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ABSTRACT We demonstrate through computer simulation that
power partitioning due to linear diffraction can play a crucial
role in the break up of high intensity apertured beams propagat-
ing in air. By investigating the way linear diffraction partitions
power in these beams, we are able to predict the positions and
relative powers of supercritical hot spots.

PACS 42.65.k; 42.65.Jx

1 Introduction

Nonlinear beam filamentation and self-guiding are
areas of increasingly vigorous research, the behavior of col-
limated initial beams with Gaussian profiles having been
studied extensively. It is well known that these beams undergo
collapse at and above a certain critical power Pcr [1], and for
pulsed beams this collapse is regularized by a combination
of diffraction, plasma induced defocusing and group velocity
dispersion (GVD) [2–4]. For propagation in air, pulses with
peak powers a few times the critical power can form spa-
tially confined light filaments whose fluence profiles remain
almost constant over long distances [7]. Several models were
proposed to explain this long distance propagation includ-
ing the moving focus model by Brodeur et al. [8], the self-
waveguiding model by Lange et al. [9] and dynamic spatial
replenishment by Mlejnek et al. [10, 11].

At peak pulse powers many times the critical power, it
has been demonstrated that multiple filaments are formed [7,
12, 14]. Much work has gone into understanding the nature
of filamentation and the processes leading to beam break up
into multiple filaments. For beams of a few critical pow-
ers, global approaches such as the virial theorem applied to
the beam Hamiltonian have proven useful in describing the
global dynamics of filamentation [1, 5, 6]. For beams that are
many times the critical power, multiple filamentation has been
studied in terms of modulation instability (MI) and in terms of
filament nucleation around stochastic and deterministic per-
turbations in the initial beam [13–15]. However, as we will
discuss shortly, the virial theorem cannot address hot spot
formation in the absence of whole beam collapse and MI
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analysis is frequently insufficient to describe filamentation
in supercritical beams [16, 17]. Additionally, several groups
have done work recently that show that filamentation can be
controlled to a degree using apodization [18–20], linear aber-
rations [21] and optical squeezing with a telescope [22].

In this paper, we build upon an idea first recognized by
Campillo et al.[23] and later utilized by Kandidov et al. in
their work to control multiple filamentation using a metal-
lic mesh [19]. Specifically, we investigate the idea that linear
diffraction can exert a dominant influence on initial partition-
ing of power in nonlinear beams thereby deterministically
arranging multiple filaments in supercritical beams. This ef-
fect is especially apparent in beams that are highly aberrated
or that have profiles with hard edges. Such beams strongly
deviate from collimated beams with single bell-shaped max-
ima and are highly multi-moded and hence not amenable to
the standard MI analysis of filamentation. Though MI an-
alysis may be applicable in principle to these cases, linear
diffraction alters the beam profile faster than does nonlin-
ear unstable mode growth making it impractical. Eventually,
enough power is partitioned into one or more hot spots, and
the nonlinear processes become dominant in the critical and
supercritical spots. Subsequently, the evolution of each hot
spot is similar to that of an isolated, single filament. We con-
tend that simple linear analysis yields accurate results and
is more transparent conceptually than MI analysis for these
cases.

In this paper our goal is to present examples elucidating
the role of linear power partitioning in beam filamentation in
air for the case of apertured, or apodized, input beams. How-
ever, the approach that is proposed is applicable to beams with
strong phase aberrations as well. We outline the basic theory
we shall refer to for continuous wave (cw) beams in Sect. 2,
and then turn to cw simulations in Sect. 3 to illustrate the role
of linear partitioning in high power beams. Section 4 is de-
voted to pulsed simulations in order to demonstrate that our
physical picture of linear partitioning has relevance to short
pulse propagation in air. Finally, our summary and conclu-
sions are given in Sect. 5.

2 Basic theory

Our starting point is the nonlinear Schrödinger
equation (NLS) for the scalar electric field envelope E(r) of
a cw field of frequency ω propagating dominantly along the
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z-axis [10]

∂E

∂z
= i

2k
∇2

t E + ik0n2|E|2 E , (1)

where k = nbω/c = nbk0 is the magnitude of the wavevector,
nb being the background refractive index, ∇2

t is the transverse
Laplacian, r = (rt, z) = (x, y, z) and n2 is the nonlinear Kerr
coefficient in air. Here the field envelope is scaled so that |E|2
is an intensity.

