
DOI: 10.1007/s00340-006-2527-0

Appl. Phys. B 86, 395–398 (2007)

Lasers and Optics
Applied Physics B

p. navez1,2,�

a. pelster1

r. graham1

Bose condensed gas in strong disorder potential
with arbitrary correlation length
1 Universität Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany
2 Labo Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven,

Celestijnenlaan 200 D, 3001 Heverlee, Belgium

Received: 21 July 2006
Published online: 15 December 2006 • © Springer-Verlag 2006

ABSTRACT We study the properties of a dilute Bose condensed
gas at zero temperature in the presence of a strong random
potential with arbitrary correlation length. Starting from the un-
derlying Gross–Pitaevskii equation, we use the random phase
approximation in order to get a closed integral equation for the
averaged density distribution which allows the determination of
both the condensate and the superfluid density. The obtained
results generalise those of Huang and Meng (HM) to strong dis-
order. In particular, we find the critical value of the disorder
strength, where the superfluid phase disappears by a first-order
phase transition. We show how this critical value changes as
a function of the correlation length.

PACS 03.75.Hh; 03.75.Kk; 05.30.-d

1 Introduction

An ultracold atom gas in the presence of disordered
environments is becoming the subject of increasing experi-
mental and theoretical research activities. Generally, one
would like to understand how the condensation and the super-
fluid properties of ultracold gases are influenced by a spatially
random force on the atoms. In some experiments, the random
potential is created by optical means to show its effects on the
transport properties of a Bose gas [1–5]. In most others, how-
ever, one must face the reality of unavoidable external random
forces which are induced either by the roughness of the dielec-
tric surface [6], by the magnetic field along wires with current
irregularities [7], or by different localized atomic species [8].
Recent theoretical results on the impact of randomness on
bosons in lattices are reviewed in [9, 10].

Most theoretical studies on a 3D disordered Bose gas are
limited to calculations up to the second-order in the random
potential. In these works, the weak disorder induces only
small corrections to the condensate depletion, the superfluid
density [11], the collective excitations and their damping [12],
and the condensation critical point [13]. The extension to
strong disorder has so far been analysed only numerically
in [14]. More recently, an analytical mean-field study [15],
which takes into account higher order corrections, has shown
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the possibility of having a transition from a superfluid phase to
a Bose glass phase where the spatial long-range correlations
have completely disappeared.

In this paper, we address the issue of the influence of
strong disorder at zero temperature for a finite correlation
length [16, 17]. The random potential follows a Gaussian dis-
tribution and is said to be uncorrelated in the case where all
Fourier components contribute equally to the randomness,
while it is correlated when the influence of the Fourier com-
ponents falls off for wavenumbers larger the inverse correla-
tion length ξ . As encountered in experiments [7], we choose
a Lorentzian correlation function. Usually, this length appears
to be much bigger than the healing length and thus affects the
condensate properties.

In order to simplify this physical problem, we assume that
all particles occupy the same quantum state, for which the
macroscopic wave-function obeys the Gross–Pitaevskii equa-
tion in the presence of an external spatially random force.
In order to solve this stochastic nonlinear differential equa-
tions, we apply the random phase approximation (RPA) [18]
and take the ensemble average over all possible realisations
of the associated potential. In the clean case without a ran-
dom potential, this gapless and conserving approximation has
been successfully used in the context of calculating the collec-
tive excitations at finite temperatures [19, 20], and in kinetic
theory [21, 22]. In our case with disorder, we obtain the par-
ticle density distribution beyond the lowest order expansion in
the random potential. With this we extend the seminal work
of [11] to strong disorder, which has the consequence that
the superfluid phase disappears by a first-order transition. We
show how the critical value of the disorder strength, for which
this transition occurs, depends on the correlation length.

