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ABSTRACT The high inertial sensitivity of atom interferome-
ters has been used to build accelerometers and gyrometers, but
this property makes these interferometers very sensitive to the
laboratory seismic noise. This seismic noise induces a phase
noise which is large enough to reduce the fringe visibility in
many cases. We develop here a model calculation of this phase
noise applicable to a wide class of Mach–Zehnder atom in-
terferometers and we apply this model to our thermal lithium
interferometer. We are thus able to explain the observed de-
pendence of the fringe visibility on the diffraction order. The
dynamical model developed in the present paper should be
very useful to further reduce this phase noise in atom interfer-
ometers and this reduction should open the way to improved
interferometers.

PACS 03.75.Dg; 39.20.+q; 42.50.Vk

1 Introduction

Atom interferometers have a large inertial sensitiv-
ity [1, 2], which has been used to develop sensitive accelerom-
eters [3–10] and gyrometers [11–16]. However, because of
this large sensitivity, a high mechanical stability of the ex-
periment is required. This problem was recognized in 1991
by Pritchard and co-workers [17], who were obliged to ac-
tively control the vibrations of the diffraction gratings of their
Mach–Zehnder thermal atom interferometer. Since this work,
various types of vibration control were developed: as an ex-
ample, a very efficient control was developed by Chu and co-
workers [6, 7] for the measurement of the local acceleration of
gravity g. The problem obviously depends on the interferom-
eter design and the present paper is devoted to an analysis of
the vibration problem in three-grating Mach–Zehnder inter-
ferometers operated with thermal atoms. In 2005, the group of
Arndt and Zeilinger made an experimental study of the effect
of vibrations on the signals of their Talbot–Lau interferometer
operated with fullerenes [18].

In the present paper, we are going to evaluate the phase
noise induced by mechanical vibrations in a Mach–Zehnder
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thermal atom interferometer. In such an interferometer, the
three gratings used to diffract the atomic wave are usually
supported by a rail and we have developed a model of the dy-
namics of this rail, using elasticity theory. Thanks to some
reasonable assumptions, this model is simple but it remains
very general. With this model, we analyze how the vibrations
displace and distort the rail. We can thus understand how the
various frequency components of the seismic noise contribute
to the interferometer phase noise. We then apply this calcu-
lation to the case of our interferometer: we use a very stiff
rail and this arrangement has strongly reduced the effect of
vibrations with respect to previous interferometers. In our ap-
paratus, the vibration-induced rotations of the rail provide the
dominant contribution to the phase noise. Using the measured
values of the seismic noise in our setup, we have evaluated the
phase noise, with a result in reasonable agreement with the
value deduced from fringe-visibility measurements.

The paper is organized in the following way: Sect. 2 re-
calls classical results concerning the inertial sensitivity of
three-grating Mach–Zehnder interferometers. Section 3 de-
scribes theoretically the motion and deformation of the rail
holding the gratings and the resulting phase effect. Section 4
describes the rail of our interferometer and applies the present
theory to this case. Section 5 discusses how to further re-
duce the vibration-induced phase noise in this type of atom
interferometer.

2 Sensitivity of Mach–Zehnder atom
interferometers to accelerations and rotations

Atom interferometers are very sensitive to iner-
tial effects [1, 2]. We consider a three-grating Mach–Zehnder
atom interferometer represented schematically in Fig. 1 and
we follow a tutorial argument presented by Schmiedmayer et
al. in [19]. Each atomic beam is represented by a plane wave.
When a plane wave Ψ = exp[ikr] is diffracted by a grating Gj ,
diffraction of order p produces a plane wave:

Ψd(r) = αj(p) exp
[
ik · r+ i pkG j · (r− rj)

]
. (1)

Here αj(p) is the diffraction amplitude; kG j is the grating
wave vector, in the grating plane and perpendicular to its lines,
with a modulus kG = 2π/a, the same for the three gratings.
The grating period a is equal to a = λL/2 in the case of diffrac-
tion by a laser standing wave with a laser wavelength λL. This
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equation is exact for Bragg diffraction and a good approxi-
mation if k and kG j are almost perpendicular and |kG j | � |k|.
Finally, rj is a coordinate which measures the position of a ref-
erence point in grating Gj . Because of the presence of rj in (1),
the phase of the diffracted wave depends on the position of the
grating in its plane and this dependence explains the inertial
sensitivity of atom interferometers.

