ill-posedness on the stability and unique-
ness of the recovered particle size distributions. Finally, the
performance of each method is evaluated and compared based
on the results of a perturbation analysis.

PACS 44.05.+e; 47.70.Pq; 78.70.-g; 65.80.+n; 78.20.Ci

1 Introduction

Techniques for measuring particle size distribu-
tions in aerosols are important in many applications. For
example, they are essential for establishing the impacts
of anthroporgenically-generated soot particles on human
health [1] and the ecosystem [2], which are both strong func-
tions of particle size. The size of primary particles in soot
aggregates also has a pronounced effect on radiation heat
transfer in engines and furnaces [3], so determining particle
morphology within these devices is paramount when optimiz-
ing their performance. Finally, accurate particle size measure-
ment is a critical part of engineered nanoparticle synthesis [4].

Since its introduction by Melton [5], time-resolved laser-
induced incandescence has evolved into a powerful tool for
making in situ property measurements of aerosol dispersions
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including the particle size distribution. In this procedure,
a laser pulse heats a small sample volume of aerosol to tem-
peratures substantially higher than the ambient gas tempera-
ture, typically 3000–3500 K in particle-sizing experiments.
The particles then cool to the ambient gas temperature in mi-
croseconds, primarily by conduction to the surrounding gas. If
sublimation and radiant heat loss effects are negligible, which
is usually the case in low-fluence experiments, the particle
temperatures are governed by

�c
πd3

p

6

dTp(t, dp)

dt
= qin(t, dp)−qcond(t, dp) , (1)

where � and c are the particle density and specific heat,
qin(t, dp) is the energy absorbed by the particle during the ex-
citation laser pulse, and qcond(t, dp) is the conduction heat loss
from the particle to the surrounding gas. (The dependence of
� and c on particle temperature is omitted from (1) for clarity,
but is accounted for in the analysis later in the paper.) If the
excitation laser operates at a wavelength λe, the rate of laser
energy absorption by the particle is given by

qin(t, dp) = F0 q(t)Qabs,λe(dp)
πd2

p

4
, (2)

where F0 is the total laser fluence and q(t) is the laser tem-
poral power density. If the particle absorbs in the Rayleigh
limit (i.e., πdp/λe < 0.3 [6]), the particle absorption efficiency
is equal to Qabs,λe(dp) = 4πdp/λe E(mλe), where E(mλe) is
the absorption function of the complex index of refraction.
This equation can also be applied to the primary particles of
soot aggregates via Rayleigh–Debye–Gans polyfractal aggre-
gate theory as long as the soot aggregate structure is suffi-
ciently open and the primary particle diameters lie within the
Rayleigh limit [7].

At atmospheric pressures, heat conduction from par-
ticles to the surrounding gas usually occurs within the free-
molecular regime and is governed by [8]

qcond(t, dp) = αT
πd2

p

4

Pgc̄(Tg)

2Tg

γ ∗ +1

γ ∗ −1
[Tp(t, dp)− Tg] , (3)
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where αT is the thermal accommodation coefficient, γ ∗ is ob-
tained from

1

γ ∗ −1
= 1

Tp(t, dp)− Tg

Tp∫

Tg

dT

γ(T)−1
, (4)

and c̄(Tg) = √
8kBTg/πmg, in which kB is Boltzmann’s con-

stant and mg is the molecular mass of the gas. (Although
aggregate shielding effects are often important [9], they are
neglected in this paper for simplicity.) Equations (1)–(3) can
be solved for the temperature of a particle of diameter dp at
any time t after the peak temperature using standard numerical
techniques.

Because the particle cooling rate is inversely proportional
to the particle volume-to-surface area ratio, the observed in-
candescence decay rate is a function of the particle size dis-
tribution. At any instance in the cooling process, the spec-
tral incandescence of the measurement volume at the detec-
tion wavelength λ is related to the size distribution through
a Volterra integral equation of the first kind,

Jλ[t, f(dp)] = Cλ

∞∫

0

fd(dp)Kλ(t, dp)ddp , (5)

where fd(dp) is the probability density function of the par-
ticle diameter and Cλ is a constant that depends on the particle
volume fraction and the optical measurement system charac-
teristics. The kernel of (5) is given by