2.1 Virial theorem

The virial theorem is based on two integrals of mo-
tion of the NLS (1), namely the beam Hamiltonian [1, 5, 24]

H = 1

4k2

∫
d2rt

{|∇t E|2 − kk0n2|E|4} , (2)

and the beam power

P =
∫

d2rt |E(rt, z)|2 . (3)

Then, according to the virial theorem, the mean-square (MS)
spot size of the beam, calculated as

〈r2(z)〉 = 1

P

∫
d2rt(x2 + y2)|E(rt, z)|2 , (4)

evolves according to [5, 24]

d2〈r2〉
dz2

= 8H

P
, (5)

with solution

〈r2(z)〉 = 〈r2(0)〉+ d〈r2〉
dz

|z=0 z + 4H

P
z2 . (6)

Then for the case H < 0, the mean-square beam size must
eventually go towards zero giving rise to global or whole beam
collapse. If H > 0, however, the outcome is not as clear as it is
not possible to rule out collapse based on a positive Hamilto-
nian alone. Local hot spots with powers exceeding the critical
value can still occur leading to localized collapse [1]. Thus, by
itself the virial theorem cannot resolve whether local collapse
can occur in the absence of whole beam collapse.

For more on the virial theorem and how it applies to blow-
up of the nonlinear Schrödinger equation see Rasmussen et
al. [5]. For more on how the virial theorem applies to collapse
of space-time pulses see Bergé et al. [14].

2.2 Nucleation of multiple filaments

Multiple filaments can form in broad beams that
contain many times the critical power. In some cases, the
multiple filaments may be nucleated by stochastic perturba-
tions imposed on the laser beam. These perturbations may
come from shot-to-shot fluctuations in the laser system, tur-
bulence or some other random non-uniformity in the nonlin-
ear medium. Shot-to-shot variations are difficult to deal with
from an a priori stand-point and must be handled with sta-
tistical methods [25]. However, it is frequently the case that

filaments form fairly robust patterns that are repeatable from
shot to shot [15] so that systematic but perhaps unintended
aberrations within the laser system drive the beam filamenta-
tion instead of stochastic perturbations. Furthermore, even in
the presence of stochastic perturbations, the noise and mod-
ulation instability still need not dominate the filamentation
process [16, 17].

The significance of atmospheric turbulence for the simula-
tions presented here can be estimated by following the method
of Fried [26, 27]. For a propagation length L, Fried defines
a coherence length for atmospheric turbulence given by

r0 ≈
(

6.88

A

)3/5

, (7)

with

A = 2.91k2
0C2

N L , (8)

where k0 is the vacuum wavenumber, CN is the atmospheric
refractive-index structure constant and typically ranges be-
tween 10−13–10−14 m−2/3 near the surface of the earth [28].
As a concrete example we consider horizontal propagation
at fixed altitude and set CN = 1 ×10−13 m−2/3. Taking λ =
789 nm, substituting (8) into (7) and solving for L gives

L =
(

0.6

r0

)5/3

. (9)

Thus, for an incident optical beam with a characteristic width
D, we would expect turbulence to significantly affect its
propagation over a length L only when the turbulence co-
herence length is close to the beam diameter, r0 ≈ D. This
occurs after the beam has propagated a distance given by
L = ( 0.6

D

)5/3
. For D = 1 cm this occurs at a propagation dis-

tance of about 1 km. The simulations in this paper deal with
beams that are much less that 1 cm in diameter and exhibit lin-
ear diffractive effects that operate over distances of no more
than a few meters. Thus, we can safely neglect turbulence
effects here. Other inhomogeneities, such as water droplets,
can affect the beam. We also neglect these effects here. Other
groups have studied the impact of turbulence [29] and water
droplets [30] on the filamentation process.

Bergé et al. have done extensive work exploring the im-
pact of stochastic and non-stochastic perturbations on multi-
ple filament patterns in supercritical beams [14]. Their work
focused on circularly symmetric Gaussian and superGaussian
beams with small initial perturbations. These perturbations
seeded unstable modes which subsequently grew, leading to
filamentation.