The waves exiting from the interferometer by exit 1 (see
Fig. 1) are Ψu following the upper path (diffraction orders p,
−p and 0) and Ψl following the lower path (diffraction orders
0, p and −p). These two waves produce an intensity propor-
tional to |Ψu +Ψl|2, which must be integrated over the detector
surface. The condition kG1 +kG3 = 2kG2 must be fulfilled to
maximize the fringe visibility. We will assume that this con-
dition is realized and that the grating wave vectors kG j are
parallel to the x axis. Then, the interferometer output signal I
measured at exit 1 is given by

I = Im
[
1 +V cos Φp

]
with Φp = pkG [2x2 − x1 − x3] , (2)

where Im is the mean intensity and V is the fringe visibility
defined by V = (Imax − Imin)/(Imax + Imin). When the gratings
are moving, we must correct the grating-position-dependent
phase Φp in (2) by considering for each atomic wave packet
the position of the grating Gj at the time tj when the wave
packet goes through this grating:

Φp = pkG [2x2(t2)− x1(t1)− x3(t3)] . (3)

If T = L12/v is the atom’s time of flight from one grating to
the next (with L12 = L23 and v being the atom’s velocity), tj

are given by t1 = t − T and t3 = t + T , where t2 has been de-
noted t. We expand Φp in powers of T by introducing the x
components of the velocity vjx(t) and acceleration ajx(t) of
grating Gj measured with reference to a Galilean frame. We
assume that the accelerations can be considered as constant
during the total time of flight 2T . The phase Φp becomes

Φp = Φbending +ΦSagnac +Φacc. , (4)

with Φbending = pkGδ(t), where the bending δ(t) = 2x2(t)−
x1(t)− x3(t) is so called because it vanishes when the three

FIGURE 1 Schematic drawing of a three-grating Mach–Zehnder atom in-
terferometer, in the Bragg diffraction geometry. A collimated atomic beam
is successively diffracted by three gratings G1, G2 and G3. The diffraction
orders are indicated on the various paths. Two exit beams, labelled 1 and 2,
carry complementary signals. The x, y and z axes are defined

gratings are aligned. The second term ΦSagnac = pkG(v3x(t)−
v1x(t))T represents the Sagnac effect because the velocity dif-
ference can be written v3x(t)−v1x(t) = 2Ωy L12, where Ωy is
the y component of the angular velocity of the interferometer
rail. Finally, the third term Φacc. = pkG(a1x(t)+a3x(t))T 2/2
describes the sensitivity to linear acceleration [1], slightly
modified because the accelerations of the gratings G1 and G3
are different. One should average over the velocity distribu-
tion of the incident atomic beam but, if this velocity distribu-
tion is not too broad as in supersonic beams, it is an excellent
approximation to use for T the value corresponding to the
mean velocity u.

3 Theoretical analysis of the rail dynamics

To calculate the phase Φp, we are going to relate
the positions xj(tj) of the three gratings to the mechanical
properties of the rail holding them and to its coupling to the
environment. A one-dimensional theory of the rail is sufficient
to describe the grating motions in the x direction. As we want
to know the xj(tj) functions typically up to 103 Hz, the rail
must be treated as an elastic object.

3.1 Equations of motion of the rail
deduced from elasticity theory

The rail will be described as an elastic object of
length 2L, along the z direction, which can bend only in
the x direction. The rail is made of a material of density �

and Young’s modulus E. The cross section, with a shape in-
dependent of the z coordinate, is characterized by its area
A = ∫

dx dy and by the moment Iy = ∫
x2 dx dy, the x origin

being taken on the neutral line. The neutral line is described by
a function X(z, t) which measures the position of this line with
respect to a Galilean frame linked to the laboratory (in this pa-
per, we forget that, because of Earth rotation, the laboratory
is not a Galilean frame). Elasticity theory [20] gives a relation
between the t and z derivatives of X:

�A
∂2 X

∂t2
= −EIy

∂4 X

∂z4
. (5)

The rail is subjected to forces and torques exerted by its sup-
ports located at its two ends at z = εL, where ε = ± labels the
rail ends. The forces and torques are given by

Fxε = −εEIy
∂3 X

∂z3
(z = εL) , (6)