Kλ(t, dp) = Eb,λ(t, dp)Qabs,λ(dp)
πd2

p

4
, (6)

where Eb,λ(t, dp) is the spectral emissive power of a black-
body at a temperature Tp(t, dp) and wavelength λ. Instead of
relying on a single spectral incandescence measurement to de-
termine the size distribution, many researchers measure the
aerosol incandescence at two detection wavelengths and then
calculate an effective temperature,

Te[t, f(dp)] = hc0/kB(1/λ1 −1/λ2)

ln

{
E(mλ1)

E(mλ2)

Jλ2[t, fd(dp)]
Jλ1[t, fd(dp)]

(
λ2

λ1

)6} , (7)

where h is Planck’s constant and c0 is the speed of light
in a vacuum. Equation (7) is an implicit function of fd(dp)

through (5). Unlike spectral incandescence, the effective tem-
perature is independent of both the volume fraction of par-
ticles contained within the aerosol measurement volume and
their optical properties provided that E(mλ1) ≈ E(mλ2).

The spectral incandescence or effective temperature curve
corresponding to a particular size distribution can be cal-
culated directly from the above equations; we refer to this
process as solving the mathematically well-posed forward
problem. More often, however, the objective is to solve the in-
verse of this problem, i.e., to determine the size distribution
that causes an experimentally observed Jλ or Te decay. This
procedure is relatively straightforward if particle sizes are as-
sumed to be monodisperse, in which case all the particles have

the same temperature decay curve and dp can be found di-
rectly from the time constant. This procedure was first used by
Will et al. [10] and Mewes and Seitzman [11] to determine an
average primary particle size of a soot aerosol using TR-LII
measurements.

In reality, however, particle sizes in most aerosols are
polydispserse and fd(dp) can only be found by solving (5)
or (7). This is far more difficult because integral equations of
the first-kind like (5) are mathematically ill-posed. The for-
mal distinction between well-posed and ill-posed problems
was first made by Hadamard [12], who defined well-posed
problems as those that (i) have solutions (ii) that are both
unique and (iii) stable under small perturbations in the prob-
lem definition or input data; problems that fail to satisfy any
of the above criteria are deemed to be ill-posed. In this prob-
lem Hadamard’s first criterion is satisfied since the observed
incandescence decay is produced by at least one particle size
distribution. There is, however, no guarantee that there is only
one unique distribution that can produce the observed LII
signal, and furthermore, a particle size distribution that satis-
fies (5) and (7) may be very sensitive to small perturbations
in the incandescence data and modeling errors. The latter is
a particular concern, since photodetector measurements are
usually contaminated with substantial shot noise, and many
of the physical parameters in the heat transfer model are not
known with a high degree of certainty.

The above properties make ill-posed problems difficult to
solve, so special mathematical techniques must be employed
to recover the particle size distribution from time-resolved LII
data. These techniques belong to one of two classes: explicit
methods solve the ill-posed mathematical problem for the un-
known parameter directly, usually by first transforming the
integral equation into an ill-conditioned matrix equation that
is then solved using regularization. Roth and Filippov [13]
used this approach to solve (5) for fd(dp) using an itera-
tive regularization scheme [14, 15]. Although this method was
demonstrated on a test problem having a known distribution,
it has limited practical utility since the maximum and min-
imum particle sizes must be known with some accuracy to
restrict the nullity of the coefficient matrix to a manageable
level, which is rarely possible in most real-world applications.

Implicit methods, on the other hand, work by repeatedly
substituting trial solutions of fd(dp) into the forward prob-
lem, either (5) or (7), until the modeled variable, Jmod

λ (t)
or T mod

e (t), matches experimentally-observed results within
a specified tolerance. Lehre et al. [16, 17] were the first to
apply an implicit scheme to solve for the size distribution
of a polydisperse aerosol using time-resolved LII data. Both
Kuhlmann et al. [18] and Dankers and Leipertz [19] have also
derived implicit techniques for finding particle size distribu-
tions using multivariate minimization. Liu et al. [20] describe
an approach that transforms the multivariate minimization
problem into an easier-to-solve univariate minimization prob-
lem. These techniques have been adopted by other researchers
([21–23], for example) to perform TR-LII aerosol particle siz-
ing in a wide range of applications.

This paper surveys the implicit TR-LII particle sizing
methods that have been presented in the literature. Each tech-
nique is described in detail and demonstrated by analyzing
a set of artificial data generated using a specified size distri-



DAUN et al. Determining aerosol particle size distributions using time-resolved laser-induced incandescence 365

bution. Finally, a discussion of how the ill-posed nature of
the inverse problem affects the accuracy of the recovered size
distributions is presented, and the resilience of each particle-
sizing method to uncertainties in the model parameters and
experimental noise is assessed.