2 Momentum distribution

We start from the Gross–Pitaevskii equation at zero
temperature written in Fourier space. Defining the Fourier
components according to ψ(r) = ∑

k eikrαk/
√

V , we get in
units with h = 1:
(

i
∂

∂t
− k2

2m

)

αk =
∑

q

Uqαk−q

+ g

V

∑

k′,q
α∗

k′αk+qαk′−q , (1)
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where the random potential Uq follows a Gaussian distri-
bution 〈UqUq′ 〉 = δq,−q′ R(q)/V . The quadratic amplitude is
assumed to be Lorentzian R(q) = R/(1 + ξ2q2), i.e. it is cor-
related below the wavenumber 1/ξ . We assume that a macro-
scopic fraction of the condensate moves with a velocity ks/m.

In order to derive a dynamic dielectric function for the
total fluid, we define the bilinear combination

�k,q = α∗
kαk+q . (2)

It represents an excitation of momentum q created from a par-
ticle which releases its momentum from k+ q to k. In par-
ticular, it allows the definition of the Fourier component of
the density fluctuation as: �q = ∑

k �k,q = �∗−q . The dynamic
evolution of (2) following from (1) is given by:

i
∂

∂t
�k,q = (εk+q − εk)�k,q

+
∑

q′

(

Uq′ + g

V

∑

k′
α∗

k′αk′+q′

)

×
(
α∗

kαk+q−q′ −α∗
k+q′αk+q

)
. (3)

The technical details for implementing the random phase ap-
proximation in the clean case can be found either in [18] or
in [21, 22] where a finite-temperature Bose gas has been con-
sidered with �k,q being a quantum operator. Here, we shall
briefly repeat this procedure by considering random variables
instead of operators.

We treat the quartic terms in (3) within a factorisation pro-
cedure and use the property that 〈�k,q〉 = 0 for q �= 0 in an
homogeneous gas. For any quartic term, we approximate

α∗
k1

α∗
k2

αk3αk4 − 〈
α∗

k1
α∗

k2
αk3αk4

〉 �
+ 〈|αk1 |2

〉
δk1,k3α

∗
k2

αk4

+ 〈|αk2 |2
〉
δk2,k4(1 + δk1,k2δk3,k4)α

∗
k1

αk3

+ 〈|αk1 |2
〉
δk1,k4(1 − δk1,k2 − δk3,k4)α

∗
k2

αk3

+ 〈|αk2 |2
〉
δk2,k3(1 − δk1,k2 − δk3,k4)α

∗
k1

αk4 , (4)

which avoids double counting. For example, in the case
of k1 = k2 and k3 �= k4 the approximation reduces to two
terms only, which is important for contributions involving
the macroscopic component ks of the condensate. Since the
average over the quartic term in (4) applied in (3) involves
components with the total transfer momentum q �= 0, it will
not contribute for an homogeneous gas.

Through this procedure, the RPA keeps among all terms,
those combinations involving products of off-diagonal terms
�k′,q and averaged diagonal ones nk′′ = 〈|αk′′ |2〉 for all pos-
sible values of k′ and k′′, and neglects all other combina-
tions. Therefore, we remove contributions which are bilinear
in �k′,q′ for q′ �= q, 0. In this way, we obtain the linear integral
equation for q �= 0:
[

i
∂

∂t
− (εk+q − εk)

]

�k,q =
(

Uq + g�q

V

) (
nk −nk+q

)

+ g�q

V

(
n′

k −n′
k+q

)+ (
1 − δk,ks − δk,ks−q

) ∑

k′ �=ks,ks−q

g�k′,q
V

nks .

(5)

Here n′
k = (1 − δks,k)nk refers to the disordered part of the

condensate which consists of all parts which are not at the
wavenumber ks. Note at this stage that �k,q is still a ran-
dom variable. Thus, we should still take the ensemble aver-
age over any non-vanishing combination like 〈U−q�k,q〉 and
〈�k′,−q�k,q〉 and solve the resulting equations. Equivalently,
here we directly solve (5) for �k,q and perform the disorder
average at a later stage.