Myε = εEIy
∂2 X

∂z2
(z = εL) . (7)

These torques and forces depend on the suspension of the rail.
We assume that the torques vanish: this assumption seems to
be good as this property would be verified if the suspension
was made in one point at each end of the rail. We consider that
the forces are the sum of an elastic term proportional to the
relative displacement and a damping term proportional to the
relative velocity:

Fxε = −Kε[X(εL, t)− xε(t)]−µε

∂[X(εL, t)− xε(t)]
∂t

. (8)
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Here xε(t) is the coordinate of the support at z = εL. The
spring constants Kε and the damping coefficients µε may not
be the same at the two ends of the rail. We have chosen to
describe all the damping effects by introducing only damp-
ing terms in Fxε. This is an approximation as other sources of
damping exist and the damping terms have an effective char-
acter, which means that a detailed comparison with experi-
ment may require us to use frequency-dependent µε values.

3.2 Solutions of these equations

We introduce the Fourier transforms X(z, ω) and
xε(ω) of the functions X(z, t) and xε(t). The general solution
of (5) is

X(z, ω) = a sin(κz)+b cos(κz)+ c sinh(κz)+d cosh(κz) ,

(9)

where a, b, c and d are the four ω-dependent amplitudes of
the spatial components of the function X(z, ω). ω and κ are
related by

�Aω2 = EIyκ
4 . (10)

Equations (6)–(8) relate a, b, c and d to the source terms
xε(ω). Thanks to the assumption Myε = 0, c and d are related
to a and b:

c = a sin(κL)/ sinh(κL) ,

d = b cos(κL)/ cosh(κL) , (11)

and we obtain two equations relating a and b to xε(ω):

αεa + εβεb = εγεxε(ω) , (12)

where αε, βε and γε are given in the appendix. If we know the
functions xε(ω), we can calculate the a, b, c and d amplitudes
and the motion of any point of the rail as a function of time.

3.3 Analysis of the various regimes

To simplify the analysis in the present paragraph,
we assume that K− = K+ = K and µ− = µ+ = 0. The first
assumption decouples the two pendular motions described be-
low and the second assumption makes the resonance infinitely
sharp. In the appendix, we write the equations in the general
case and we calculate the Q-factors of the resonances.

When ω increases, the present theory describes the transi-
tion from a low-frequency dynamics in which the rail moves
almost like a solid to a high-frequency dynamics with a series
of bending resonances. When the frequency is low enough,
κL � 1 because κ ∝ √

ω is also small and we may expand
the functions of κL up to third order (cubic terms in κL are
needed to transmit a transverse force through the rail) and two
resonances appear corresponding to pendular oscillations of
the rail. The first resonance appears on the b amplitude, when
R given by (A.2) verifies R ≈ 1. This resonance corresponds
to an in-phase oscillation of the two ends of the rail, with
a frequency ωosc = √

K/(�AL). The second resonance, which
appears on the a amplitude when R ≈ 3, describes a rota-
tional oscillation of the rail around its center with a frequency

ωrot = ωosc
√

3. If the two spring constants Kε are different,
these two resonances are mixed (each resonance appears on
the a and b amplitudes) and their frequency difference in-
creases.

For larger frequencies, κL becomes too large to use expan-
sions of the functions in powers of κL. We then enter the range
of bending resonances of the rail. If the forces Fxε are weak
enough, these resonances are almost those of the isolated rail,
which are obtained by writing that the equation system (12)
has a nonvanishing solution when the applied forces vanish
and the resonance condition is

cos(2κL) cosh(2κL) = 1 , (13)

which defines a series of κn values given approximately by

κn L ≈ (2n +3)
π

4
+ (−1)n

cosh [(2n +3)π/2]
. (14)

n starts from 0 (a more accurate value of κ0 L is κ0 L = 2.365)
and a = c = 0 when n is even while b = d = 0 when n is odd.
ωn is deduced from κn , using (10). For a given length L, the
wave vectors κn are fixed, but the resonance frequencies ωn

increase with the stiffness of the rail measured by the quan-
tity EIy/(�A). Finally, all the resonance frequencies ωn are
related to ω0 by ωn = ω0(κn/κ0)

2, with

ω0 = 5.593
√

EIy/(�AL4) . (15)

Introducing the period T0 of the first bending resonance, T0 =
2π/ω0, we may rewrite (10) in the form (κL)2 = 0.890×ωT0.