2 Test problem

The particle sizing techniques are demonstrated
throughout this paper by using them to analyze an aerosol rep-
resentative of in-flame soot. The particle diameters in many
aerosols obey a lognormal probability density function,

fd(dp) = 1

dp
√

2π ln σg
exp

[
−

(
ln dp/dpg√

2 ln σg

)2]
, (8)

which has the corresponding cumulative distribution function

Fd(dp) = 1

2

[
1 + erf

(
ln dp/dpg

2 ln σg

)]
. (9)

Both of these functions are plotted in Fig. 1. The geometric
mean, dpg, and geometric standard deviation, σg, are set equal
to 30 nm and 1.25, respectively, typical values for the primary
particles of in-flame soot [20].

FIGURE 1 Lognormal particle size distribution

FIGURE 2 Simulated incandescence and effective temperature data

The spherical particles are heated from the ambient gas
temperature, 1700 K, to a peak temperature of approximately
3300 K by the laser pulse and then cooled back to the ambi-
ent gas temperature. The time-dependent temperature of each
particle size class is calculated by solving (1) using a fourth-
order Runge–Kutta scheme. The thermal accommodation co-
efficient, αT, is set equal to 0.3 and E(mλ) = 0.3 over all
wavelengths. Temperature-dependent properties of the soot
and flame gases are defined in a previous study [20].

The transient temperature distribution is then substituted
into (5)–(7) to obtain simulated spectral incandescence meas-
urements at λ1 = 400 nm and λ2 = 780 nm along with the
derived effective temperature, which are plotted in Fig. 2.
(Simulated data for a monodisperse aerosol with dp = 30 nm
is also plotted to show the effect of polydispersity on the LII
signal.) A sampling interval of two nanoseconds is assumed,
which is typical of many experiments.

3 Implicit solution schemes

Implicit solution schemes work by repeatedly
solving the well-posed forward problem, i.e., determining
the incandescence intensity or effective temperature decay
corresponding to trial particle size distributions, until the
predicted quantity, either Jmod

λ (t) or T mod
e (t), matches the

experimentally-observed one. The most efficient way to do
this is to recast the problem as a least-squares minimization
problem,

min
x

[F(x)] = min
x

[
1

2

∥∥bexp −bmod(x)
∥∥2

2

]
, (10)

where F(x) is the objective function, the elements of x spec-
ify the particle size distribution, and bexp and bmod(x) contain
the experimentally-observed and modeled data, respectively.
In most soot-laden aerosols the primary particle diameters
obey a log-normal distribution, so x is usually defined as
x ≡ {dpg, ln(σg)}T. (Using ln(σg) instead of σg improves the
scaling of the minimization problem.) Nonlinear program-
ming is then used to find the value of x∗ that satisfies F(x∗) =
min[F(x)], which also defines the particle size distribution
most likely to have produced the observed experimental data.

Nonlinear programming techniques work by minimizing
F(x) iteratively; at the kth iteration, the solution is updated
by xk+1 = xk + pkαk where pk is a search direction and αk is
a step size, which are both chosen based on the local topo-
graphy of F(xk). If F(x) approximates a quadratic function in
the vicinity of xk, the most efficient choice for pk is Newton’s
direction [24],

∇2 F(xk)pk = −∇F(xk) , (11)

where the gradient vector and Hessian matrix contain first-
and second-order objective function sensitivities, ∇Fp(xk) =
∂F(xk)/∂xp and ∇2 Fpq(xk) = ∂2 F(xk)/∂xp∂xq, and αk is set
equal to unity. This approach, called Newton’s method [24],
usually requires the fewest iterations to find x of all the non-
linear programming methods (and only one step if F(x) is
a quadratic function of x), although the computational ef-
fort needed to evaluate the second-order sensitivities make
it unsuitable when F(x) is expensive to calculate, which is
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certainly the case in the present problem. Instead, in most
least-squares objective functions the Hessian can be approxi-
mated accurately by ∇2 F(xk) ≈ JT(xk)J(xk), where J(xk) is
the Jacobian of f (x), Jpq(xk) = −∂2bmod

p (xk)/∂xq .
Unfortunately, in this problem both the Hessian and Ja-

cobian are ill-conditioned in the vicinity of x∗ due to the
underlying ill-posedness of the problem; this condition can be
diagnosed from the condition number of the Hessian matrix,