Here we consider the case of non-axisymmetric beams
in which the filamentation is dominated by linear diffraction
caused by the apodization of the incident field. Initial per-
turbations, stochastic and deterministic, are neglected in this
study.

2.3 Motivation for linear analysis

The two overarching processes in multiple filamen-
tation of beams are power partitioning followed by nonlinear
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propagation. Diffraction often plays a pivotal role in parti-
tioning the beam. In many cases, diffraction partitions beam
power more quickly than do small perturbations and unsta-
ble mode growth. In this paper, we are concerned with beam
power partitioning due primarily to diffraction. We have de-
veloped a procedure by which patterns of multiple hot spots
in supercritical beams can be determined to a high degree of
accuracy using a relatively small amount of computational re-
sources. This procedure consists of first propagating the beam
linearly, allowing diffraction to partition the beam. At various
stages of propagation, the beam profile is examined for po-
tential bell-shaped hot spots. The fraction of the total beam
power partitioned in each hot spot by linear diffraction is com-
puted. This information along with the total input peak power
can be used to determine whether or not a given hot spot
will become supercritical during propagation. Supercritical
bell-shaped hot spots would lend themselves to self-similar
collapse in the absence of a collapse-regularizing mechanism.
Therefore, hot spots that become supercritical will likely per-
sist as filaments whereas the subcritical spots will continue to
diffract and spread.

Using this procedure we are able to show that linear
diffraction plays a dominant role in deterministically arrang-
ing the filaments in a wide range of supercritical beams. We
contend that these results are applicable to real, high power
optical systems and experiments, and this assertion is born out
by recent experiments [18, 19, 21].

3 Continuous wave simulations

We start by presenting two-dimensional (2D) cw
nonlinear beam propagation simulations. Full space-time
simulations were also performed and will be discussed later in
this article.

In order to demonstrate the process of power partitioning,
a number of 2D cw simulations were performed for a var-
iety of initial beam profiles, and the resulting nonlinear beam
profiles were studied at various steps in the propagation and
compared with similar positions in the linear profiles. The ini-
tial beam profiles that were studied were a square eighth-order
super-Gaussian beam and an irregularly shaped beam, both
having an initial flat phase profile. (The eight-order super-
Gaussian is intended to simulate a square aperture and was
used in place of a hard aperture to allow analytic evaluation
of the beam Hamiltonian for this example.) All the simu-
lations were carried out using a split-step, pseudo-spectral
algorithm [31] within the slowly varying amplitude approx-
imation [32]. The simulations employed the parameters for
air for a free-space wavelength of λ = 789 nm, nb = 1, and
n2 = 5.57 ×10−23 m2W−1, which corresponds to a critical
power (Pcr) of 1.8 GW where Pcr = λ2

2πnbn2
.

Because these were cw simulations, no temporal or disper-
sion effects such as plasma induced defocusing or GVD were
included. For this reason, the simulations can be regarded as
physically relevant for a given hot spot only up to the point of
that spot’s collapse. In the context of this study, collapse was
assumed to occur when a given hot spot reached an intensity
of 1 ×1018 Wm−2. In some cases, it was desirable to continue
the cw simulation past a particular spot’s collapse in order
to determine if other collapse events occurred. In these cases

a Kerr saturation model was employed to artificially regulate
collapse. Saturation was incorporated by replacing the Kerr
term n2|E|2 in (1) with the Kerr saturation term n2|E|2

1+|E|2/|Esat|2 ,
where |Esat |2 = 1018 Wm−2.