3.4 Effect of vibrations on the interferometer signal

The Fourier component Φp(ω) of the phase Φp
given by (3) can be expressed as a function of the amplitudes
a(ω) and b(ω) given by solving the system of equations (12).
We assume that the gratings are on the neutral line, which
means that xi(ti) = X(zi, ti), with z1 = −L12 and t1 = t − T
for grating G1, z2 = 0 and t2 = t for grating G2 and z3 = +L12

and t3 = t + T for grating G3. We obtain

Φp(ω)

2pkG

=
[

b(ω)

(
1 − cos(κL12)+ (1 − cosh(κL12))

cos(κL)

cosh(κL)

)

+ ia(ω)

(
sin(κL12)+ sinh(κL12)

sin(κL)

sinh(κL)

)
sin (ωT )

+b(ω)

(
cos(κL12)+ cosh(κL12)

cos(κL)

cosh(κL)

)

× (1 − cos(ωT ))] (16)

where the different lines correspond to the bending, the
Sagnac and the acceleration terms in this order. We can sim-
plify this equation by making an expansion in powers of ωT
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up to power 2 and in powers of κL or κL12 up to fourth order:

Φp(ω)

pkG
≈ b

(
6(κL)2(κL12)

2 − (κL12)
4

6

)

+4iaκL12

(
1 − (κL)2

6

)
ωT

×2b(ωT )2 . (17)

As in (4), we recognize the instantaneous bending of the rail
(first line, independent of the time of flight T ), the Sagnac
term (second line, linear in T ) and the acceleration term (third
line, proportional to T 2). With the same approximations, a and
b are given by (A.4) and (A.5). To further simplify the algebra,
we replace the distance L12 by L (L12 will usually be close to
L), and we obtain

Φp(ω)

pkG
≈ [x+(ω)− x−(ω)]

3iωT

3 − R

+ [x+(ω)+ x−(ω)]
0.330(ωT0)

2 + (ωT )2

2(1 − R)
, (18)

where R is given by (A.2).
These three equations (16), (17) and (18) are the main

theoretical results of the present paper. Equation (18) has
a limited validity, because of numerous approximations, but
it gives a very clear view of the various contributions. The
first term, proportional to [x+(ω)− x−(ω)] and to the time of
flight T , describes the effect of the rotation of the rail excited
by the out-of-phase motion of its two ends. This term, which
is independent of the stiffness of the rail, is sensitive to the
rail suspension through the 3 − R denominator, which is very
small when ω ≈ ωrot. The second term is the sum of the bend-
ing term, in (ωT0)

2, and the acceleration term, in (ωT )2. Both
are terms in ω2 and they also have the same sensitivity to the
suspension of the rail, through the 1 − R denominator, which
is very small when ω ≈ ωosc. Furthermore, the bending term
is very small if the rail is very stiff, i.e. if the T0 value is very
small.

For larger frequencies (ωT � 1 or κL � 1), we must use
(16). We may note that, because ω � ωosc, ωrot, the a and b
amplitudes will be small except near the bending resonances,
which appear on one or the other of these two amplitudes and
do not contribute to the same terms of Φp(ω).

FIGURE 2 Drawings of our interferometer rail
showing its shape and dimensions. Upper draw-
ing: cross section of the rail showing the two
blocks and their dimensions (200× 50 mm2 for
the lower block, 70 × 70 mm2 for the upper
block). The planes of the two interferometers are
indicated (A for the atom interferometer, B for
the optical interferometer). Lower drawing: top
view of the rail, with some details: positions of the
mirrors Mj for the three laser standing waves, pos-
itions of the atomic beam and of the laser beams of
the Mach–Zehnder optical interferometer

4 Application of the present analysis
to our interferometer

In this section, we are going to describe the rail of
our interferometer and to characterize its vibrations.

4.1 Information coming from previous experiments

When we built our interferometer in 1998, we knew
that the vibration amplitudes encountered by Pritchard [17,
19] and Siu Au Lee [24, 25] in their interferometers were
large: for instance, we read in [17] that

√〈δ(t)2〉 is close to
500 nm after passive isolation by rubber pads. In this experi-
ment, each grating was supported on a flange of the vacuum
pipe, which played the role of the rail. In the interferometer
of Siu Au Lee and co-workers, a rail inspired by the three-rod
design used for laser cavities was built [25] but, with a rod
diameter close to 15 mm, the rail was not very stiff. In both
experiments, servo loops were used to reduce δ(t) and this re-
duction was necessary to observe interference signals.