Cond
[∇2 F(xk)

] = ∥∥∇2 F(xk)
∥∥/

∥∥∇2 F(xk)−1
∥∥ , (12)

with an equivalent expression applying for Cond[J(xk)].
A large value of Cond[∇2 F(xk)] or Cond[J(xk)] indicates that
while there exists a unique search direction pk that solves (11)
exactly, there are also a large set of search directions, {pk }, that
could also satisfy (11) with a small residual. The Levenburg–
Marquardt method stabilizes the calculation of pk by ap-
proximating the Hessian with ∇2 F(xk) ≈ JT(xk)J(xk)+λk I,
where λk is a regularization parameter and I is the identity ma-
trix; this dramatically reduces the number of search directions
that “almost” solve (11). Most often Levenburg–Marquardt
is implemented as a trust region method in which λk is de-
fined implicitly through the size of the trust region, ∆k, which
forces ‖pk‖2 ≤ ∆k at each iteration [25]. The trust region size,
in turn, is specified heuristically based on how closely F(x)

approximates a quadratic function in the vicinity of xk.
Although all implicit particle sizing techniques in the lit-

erature work by solving a least-squares minimization problem
having the form of (11), each technique defines F(x) in a dif-

FIGURE 3 Least-squares objective
functions used by different implicit
solution techniques (a) (13), (b) (14),
(c) (17), and (d) (18). Functions are
normalized and are plotted on an ex-
ponential scale

ferent way. The first and most straightforward implementation
was introduced by Lehre et al. [16], who defined F(x) based
on the difference between measured and modeled incandes-
cence signals at m discrete observation times,

F(x) = 1

2

m∑
i=1

[
Jexp
λ (ti)− Jmod

λ (ti , x)
]2

, (13)

and in a subsequent publication [17] effective temperature
was substituted in place of monochromatic incandescence,

F(x) = 1

2

m∑
i=1

[
T exp

e (ti)− T mod
e (ti , x)

]2
. (14)

Equations (13) and (14) are plotted in Fig. 3a and b,
respectively.

Kuhlmann et al. [18] developed a more sophisticated ap-
proach based on the method of cumulants. If a distribution
f(Γ ) is related to a measured signal g(t) through a Laplacian
integral equation,

g(t) =
∞∫

0

f(Γ ) exp(−Γt)dΓ (15)

(a special type of Volterra equation of the first kind), then the
exponential decay of g(t) can be expressed as a power-series
of t,

ln[g(t)] = −K1t + K2t2

2
+ . . .+ Kn(−t)n

n! , (16)
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where the coefficients {Ki, i = 1, 2, . . . } are the cumulants of
f(Γ ). If the distribution of Γ is log-normal, then f(Γ ) is de-
fined completely by the first two cumulants, 2σg = K2/K2

1 +
1 and dpg = K1/2σg. Unfortunately, this does not apply
to Volterra integral equations of the first-kind in general,
which can have more complicated kernels like (6). Instead,
Kuhlmann et al. [18] derive cumulant-like parameters, K exp

1
and K exp

2 , from a quadratic regression of the log of exper-
imentally measured monochromatic incandescence signals,
{ln[Jexp

λ (ti)]}, following (16). The least-squared objective
function is then defined as

F(x) = 1

2

{[
K exp

1 − Kmod
1 (x)

]2 + [
K exp

2 − Kmod
2 (x)

]2}
, (17)

which is plotted in Fig. 3c.
Dankers and Leipertz [19] developed a similar method by

fitting two exponential curves to the monochromatic incan-
descence signal over two different time domains, ∆t1 and ∆t2.
The first time domain starts approximately 100 ns after the
laser pulse and lasts 150–200 ns, while ∆t2 typically starts at
600 ns and lasts 200 ns provided the particles are sufficiently
large and the ambient gas temperature is sufficiently high. The
particle size distribution is then found by comparing the time
constants of the exponential curves, τexp

1 and τ
exp
2 , to databases

of model-generated time constants formed by varying dpg and
σg over a range of values. This is equivalent to minimizing