In order to make the link with the dielectric formalism, let
us assume for the moment that the potential has a temporal
dependence of the form Uq(t) = exp(−iωt)Uq,ω. Then the so-
lution is of the form �k,q(t) = exp(−iωt)�k,q,ω as well. Under
these conditions, we find a solution:

�k,q,ω =
(
Uq,ω +2g�q,ω/V

) (
nk −nk+q

)

ω+ i0+ − (
εk+q − εk

)

×
(
ω+ i0+ − ks·q

m

)2 −
(

q2

2m

)2

(
ω+ i0+ − ks·q

m

)2 −
(

q2

2m

)2 + gnks q2

mV

(
δk,ks + δk,ks−q

) (6)

which is similar to [21, 22]. The Fourier component of the
density fluctuations can therefore be written in the form:

�q,ω = χ(q, ω)Uq,ω , (7)

with the susceptibility

χ(q, ω) = V

2g

[
1

K(q, ω)
−1

]

. (8)

The dynamic dielectric function K(q, ω) defined by (8) for
the total fluid can be decomposed into [21, 22]

K(q, ω) = Kn(q, ω)

+ − 2gnks
V

q2

m
(
ω+ i0+ − ks.q

m

)2 −
(

q2

2m

)2 + gnks q2

mV

, (9)

where we obtain for the disordered part of the fluid:

Kn(q, ω) = 1 − 2g

V

∑

k

n′
k −n′

k+q

ω+ i0+ − k·q
m − q2

2m

, (10)

(cf. also [21–23]). In this way, we recover the same expression
as in [19, 23] for the susceptibility function χ(q, ω).

In the special case of a time-independent potential Uq,ω =
Uqδω,0 which is of interest here, the solution (6) can be used to
define a self-consistent relation that allows the calculation of
n′

k. At first, combining (6)–(10), we get the response function
for a particle of the condensate to be excited with momen-
tum q:

�ks,q = nks

Uq
(

i0+ − ks·q
m − q2

2m

)
K̃(q)

. (11)

For ω = 0, the screening factor K̃(q) defined by (11) for any
external force acting on the condensate particles is:

K̃(q) =
−

(
ks.q
m

)2 +
(

q2

2m

)2

Kn(q, 0)

[

εB
q

2 −
(

ks·q
m

)2
]

− [Kn(q, 0)−1]
2gnks q2

mV

. (12)
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In the simple special case n′
k = 0, i.e. Kn(q, 0) = 1 and ks = 0,

we obtain more simply:

K̃(q) = 1

1 + (4mgn0/V )/q2
. (13)

This formula shows that the random force acting on the con-
densate particles is screened for momenta below the inverse
of the healing length which plays here the role of the Debye
length for the condensate.

Let us now note that: 〈�∗
ks,q�ks,q〉 = 〈|αks |2|αks+q|2〉 =

nks n
′
ks+q for q �= 0 whereas the fluctuations of the macroscopic

ks component around the average are small in the thermody-
namic limit. Using this relation in (11) and (12), we arrive at
the following non-linear integral equation for n′

ks+q:

n′
ks+q

= R(q)
(
εks−q − εks

)2
nks/V

∣
∣
∣
∣Kn(q, 0)

[

εB
q

2 −
(

ks·q
m

)2
]

− (Kn(q, 0)−1)
2gnks

V
q2

m

∣
∣
∣
∣

2 ,

(14)

where εB
q =

√
c2

Bq2 + (q2/2m)2 denotes the Bogoliubov exci-

tation energy and cB = √
gnks/mV is the sound velocity in the

absence of disorder. The nonlinearity comes from the fact that
the dielectric function Kn(q, 0) depends via (10) on n′

ks+q . Let
us first consider the case of weak disorder where we can ap-
proximate Kn(q, 0) � 1 and recover the second-order result
for the disordered components of the condensate [11]:

n′
ks+q = R(q)