3.1 Square beam profile

Figure 1 shows the linear diffraction patterns of
a 4×4 mm2 square aperture at propagation distances ranging
from 0.3–6.0 m. The beam was modelled as an eighth-order
super-Gaussian in the transverse coordinates

E(x, y, z = 0) = E0 exp

[
−

( x

d

)2m −
( y

d

)2m
]

(10)

where m = 8 and d = 2 mm. The first step in our procedure
is to inspect the results of the linear propagation and locate
potential bell-shaped hot spots. In Fig. 1d for z = 2 m approxi-
mately 12% of the beam power is concentrated in each of the
four corner lobes, 9% in the centered side lobes and 7% in the
central peak of the beam. In Fig. 1e for z = 3 m about 20% of
the power is contained in each of the four lobes. Therefore,
we expect that the corner spots in Fig. 1d would be candidates
for filamentation if 12% of the total beam power was a su-
percritical power. For our simulations here, this required the
beam to carry at least 15 GW. Likewise, the center side spots
in Fig. 1d require a total beam power of at least 20 GW to
be supercritical. However, the spots in Fig. 1e would be fila-
ment candidates for beams of only 9 GW or more. So, for this
example, we would expect the beam to break up in a patter
like that in Fig. 1e if the total beam power was between about
9 GW and 20 GW. For powers a little above 20 GW, we would
expect to see a filamentation pattern like that in Fig. 1d. For
powers significantly larger than 20 GW (≈ 30 GW), a more
complex pattern with a greater number of filaments would
result. For powers much below 9 GW, the result would be
a single self-focusing hot spot or none at all.

Nonlinear cw simulations were performed with this square
aperture for two different total beam powers of 9.2 GW and
25 GW. Using the information obtained from the linear propa-
gation, it is possible to determine the relative distribution and
strengths of self-focusing hot spots in each of these two cases.
For a 9.2 GW beam we expect local collapse to start at around
z = 3 m on the four corner lobes, corresponding to Fig. 1e
(3.0 m). This is so since linear diffraction has partitioned the
power so that about 20% is concentrated in each of the four
lobes, which for a 9.2 GW input beam gives just over a crit-
ical power Pcr = 1.8 GW in each lobe. Prior to this distance,
no bell-shaped hot spots were found with sufficient power to
produce sustained local collapse. Therefore, before z = 3.0 m
the propagation would be approximately linear. After 3.0 m
the nonlinearity would become significant and the hot spots
would begin to self-focus.

Applying the same argumentation for an input beam
power of 25 GW beam leads to the conclusion that local col-
lapse will initiate for a distance z ≥ 2 m with a spatial pattern
as in Fig. 1d. In this case we would expect that eight supercriti-
cal hot spots would likely be observed, namely, the four corner
spots at 12% (3.0 GW) of the total beam power and the four
centered side spots at 9% (2.3 GW). The central spot was right
on the borderline at 7% (1.8 GW).
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FIGURE 1 Linear diffraction pattern
for square aperture at (a) z = 0.3 m, (b)
0.5 m, (c) 1.0 m, (d) 2.0 m, (e) 3.0 m,
and (f) 6.0 m. The aperture is 4 ×
4 mm2 and the entire computational
domain (not shown) is 20×20 mm2. In
(d) roughly 12% of the beam power
is contained in each corner lobe, 9%
is contained in each centered side lobe
and 7% is contained in the central re-
gion. In (e) about 20% of the beam
power is concentrated in each lobe

Also, it was possible to determine the order in which the
spots would increase in intensity. For the 9.2 GW beam, we
expected all four spots to increase in intensity at the same rate.
However, for the 25 GW beam, we expected the corner spots
to self-focus most quickly, followed by the center side spots.
If there was sufficient power in the central spot to cause it to
self-focus, we expected to see it focus last.

Figures 2 and 3 show the results of simulating a 4×4 mm2

nonlinear beam at 9.2 GW and 25 GW, respectively. These

FIGURE 2 Intensity profiles of 9.2 GW square beam at (a) z = 0.5 m,
(b) 2.0 m, (c) 3.0 m, and (d) 4.0 m. The aperture is 2×2 mm2, and the entire
computational domain (not shown) is 20×20 mm2

powers correspond to peak intensities of 6.7 ×1014 Wm−2

and 1.8 ×1015 Wm−2, respectively. The figures show that,
indeed, the power was partitioned in the beams in a way
that suggested that each of the beams underwent quasi-linear
diffractive propagation in the early stages of the simulation.
As expected in Figs. 2b and 3c the corner hot spots contain