F(x) = 1

2

{[
τ

exp
1 − τmod

1 (x)
]2 + [

τ
exp
2 − τmod

2 (x)
]2}

, (18)

which is plotted in Fig. 3d.
Although the above implicit methods all work by mini-

mizing different objective functions, Fig. 3 shows that each
of these functions is dominated by a long, shallow valley
surrounding a strong local minimum at x∗, which is charac-
teristic of many objective functions that arise from ill-posed
problems. Each objective function has at least one minimizer,
x∗, so Hadamard’s first criterion requiring the existence of
at least one solution is satisfied. Furthermore, Fig. 3 shows
that the objective functions have only one minimizer, at least
over the plotted range of dpg and ln(σg), which means that
Hadamard’s second criterion demanding solution uniqueness
is also satisfied. (Formal proofs of uniqueness must demon-
strate that F(x) is convex over the entire problem space, and
are elusive if the objective function is complex.) The prob-
lem is ill-posed because any point along the floor of the valley
surrounding x∗ almost minimizes F(x), i.e., it produces mod-
eled data that closely resembles the experimentally observed
data, even though it may specify an entirely different particle
size distribution. Because of this, Hadamard’s second crite-
rion is almost violated, and as we will show later in the paper,
Hadamard’s third criterion is certainly violated.

This troublesome objective function topography is di-
rectly linked to the aforementioned ill-conditioning of the
Hessian matrix at x∗, since Cond[∇2 F(x∗)] approximates the
ratio of the largest and smallest eigenvalues of the Hessian,
Λmax/Λmin. These values, in turn, are the rates that F(x) in-
creases as x moves away from x∗ in the directions of the
corresponding Hessian eigenvectors, which point in the di-
rections of maximum and minimum curvature of F(x) at x∗.

The relationship between these parameters and the objec-
tive function topography is shown in Fig. 3a. Thus, a well-
conditioned Hessian, Cond[∇2 F(x∗)] ≈ 1, indicates that the
objective function is equally-curved in all directions while an
ill-conditioned Hessian, Cond[∇2 F(x∗)] 	 1, is characteris-
tic of the long, shallow valley surrounding x∗.

A technique proposed by Liu et al. [20] further elucidates
the ill-posed nature of the problem. It is based on the ob-
servation that, if the particles are heated to the same peak
temperature at tmax, the initial effective temperature decay rate
is governed by

d ln(Te − Tg)

dt

∣∣∣∣
tmax

= − C

dp32
, (19)

where

C = 3

4

αT

�c

Pgc̄

Tg

(
γ ∗ +1

γ ∗ −1

)
, (20)

and dp32 is the Sauter mean diameter,

dp32 =
∞∫

0

fd(dp)d
3
p ddp

/ ∞∫

0

fd(dp)d
2
p ddp , (21)

which for a lognormal distribution is equal to

dp32 = dpg exp
[
5/2 ln(σg)

2] . (22)

Equations (19)–(22) provide a relationship between σg and
dpg and show that particle size distributions having the same
Sauter mean diameter also have the same initial effective tem-
perature decay after the laser pulse. At later times in the
cooling process, however, the effective temperature decay rate
becomes unique to a particular particle size distribution. In
this approach, the first step is to calculate dp32 by perform-
ing a linear regression on a set of {ln[T exp

e (ti)− Tg]} data,
where tmax ≤ ti ≤ tmax + 100 ns. Once dp32 has been found,
the lognormal size distribution is specified by only one pa-
rameter, say σg. The next step is to find the value of σg that
causes the modeled effective temperature to match the meas-
ured effective temperature at some time tc after the peak soot
temperature, which can be done by minimizing

F(σg) = [
T exp

e (tc)− T exp
e (tc, σg)

]2
. (23)

Liu et al. [20] found that for soot in flames at atmospheric
pressure, the maximum sensitivity of Te(tc) to σg was ob-
tained by setting tc = 1.5 µs; values of tc for other scenarios
can be determined from a sensitivity analysis. Figure 4 shows
the curve dp32 = dpg exp[5/2 ln σ2

g ] plotted over the topogra-
phy of (13) generated with Jexp

λ (ti) data collected between tmax
and tmax +100 ns. The Sauter mean curve corresponds to the
floor of the valley surrounding x∗ because different size distri-
butions having the same dp32 produce similar incandescence
curves. This is almost a violation of Hadamard’s second cri-
teria and causes a violation of Hadamard’s third criterion, as
demonstrated in the next section.