4.2 The rail of our interferometer

Rather than using servo loops, we decided to
achieve the best possible grating stability by building a very
stiff rail. We had to choose the material of the rail, its shape
and its suspension, the main constraint being that the rail had
to fit inside the DN250 vacuum pipe of our atom interferome-
ter. The material must have a large value of E/� ratio (Young’s
modulus divided by density): we have chosen aluminium
alloy rather than steel, both metals having almost the same
E/� ratio, because aluminium alloy is lighter and easier to
machine. The shape of the rail must give the largest ratio Iy/A
with an open structure for vacuum requirements: we choose to
make the rail as large as possible in the x direction and rather
thick to insure a good stiffness in the y direction, because the
x and y vibrations are not fully uncoupled. The rail, which is
made of two blocks bolted together, is represented in Fig. 2.
The lower block (200-mm wide and 50-mm thick) provides
stiffness to the rail. Its length, 2L = 1.4 m, is slightly larger
than twice the inter-grating distance L12 = 0.605 m. The grat-
ings, i.e. the mirrors of the laser standing waves, are fixed to
the upper block, which has been almost completely cut in its
middle to support the central grating. As a consequence, its



MIFFRE et al. Vibration-induced phase noise in Mach–Zehnder atom interferometers 621

contribution to the rigidity of the rail is probably very small
and it will be neglected in the following calculation of the first
bending resonance frequency ω0/(2π): we use (15), with the
full area A ≈ 1.49 ×10−2 m2, but, for the moment Iy, we con-
sider only the lower-block contribution (Iy ≈ 3.3 ×10−5 m4).
With E = 72.4 ×109 N/m2 and � = 2.79 ×103 kg/m3, we
calculate ω0/2π ≈ 437 Hz.

When we built the suspension of the rail, the present analy-
sis was not available and we made a very simple suspension:
the rail is supported by three screws, two at one end and one
at the other end, so that it can be finely aligned. Each screw is
supported on a rubber block, model SC01 from Paulstra [21].
These rubber blocks, made to support machine tools, are ring
shaped with a vertical axis. The technical data sheet gives
only a rough estimate of the force constant K in the trans-
verse direction, K ≈ 106 N/m. As the total mass of our rail
�AL ≈ 58 kg, the pendular oscillations are expected to be at
ωosc/(2π) ≈ 20 Hz and ωrot/(2π) ≈ 35 Hz. We have not taken
into account the mixing of these resonances due to K− �= K+,
considering that the dominant uncertainty comes from the
spring-constant values.

4.3 Test of the vibrations by optical interferometry

Following the works of the research groups of Zei-
linger [22, 23], Pritchard [17, 19] and Siu Au Lee [24, 25],
the grating positions xi are conveniently measured by a three-
grating Mach–Zehnder optical interferometer. The phase
Φp,opt of the signal of such an optical interferometer is also
given by (4), with a negligible time delay T :

Φp,opt = pkg,optδ(t) . (19)

We have built such an optical interferometer [26]. The grat-
ings from Paton Hawksley [27], with 200 lines/mm (kg,opt =
1.26 ×106 m−1), are used in the first diffraction order with
a helium–neon laser at a 633-nm wavelength. The excitation
of the rail by the environment gives very small signals, from
which we deduce an upper limit of

√〈δ(t)2〉 < 3 nm. This re-
sult is close to the noise (laser power noise and electronic
noise) of the signal and the noise spectrum has not revealed
any interesting feature.