FIGURE 3 Intensity profiles for the nonlinear propagation of an input
square beam of 25 GW beam at (a) z = 0.5 m, (b) 1.0 m, (c) 2.0 m, and
(d) 6.0 m. The aperture is 2× 2 mm2, and the entire computational domain
(not shown) is 20 ×20 mm2. The corner filaments collapsed first. Kerr satu-
ration was used after frame (c) to propagate past the collapse distances of the
corner filaments to allow the side filaments to self-focus
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FIGURE 4 Linear diffraction pattern
from an irregular aperture. (a) Input at
z = 0 m, (b) 0.5 m, (c) 1.0 m, (d) 1.6 m, (e)
2.1 m, and (f) 2.7 m

14% of the total power, the center-side spots contain 8% of the
total power and the center spot contains 5% of the total power.
Also, the spots in Fig. 3d collapsed in the order predicted by
quasi-linear analysis. It should be noted that the Kerr satu-
ration model was employed for the 25 GW beam in order to
allow the center side spots to collapse. There was no evidence
of the central spot surviving past z = 6.0 m.

3.2 Irregular aperture

In order to more generally demonstrate the utility
of linear partitioning of the power for supercritical beams, cw
simulations were performed with an irregular aperture. The
shape of the irregular aperture is shown in Fig. 4a, the inten-
sity being constant in the white area and zero outside. The
remaining plots b–f show the linear diffraction patterns for the
irregular aperture at propagation distances between 0–2.7 m.
The computation domain was 20 × 20 mm2 on a numerical
grid of 512 ×512 points. The boxes in b, c and d show the lo-
cations of and the fraction of the total beam power contained
in several potential hot spots.

First, the nonlinear intensity was selected so that the crit-
ical power would occur at about 6% of the total beam power.
In the case of the aperture shown in Fig. 4a this occurred at
an intensity of 3.3 ×1015 Wm−2 (30 GW). Linear power par-
titioning then predicts that the three hot spots indicated in
Fig. 4b for z ≥ 0.5 m should form self-focusing hot spots. The
results of propagating the nonlinear beam are shown in Fig. 5
and verify that the linear partitioning approach predicts the lo-
cations of the hot spots. The first spot to begin self-focusing
was the 6% spot. This spot was nearly bell-shaped initially,
which led to early self-similar collapse. The 7% spot started
out somewhat elongated. Therefore, it underwent diffraction
before becoming bell-shaped and succumbing to self-collapse
later in the simulation. The 9% spot was initially two spots that
had to merge before the self-focusing would dominate.

FIGURE 5 Propagation of a nonlinear beam at 3.3×1015 Wm−2 (30 GW)
through an irregular aperture. (a) z = 0.5 m, (b) 1.0 m, (c) 1.1 m, and
(d) 1.3 m. Compare to Fig. 4b

As a further test we considered a 13 GW input beam, for
which a hot spot would have to contain about 14% of the total
power to be critical. According to linear analysis this occurs at
about z = 2.7 m (Fig. 4f). Figure 6 shows the intensity profiles
of the lower powered beam through the same irregular aper-
ture, and again the results of the nonlinear simulation were
consistent with the initial stages of the beam propagation be-
ing dominated by linear diffraction.
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FIGURE 6 Propagation of a nonlinear beam at 1.4×1015 Wm−2 (13 GW)
through an irregular aperture. (a) z = 1.0 m, (b) 1.7 m, (c) 2.7 m, and
(d) 2.9 m. Compare to Fig. 4f

3.3 Hamiltonian analysis
of continuous wave simulations

It is instructive to compare the quasi-linear cw re-
sults with the predictions of Hamiltonian analysis. The Hamil-
tonian for the square beam in air was derived by inserting (10)
into (2) with the result

HSG = |E0|2
8 k2

{
2 Γ

(
4m −1

2m

)
Γ

(
1

2m

)
−π

PSG

Pcr

}
, (11)

where PSG is the total beam power, Pcr is the critical power
of a Gaussian beam, and Γ(ξ) is the standard gamma function.
For super-Gaussian orders m > 5 we may reasonably approx-
imate the beam Hamiltonian and power as

HSG = m|E0|2
2 k2

{
1 − PSG

PSG
cr

}
, (12)

PSG = |E0|2d2 Γ 2(1/2m)

m221/m
, (13)

where we have introduced the critical power PSG
cr for global

collapse of the super-Gaussian field as

PSG
cr = 2m

π
Pcr . (14)