Recently, Stagg [26] suggested that the minimization
problem can be stabilized by defining an objective function
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FIGURE 4 Equation (22) plotted over (14), generated using data measured
up to 100 ns after the laser pulse

composed of two least-squares objective functions that have
different principle curvature directions,

F(x) = F1(x)+wF2(x) , (24)

FIGURE 5 Adding (a) (14) to
(b) (25) forms a composite objective
function (c) that is steeper at x∗

where w is an adjustable weight. One possibility is to define
F1(x) using (14) and let

F2(x) = 1

2

[
η

exp
2

η
exp
1

− ηmod
2 (x)

ηmod
1 (x)

]2

, (25)

where η1 and η2 are time constants similar to τ1 and τ2

used in (18), except they are found by fitting exponential
curves to Te(t)− Tg instead of Jλ(t). In this case, w was
chosen to be 2 ×104 by minimizing Cond[∇2 F(x∗)]. The
three objective functions are plotted in Fig. 5. (Note that
F1(x), F2(x), and F(x) are all minimized by x∗.) Figure 5a
shows that the topography of F1(x) is dominated by a val-
ley that roughly corresponds to the Sauter mean diameter
and is almost perpendicular to the dpg axis. In contrast,
F2(x) is designed to emphasize the effective temperature
decay rate at later cooling times, which more strongly de-
pends on the particle size dispersion width, σg, instead of
the mean particle diameter, dpg, and accordingly, F2(x) has
a valley that is roughly orthogonal to the valley of F1(x)

as shown in Fig. 5b. (Note the differences between the ef-
fective temperature curves of monodisperse and polydisperse
aerosols shown in Fig. 2.) Adding these two functions to-
gether produces a composite function that is steeper in the
vicinity of x∗ than both F1(x∗) and F2(x∗), and conse-
quently a much smaller set of possible values of x̃∗ mini-
mizes F(x) within a given tolerance compared to both F1(x)

and F2(x).
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4 Solution accuracy and stability

In the previous section we showed that particle
sizing through inverse analysis of time-resolved LII data in-
volves solving an ill-posed problem that violates Hadamard’s
third criteria, and consequently we must expect the recovered
particle size distribution to be highly sensitive to perturbations
in the problem definition. In this problem, the perturbations
are due to uncertainties in the model parameters and noise in
the measured data.

4.1 Model parameter uncertainty

Many of the model parameters in time-resolved
laser-induced incandescence studies are not known with
a high degree of certainty, as recently highlighted by Schulz
et al. [27] among others. In particular, the majority of LII
studies on in-flame soot in the recent literature report values
of αT ranging from 0.23 to 0.37 [28] and wavelength-
averaged values of E(m) that range from 0.2 to 0.4 [29].
Lehre et al. [17] also suggest that particle sizing is sen-
sitive to errors in gas temperature measurement, and even
the most accurate in-flame measurements are subject to
uncertainties of around 1–2%. (Although the observed in-
candescence decay in high-fluence LII experiments may
be more sensitive to the particle size distribution com-
pared to low-fluence experiments, this practice is not rec-
ommended for particle sizing due to the large model un-
certainties associated particle evaporation, oxidation, and
annealing [27, 30].)

The relative sensitivity of the size distributions recovered
by the implicit techniques to model parameter uncertainties
is assessed by performing a perturbation analysis. In this pro-
cedure, artificial monochromatic incandescence is first gener-
ated at 400 and 780 nm using the nominal model parameters,
αT = 0.3, E(m) = 0.3, and Tg = 1700 K, and the particle size
distribution shown in Fig. 1. The six implicit techniques are
then used to recover the particle size distribution from the
artificial data, except the model parameters are perturbed to
maximum and minimum values representative of the param-
eter uncertainties summarized in Table 1. In each case, the
accuracy of the recovered distribution is quantified by the
Cramér–von Mises (CVM) goodness-of-fit parameter [31],
defined as the area contained between the recovered and exact
particle size cumulative distribution functions,

[W(x)]2 =
∞∫

0

[
Fd(dp, x)− Fd

(
dp, x∗)]2

ddp , (26)

which is shown graphically in Fig. 6.