Hence, we have made a spectroscopy of the rail vibrations
in the frequency domain by exciting its vibrations by a small
loudspeaker fixed on the rail, close to its center, with the coil
moving in the x direction, so as to excite the x bending of
the rail. The loudspeaker was excited by a sine wave of con-
stant amplitude and we have recorded with a phase-sensitive
detection the modulation of the optical interferometer sig-
nal. Figure 3 presents the detected signal in the region of the
first intense resonance centered at ω0/(2π) = 460.4 Hz, with
a rather large Q-factor, Q ≈ 60. We have also observed a sec-
ond resonance at ω1/(2π) = 1375 Hz, with Q ≈ 65, with a 30
times weaker signal for the same voltage applied to the loud-
speaker (the n = 1 resonance appears on the a amplitude and
its detection by an optical interferometer, sensitive only to the
b amplitude, is due to small asymmetries). The first reson-
ance frequency 460.4 Hz is close to our estimate 437 Hz and
the observed frequency ratio ω1/ω0 ≈ 2.99 is also rather close
to its theoretical value 2.76, so that we can assign these two

FIGURE 3 Response of the optical interferometer to an excitation of the
rail oscillation: the modulation of the signal of the optical interferometer is
plotted as a function of the frequency of the sine wave sent to the loudspeaker.
We assign the main peak at 460.4 Hz as due to the first bending resonance but
the weaker peak near 440 Hz is not assigned

resonances as the n = 0 and n = 1 bending resonances of the
rail, the discrepancies being due to oversimplifications of our
model.

We have not observed any clear signature of the pendular
oscillations on the optical interferometer signal, probably be-
cause the excitation and detection efficiencies are very low.
The detection of these pendular oscillations will be done in
a future experiment, using seismometers.

4.4 Seismic noise spectrum: measurement and
consequences for the atom interferometer
phase noise

In a first step, we calculate the a and b ampli-
tudes as a function of one noise amplitude x±(ω), the other
one being taken equal to 0. In all the calculations, we have
used the simplifications K− = K+ = K and µ− = µ+ = µ.
Figure 4 plots the ratios |a(ω)/xε(ω)|2 and |b(ω)/xε(ω)|2 as
a function of the frequency ν = ω/(2π): three resonances
appear in the 1–103 Hz range and, as expected, a and b de-

FIGURE 4 Logarithmic plot of the ratios |a(ω)/xε(ω)|2 and |b(ω)/xε(ω)|2
as a function of the frequency ν = ω/(2π). Three resonances appear, which
are the pendular oscillations, near 40 and 69 Hz, and the first bending reson-
ance near 460 Hz
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crease rapidly when ω > ωosc, ωrot, a decrease interrupted for
b by the first bending resonance at ω0. In this calculation, we
have not used the estimated parameters (ωosc/(2π) ≈ 20 Hz,
Qosc ≈ 13) of the first pendular resonance because, with the
seismic noise spectrum described below, the predicted rms
value of the bending amplitude is

√〈δ(t)2〉 ≈ 15 nm, consid-
erably larger than measured. We have used larger values of
ωosc/(2π) = 40 Hz and Qosc = 16, so that the predicted rms
value of the bending amplitude is reduced to

√〈δ(t)2〉 ≈ 7 nm.
This value is still larger than what we measured, but we do not
think that a more accurate tuning is reasonable without a direct
measurement of the resonance frequency and Q-factors of the
pendular resonances. In all the calculations, the first bending
resonance frequency has been fixed to its measured value ω0,
ω0/(2π) = 460.4 Hz.

The seismic noise spectrum was recorded on our setup
well before the operation of our interferometer. This spec-
trum presents several peaks appearing in the 8–60 Hz range
and most of these peaks do not appear on a spectrum taken
on the floor, because they are due to resonances of the struc-
ture supporting the vacuum pipes. As the peak frequencies
have probably changed because of modifications of the ex-
periment since the recording, we have replaced the recorded
curve by a smooth curve just larger than the measured spec-
trum. This noise spectrum |xε(ν)|2 is plotted in Fig. 5. We
have also extended the ν = 0.5–100 Hz frequency range to
ν = 0.5–103 Hz, assuming the noise to be constant when
102 Hz < ν < 103 Hz.