Using (14) we find that PSG
cr = 9.2 GW, meaning that the

simulation for an input beam power of 25 GW beam was glob-
ally supercritical. This becomes clear upon examination of
Fig. 3 which shows that the square pattern of hot spots con-
tracts as the beam propagates, thus displaying global collapse.
Furthermore, in Fig. 7a, which shows the RMS radius of the
power distribution for three square beams of different powers

(25 GW, 9.2 GW, and 8.8 GW), the RMS radius of the 25 GW
beam is seen to reduce, indicating global collapse. The critical
and subcritical beams (9.2 GW and 8.8 GW) did not undergo
critical collapse in the global sense in that their RMS radii
remained relatively constant or increased with propagation
distance as shown in Fig. 7a. However, both still contained
hot spots that experienced local collapse as predicted by linear
analysis.

Figure 7b shows the RMS radius versus propagation dis-
tance for the irregular aperture for the input powers of 13 GW
and 30 GW previously discussed, and a higher power case
(75 GW) that was performed as a comparison. The Hamilto-
nian was calculated numerically for the irregular aperture and
the critical power for global collapse was determined to be
30 GW, so the 13 GW was globally subcritical. The 30 GW
beam was very close to critical so it could globally collapse or
globally spread. This was consistent with the behavior of the
RMS radii for these beams shown in Fig. 7b, where the RMS
radii are seen to increase in both cases. In contrast, the 75 GW
beam was globally supercritical and its RMS radius decreases
as a function of propagation distance.

4 Pulse simulations

So far the linear power partitioning approach has
yielded good results for high power apertured cw beams.
However, whether it will be a useful technique for understand-
ing real filamentation phenomena in nonlinear pulses has yet
to be established. To explore this, space-time simulations in
(3 +1) dimensions were performed for the two apertures of
the previous sections. For these simulations the extended NLS
for the electric field envelope E(r, z, t) in a reference frame
moving at the group velocity is written as [10]

∂E

∂z
= i

2k
∇2

t E − i
β2

2

∂2 E

∂t2
− i

σ

2
ωτ
E

+ ik0n2|E|2 E − 1

2
κhωB(κ)|E|2κ−2 E , (15)

where t refers to the local time within the pulse, the first term
on the right-hand side describes beam diffraction as before,
the second term describes GVD, the third term accounts for
plasma induced defocusing, the fourth is the nonlinear Kerr
effect as before, and the fifth term describes nonlinear absorp-
tion due to multi-photon ionization (MPI). For all of the pulse
simulations the definitions and values of the parameters were
as follows
– k (wavenumber, nbω/c): 7.96 ×106 m−1

– ω (angular frequency of light)
– β2 (coefficient of GVD): 0.3 fs2cm−1

– σ (coefficient of inverse bremsstrahlung): 5.32 ×10−24 m2

– τ (mean time between electron-neutral collisions):
3.5 ×10−13 s

– 
 (plasma density)
– n2 (nonlinear index of refraction): 5.57 ×10−23 m2W−1

The associated equation for the plasma density is [10]

∂


∂t
= B(κ)|E|2κ −α
2 , (16)

where the first term on the right hand side describes the gen-
eration of electrons due to MPI of order κ, and the second
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FIGURE 7 Overall RMS spot ra-
dius as a function of propagation
distance for (a) the square aperture
and (b) the irregular aperture. In
(a) a 24.5 GW beam (solid line),
a 9.2 GW beam (dotted-dashed line)
and a 8.8 GW beam (dashed line) are
shown. In (b) a 13 GW beam (dashed
line), a 30 GW beam (solid line) and
a 75 GW beam (bold line) are shown

term describes non-radiative recombination. The parameters
employed in the simulations were
– κ (MP order): 8
– B(κ) (MPI coefficient): 1.3 ×10−106 s−1m16W−8

– α (recombination coefficient): 5.0 ×10−13 m3s−1

4.1 Pulses through a square aperture

Due to numerical constraints for the pulse simula-
tions the aperture and numerical grids needed to be shrunk
in size. Again, the super-Gaussian model was used for the
aperture, as in the cw simulations, and a Gaussian pulse pro-
file was added. The aperture dimensions were reduced to
0.5×0.5 mm2, and the duration of the pulse was chosen as
tp = 120 fs. The total computational domain (not shown) was
(5×5 mm2)×650 fs on a (256 ×256)×512 computational
grid.