Method Nominal αT ±0.05 Tg ±30 K E(mλ)±0.1

Lehre et al. [16] 0.014 1.206 0.280 1.812 (3.723)
Lehre et al. [17] 0.168 1.165 0.262 0.168
Kuhlmann et al. [18] 0.009 1.058 0.111 0.010 (1.388)
Dankers and Leipertz [19] 0.012 1.055 0.103 0.013 (1.101)
Liu et al. [20] 0.305 1.311 0.428 0.305
Composite, (24) 0.052 1.038 0.177 0.052 TABLE 2 Maximum CVM statistics due to

model parameter uncertainty

Model parameter Nominal value Perturbation

αT 0.3 ±0.05
E(mλ) 0.3 ±0.1
Tg 1700 K ±30 K

TABLE 1 Nominal model parameters and perturbations

FIGURE 6 Graphical representation of the Cramér–von Mises goodness-
of-fit statistic

The maximum CVM statistic associated with each pertur-
bation is included in Table 2. The first column shows that the
CVM statistics of the unperturbed recovered distributions are
slightly larger than zero because the model used to calculate
Jmod
λ (x) and T mod

e (x) neglects residual laser heating after the
peak temperature. (The method of Liu et al. [20] is particularly
susceptible to this effect, since dp32 is calculated directly from
data collected in the first 100 ns after the peak temperature.)
In general, the recovered particle size distributions are most
sensitive to accommodation coefficient perturbations; particle
size distributions recovered using (14) with the perturbed ac-
commodation coefficients are shown in Fig. 7. The composite
technique is less sensitive than the other implicit schemes due
to the influence of F2(x), which is relatively insensitive to the
initial particle cooling rate. On the other hand, all methods
are relatively insensitive to errors in Tg. The implicit methods
based on effective temperature are completely insensitive to
E(mλ) as long as E(mλ) is truly wavelength-independent, and
the techniques derived by Kuhlmann et al. [18] and Dankers
and Leipertz [19] are also resilient to uncertainties in E(mλ).
The least-squares monochromatic incandescence method of
Lehre et al. [16] is very sensitive to E(mλ), however.

The above analysis assumes that the peak particle tem-
perature is measured directly using two-color pyrometry, and
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FIGURE 7 Effect of αT uncertainty on size distributions recovered
using (14)

that (1) does not include the laser excitation term. An alterna-
tive approach is to estimate the peak temperature by including
the laser-excitation term in (1), which must be done if the
probe volume incandescence is measured at only one wave-
length. Uncertainties in E(mλ) induce large errors in the esti-
mated peak temperature, however, which in turn cause large
errors in the recovered particle size distribution. The CVM
statistics associated with this approach are included paren-
thetically in the E(mλ) column of Table 2.

4.2 Measurement uncertainty

The sensitivity of the implicit solution methods
to measurement noise was assessed by contaminating the
synthetic incandescence signal with artificial photomultiplier
shot noise according to

J̃λ(ti) = Jλ(ti)+ ελ(ti) . (27)

The time-dependent error, ελ(ti), is sampled from an unbi-
ased Gaussian distribution having a standard deviation of
Cλ

√
Jλ(ti) with Cλ set equal to 10% of the maximum signal

strength of each channel, which is consistent with the operat-
ing theory of photodetectors [32] and typical of noise encoun-
tered in an experimental setting. The effect of photomultiplier
shot noise is usually mitigated by averaging a large set of
single-shot measurements, provided that the duration between
measurements is small relative to the experimental time scale.
(This procedure is easily implemented in experiments involv-
ing laminar diffusion flames, for example, but is more difficult
for highly transient systems like in-cylinder measurements
in internal combustion engines.) In this study, the replica-
tion process is simulated by taking the average of a large
set of measurements generated independently using (27). The
simulated 100-shot averaged LII data plotted in Fig. 8 shows
that the signal quality degrades as the cooling time increases,
which is characteristic of data collected in real LII experi-
ments. It should be noted that photomultiplier shot noise in
the averaged dataset is often obscured by noise caused by soot
volume fraction fluctuations in the aerosol measurement vol-
ume, manifested as variations in incandescence signal mag-

FIGURE 8 Synthetic 100-shot averaged LII data

nitude between the single-shot measurements. This effect can
be largely removed by normalizing each single-shot measure-
ment individually.

The influence of objective function topography on error
propagation is demonstrated in Fig. 9, which shows 40 so-
lutions recovered from perturbed 100-shot averaged LII data
using the method of Kuhlmann et al. [18] and plotted over
the contours of the corresponding objective function. All
the recovered solutions lie in the shallow valley surround-
ing x∗. Even though the solutions are obtained from noise-
contaminated LII signals closely resembling the unperturbed
signal, they specify substantially different particle size distri-
butions, as shown in the inset of Fig. 9.