(
εks−q − εks

)2
nks/V

[

εB
q

2 −
(

ks·q
m

)2
]2 . (15)

This formula is regular, provided that the Landau stability
criterion εB

q > |ks ·q/m| is satisfied. An increase of ks would
increase the disordered part of the fluid until a singularity is
reached leading to an instability. For ks = 0, we recover the
weak-disorder result for this part [11]:

∑

q

n′
q =

∑

q

R(q)n0/V
[
ε2

q +2gn0/V
]2 = R

m3/2

4π2

√
V

gn0
n0 . (16)

The superfluid fraction ns is defined as the part of the fluid
which is moving at a velocity ks/m and is found by calculating
the total momentum of the gas:

P =
∑

k

knk = ksns . (17)

In the limit of small velocity ks/m, we get the expression:

n −ns = 1

3

∑

k

(

k.
∂

∂ks
nks+k

)∣
∣
∣
∣
ks=0

. (18)

Noting that Kn(q, 0) with the solution n′
k is an even function

of ks, we deduce from (14):

n −ns = 4

3
(n −n0) . (19)

This relation is identical to the one in [11] but here it is found
to remain valid in the RPA for the more general case of strong
disorder.

3 Phase transition

Equation (14) is solved numerically by an itera-
tive procedure as a function of the reduced dimensionless
parameters for the disorder strength R∗ = Rm3/2/

√
4π2gn/V

and the correlation length ξ∗ = √
4mgn/Vξ . We have looked

for the stable solution that minimizes the total energy of
the system. The homogeneous part of the condensate n0 and
the superfluid fraction ns are plotted in Figs. 1–3 as a func-
tion of the reduced disorder strength R∗ and are compared
with the results obtained by HM. The transition is deter-
mined as the highest value R∗ = R∗

c for which the conden-
sate fraction n0 is non-zero so that spatial coherence is pre-
served over the entire space. This point corresponds to the
situation where n0 has an infinite derivative with respect to
R∗. As a consequence of relation (19), the superfluid dens-
ity ns also has an infinite derivative there. For uncorrelated
disorder i.e. ξ∗ = 0, we notice only a tiny difference with re-
spect to the second-order theory, until we reach the critical
value when the disordered part of the condensate is about
30 percent. For higher values of ξ∗ this difference becomes
more pronounced, but a smaller fraction of the disordered
part of the fluid is needed in order to achieve the transi-
tion. Figure 4 shows that the critical value R∗

c increases as
a function of the coherence length which is understandable
from the fact that for larger ξ∗ the high spatial frequency

FIGURE 1 Clean part of the condensate fraction n0 as a function of R∗
in the case of uncorrelated disorder in the RPA model (full curve) and in
the HM model (dotted curve) and the corresponding superfluid fraction ns
(dot-dashed curve in RPA and dashed curve in the HM model)

FIGURE 2 Same as for Fig. 1 but for correlated disorder with ξ∗ = 1
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FIGURE 3 Same as for Fig. 1 but for correlated disorder with ξ∗ = 10

FIGURE 4 Critical value for the disorder intensity R∗
c as a function of the

correlation length ξ∗

components of the disordered part of the condensate are
smaller (cf. (14)).

4 Conclusions

The random phase approximation has been applied
to the Gross–Pitaevskii equation in the presence of a ran-
dom potential in order to describe a strongly disordered Bose
gas at zero temperature. This approximation goes beyond
a previous second-order calculation and predicts a first-order
phase transition from a superfluid phase to a non-superfluid
phase. The critical value of the disorder intensity for this
transition depends strongly on the correlation length. Nev-
ertheless, our model fails to describe the properties of the

non-superfluid phase. A possible explanation is that the as-
sumption of a unique wave function for any particle excludes
the possibility of having fragmented condensates for strong
disorder that could be necessary in a such a phase.
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