Figure 8 shows the fluence profiles for a low power pulse
propagating through the square aperture. Notice that Fig. 8b–d
correspond with Fig. 1d–f, respectively. Since the aperture di-
mensions were scaled by a factor of 1/8 in comparison to
those in Fig. 1, the propagation distances were scaled by 1/64
so that the simulations corresponded to the same effective
Fresnel number. To allow comparison between the cw and
pulse simulations, we calculated the spatial profile of the flu-
ence F(x, y, z) as the time integrated intensity at the selected
plane z. Taking into account the scale factor in the spatial
dimensions, we found the fluence profiles in Fig. 8 to have
their average power partitioned in much the same way as the
power was in the linear cw case. That is, in Fig. 8b about 20%
of the fluence was contained in each of the four lobes of the

cross section. In Fig. 8c about 11% was contained in the cor-
ner spots, 10% was contained in the center side spots, and 8%
was contained in the central region.

Two high power pulses (1.7 mJ and 3.5 mJ) were prop-
agated through the square aperture. These corresponded to
pulses with peak powers of 21 GW and 43 GW, respectively,
and average powers of 14 GW and 28 GW, respectively. The
average power was calculated by dividing the spatially in-
tegrated fluence by

√
π
2 tp which is the equivalent integrated

width of a Gaussian temporal pulse with 1/e width of tp. The
resolution was different from that of the linear case. The aper-
ture was still 0.5×0.5 mm2. However, the temporal duration
of the pulse was decreased to tp = 65 fs. Also, the computa-
tional domain was decreased to (2.5×2.5 mm2)×650 fs on
a (256 ×256)×512 computational grid.

We would expect the behavior of the filaments to be dom-
inated by the average power in each filament rather than the
peak power. If this is the case, then the 1.7 mJ pulse should
evolve similarly to the 9.2 GW cw square beam case and the
3.5 mJ pulse is similar to the 28.9 GW cw square beam case.
Therefore we expect to see fluence patterns develop that are
similar to the intensity profiles shown in Figs. 2 and 3. We see
in Figs. 9 and 10 that this is indeed the case.

In Figs. 9b and 10b, the fraction of the average beam power
was distributed the same way. About 14% was contained in
each corner lobe, 8% was contained in each center side lobe
and 5% was contained in the central region. This distribution
would make the 3.5 mJ pulse supercritical in each of the out-
side filaments and the 1.7 mJ pulse would be supercritical only
in the corner filaments. These results are in good agreement
with the linear pulsed and cw cases.
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FIGURE 8 Fluence profiles of linear pulse through a square aperture. The
aperture is 0.5×0.5 mm2 and the pulse has a duration of 120 fs. Only the cen-
tral region of the computational domain is shown. (a) z = 0.0 cm, (b) 2.5 cm,
(c) 5.0 cm, (d) 9.2 cm

FIGURE 9 Fluence profiles for 1.7 mJ pulse at (a) z = 2.0 cm, (b) 3.0 cm,
(c) 5.1 cm, and (d) 6.1 cm. Compare to Fig. 8c. Only the region of the com-
putational domain immediately surrounding the beam is shown. The region
shown is approximately 1×1 mm2

Comparing Figs. 9b and 10b, self focusing was apparent
at this stage in the 3.5 mJ pulse. This is seen as a slightly
more defined fluence pattern in the 3.5 mJ case. Going on to
Figs. 9c and 10c, the 1.7 mJ pulse underwent an additional
amount of linear diffraction, forming four lobes each contain-

FIGURE 10 Fluence profiles for 3.5 mJ pulse at (a) z = 2.0 cm, (b) 3.1 cm,
(c) 5.1 cm, and (d) 6.1 cm. Only the region of the computational domain
immediately surrounding the beam is shown. The region shown is approxi-
mately 1×1 mm2

ing about 22% of the average pulse power. At this stage, each
of the four lobes was supercritical and self-focusing became
evident in 9d. By Fig. 10c, the 3.5 mJ pulse was clearly out
of the quasi-linear propagation regime. The complex patterns
displayed in Fig. 10c and d resulted as the closely spaced fila-
ments began to interact and merge.