The sensitivity of each implicit sizing technique to meas-
urement noise is assessed by recovering particle size distribu-
tions from 40 independent sets of incandescence data, each in
turn calculated by averaging different numbers of single-shot
measurements. (Each method is applied to the same 40 in-
dependent sets of data.) The average CVM parameters are
plotted in Fig. 10, and show that the method of Lehre et al. [16]
based on monochromatic incandescence appear to be the most
resilient to measurement noise, while the approach of Liu et
al. [20] is the most sensitive. (One should keep in mind, how-
ever, that these results pertain to an artificial noise distribution
typical of experimental data, and that different results may be
obtained from different experimental data.)

The sensitivity of an implicit sizing technique to meas-
urement noise depends on both the objective function curva-
ture, given by cond[∇2 F(x∗)], and also the noise amplification
caused by the variables used to define the least-squares objec-
tive function, which is quantified by the averaged, normalized
standard deviation of the perturbed least-squares parameters,

σbi = ‖δb‖2/m , (28)

where

δbi =
[

1

N

N∑
i=1

(
bi/b̄i −1

)2
]1/2

, (29)

m is the number of elements in b, and N is the number of av-
eraged single-shot measurements. Figure 11 shows that the
least-squares parameters of the Lehre et al. [16, 17] methods
cause very little noise amplification, while those of the Liu et
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FIGURE 9 Solutions obtained
using (17) and perturbed 100-shot
averaged data. The inset shows size
distributions corresponding to the
two most extreme solutions

FIGURE 10 Relative sensitivity of the particle sizing techniques to measure-
ment noise

al. method [20] and F2(x) of the composite objective func-
tion, (25), are particularly sensitive to measurement noise. In
the case of the composite method, the noise generated by the
{η1, η2}T set of least-squares parameters completely negates
the advantage of the increased objective function curvature
at x∗.

The most suitable method for recovering a particle size
distribution depends on the characteristics of an individual
experiment. If TR-LII is used to make instantaneous par-
ticle size measurements in highly transient systems, the num-
ber of single-shot measurements that can be made is limited
and consequently the averaged LII signal tends to be noisy.
In this scenario, using a particle sizing technique that is re-
silient to measurement noise, such as the methods of Lehre et

FIGURE 11 Noise amplification caused by least-squares objective function
variables

al. [16, 17], is advisable. When making LII measurements on
quasi steady-state systems, on the other hand, a large num-
ber of single shot measurements can be averaged to almost
eliminate measurement noise. In this case the particle sizing
technique should be chosen to minimize the error caused by
model parameter uncertainty. Techniques based on two-color
pyrometry [17, 20] are insensitive to uncertainty in E(mλ),
and the composite technique described above is less sensitive
to uncertainty in αT compared to the other methods.

5 Conclusions

Using time-resolved LII data to recover the par-
ticle size distribution in an aerosol is tantamount to solv-
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ing an ill-posed inverse problem that violates Hadamard’s
third criterion. The most viable way of solving this prob-
lem is by first defining a least-squares objective function
based on the difference between experimentally-observed and
modeled data, which can then be minimized using nonlin-
ear programming. The parameters that minimize the objec-
tive function specify the particle size distribution that most
probably accounts for the experimentally-observed incan-
descence decay. Levenburg–Marquardt minimization is well-
suited for carrying out the minimization since it addresses the
ill-conditioning in the Hessian matrix of the objective func-
tion caused by the ill-posedness of the underlying inverse
problem.

Because the inverse problem is ill-posed, recovered par-
ticle size distributions are sensitive to both model parame-
ter uncertainty and measurement noise. Accordingly, when
choosing an implicit particle sizing technique, it is import-
ant to consider the characteristics of a particular experiment.
A perturbation analysis demonstrated that the size distribu-
tion is especially sensitive to uncertainties in the thermal
accommodation coefficient, although the monochromatic
incandescence-based method of Lehre et al. [16] and the
composite method described in this paper are also highly
sensitive to uncertainties in E(mλ). The techniques of Lehre
et al. [16, 17] are most robust to photodetector shot noise,
while the approaches of Liu et al. [20] and the compos-
ite objective function are most sensitive to measurement
noise.
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