4.2 Pulses through an irregular aperture

Figures 11 and 12 show the fluence profiles for
two different pulse energies (1.1 mJ and 2.5 mJ, respectively)
after propagating through the irregular aperture. These ener-
gies corresponded to an average power of 13 GW and 28 GW,
respectively. Again the computational domain was scaled
down by a a factor of 1/2 compared to the cw simulation.
Therefore, in order to compare with the cw simulations,
the distances over which the pulses were simulated were
scaled by a factor of 1/4 so that all simulations had approxi-
mately the same Fresnel number. The domain measured (10×
10 mm2)×650 fs on a (256 ×256)×512 numerical grid.

In both cases, the behavior is similar to that seen for the cw
cases shown in Figs. 5 and 6. In the case of the 1.1 mJ pulse,
a single supercritical filament forms at the position predicted
by linear analysis (Fig. 11d). The 2.5 mJ pulse forms at least
three supercritical filaments (Fig. 12d) all at positions consis-
tent with those predicted by linear analysis.

5 Conclusion

We have demonstrated through numerical simula-
tion that linear diffraction plays an important role in parti-
tioning the power in apertured beams. Our results show that
for high power apertured beams, linear analysis can be used
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FIGURE 11 Fluence patterns for 1.1 mJ (13 GW) pulse at (a) 12.6 cm,
(b) 25.2 cm, (c) 53.1 cm, and (d) 68.2 cm. Only the region of the compu-
tational domain immediately surrounding the beam is shown. The region
shown is approximately 3×3 mm2

FIGURE 12 Fluence patterns for 2.5 mJ (28 GW) pulse at (a) z = 12.6 cm,
(b) 25.1 cm, (c) 27.6 cm, and (d) 32.6 cm. Only the region of the compu-
tational domain immediately surrounding the beam is shown. The region
shown is approximately 3×3 mm2

to accurately predict the location and relative intensities of
multiple hot spots. The beam power is partitioned by linear
diffraction into what will later become self-guiding hot spots.
Once a hot spot contains a critical power or more, it begins
to exhibit strong nonlinear phenomena, marking the end of

quasi-linear propagation. Given a large enough beam, these
hot spots can propagate in a relatively independent fashion
over an extended distance. In fact, linear propagation can con-
tinue in locally subcritical portions of a wide beam even while
critical collapse is occurring in another region. Linear analysis
enabled us to explore, in more detail than afforded by Hamil-
tonian and MI analyses, how a nonlinear beam was likely to
break up into multiple hot spots and how the total beam power
would be distributed over those spots.

We have also demonstrated that linear power partition-
ing occurs in short pulses. Simulations were performed that
showed short, high power pulses undergoing quasi-linear
propagation before exhibiting distinctly nonlinear behavior.
In fact, the qualitative behavior and, to a good approxima-
tion, the quantitative behavior of the nonlinear pulses during
the initial quasi-linear regime did not deviate much from the
behavior of linear cw beams. This is a very useful observa-
tion for diagnosing filamentation patterns in real nonlinear
systems.

The simulations described in this paper involved aper-
tures with relatively hard edges. However, we contend that
linear effects initially dominate in a broad range of high
power systems. For instance, aberrations might linearly par-
tition power into multiple filaments in complex femtosecond
laser systems. Furthermore, quasi-linear analysis might be
useful in describing the behavior of nonlinear Bessel–Gauss
beams and subcritical circularly apertured beams which ex-
hibit anomalous self-guiding behavior [33]. Also, linear
power partitioning would be a dominant effect in high power
beams with strong phase aberrations such as those that can
be created by computer generated holograms, diffractive op-
tical elements, phase plates or exotic lens-like optics such as
axicons.

Finally, we remark that since single light filaments can
only carry limited energy; it is, therefore, important to un-
derstand how organized arrays of filaments can be formed to
boost energy transport in ultrashort pulses and long distance
propagation. Analysis based on linear power partitioning may
provide a means to realize this goal.
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