Figure 5 also plots the calculated phase noise spectrum
|Φp(ν)/p|2, using (16) and the Sagnac phase noise spectrum
|ΦSagnac(ν)/p|2 deduced from (16) by keeping only the term
proportional to the a amplitude: clearly, the Sagnac phase
noise is dominant except near the in-phase pendular oscilla-
tion and the first bending resonance. The bending resonance
is in a region where the excitation amplitude is very low and,
even after amplification by the resonance Q-factor, the con-
tribution of the bending resonance to the total phase noise
is fully negligible. In this calculation, we have assumed that
the two excitation terms xε(ν) have the same spectrum but
no phase relation, so that the cross-term |x+(ν)x−(ν)| can be
neglected. This last assumption is bad for very low frequen-

FIGURE 5 Calculated phase noise spectra |Φ(ν)/p|2 (full curve) and
|ΦSagnac(ν)/p|2 (dotted curve), both in rad2/Hz, as a function of the fre-
quency ν in Hz. The smoothed seismic noise spectrum |xε(ν)|2 in m2/Hz
used in the calculation is plotted (dashed curve) after multiplication by 1010

cies, for which we expect x+(ν) ≈ x−(ν) (as the associated
correction cancels the Sagnac term, we have not extended the
|Φp(ν)/p|2 curves below 2 Hz), but the assumption is good as
soon as the frequency is larger than the lowest frequency of
a resonance of the structure supporting the vacuum chambers
(near 8 Hz).

By integrating the phase noise over the frequency from 2
to 103 Hz, we obtain an estimate of the quadratic mean of the
phase noise:

〈Φ2〉 = 0.16p2 rad2 . (20)

This result is largely due to the Sagnac phase noise: the
same integration carried only on the Sagnac phase noise gives
〈Φ2

Sagnac〉 = 0.13p2 rad2. We are going to test this calculation,
using the measurements of fringe visibility as a function of the
diffraction order p.

4.5 Fringe visibility as a test of phase noise
in atom interferometers

A phase noise Φp induces a strong reduction of the
fringe visibility V:

V = Vmax exp
[
−〈Φ2

p〉/2
]

, (21)

assuming a Gaussian distribution of Φp. When the phase
noise is due to inertial effects (see (3)), Φp is proportional to
the diffraction order p, Φp = pΦ1. The fringe visibility V is
a Gaussian function of the diffraction order p [29]:

V = Vmax exp
[−〈Φ2

1〉p2/2
]

. (22)

The atom interferometer of Siu Au Lee and co-workers
[24, 25] and our interferometer [30] have been operated with
the first three diffraction orders. The measured fringe visibil-
ity is plotted as a function of the diffraction order in Fig. 6 and
Gaussian fits, following (22), represent very well the data. The

FIGURE 6 Fringe visibility as a function of the diffraction order p. Our
measurements (round dots) are fitted by (22) with Vmax = 98± 1% and
〈Φ2

1〉 = 0.286±0.008. The data points of Giltner and Siu Au Lee (squares)
are also fitted by (22) with Vmax = 85±2% and 〈Φ2

1〉 = 0.650±0.074
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quality of these fits suggests that phase noise of inertial origin
is dominant and moreover that excellent visibility would be
achieved in the absence of phase noise. With our data points,
we deduce 〈Φ2

p〉 = (0.286 ±0.008)p2. Our estimate given by
(20) is 56% of this value and, considering the large uncertainty
in several parameters (seismic noise, frequency and Q-factors
of the pendular resonances), the agreement can be considered
as good, the more so as other sources of phase noise may be
present in our experiment.

5 How to further reduce the vibration phase noise
in three-grating Mach–Zehnder atom
interferometers

The phase noise induced by vibrations is very im-
portant and its reduction will considerably improve the opera-
tion of atom interferometers.

5.1 Servo loops on the grating positions

Pritchard and co-workers [17, 19] as well as Gilt-
ner and Siu Au Lee [24] have used servo loops to reduce the
vibrational motion of the grating. The error signal was given
by the optical Mach–Zehnder interferometer, which measures
the instantaneous bending δ(t) = 2x2(t)− x1(t)− x3(t) and, as
recalled above, in both experiments, the error signal before
correction was large. In the experiment of Pritchard and co-
workers, the correction was applied to the second grating. In
the limit of a perfect correction, the bending term in (4) is can-
celled and this correction does not modify the Sagnac and the
acceleration terms. The fact that acting on the second grating
has no inertial effects is a somewhat surprising result, which
can be explained by the symmetry of the Mach–Zehnder in-
terferometer. In the experiment of Giltner and Siu Au Lee, the
correction, which was applied to the third grating, cancels δ(t)
but the Sagnac and acceleration terms are enhanced. In any
case, the servo loop can reduce the instantaneous bending δ(t)
but it cannot reduce the Sagnac and acceleration terms. We
think that a very stiff rail is a better solution for Earth-based
interferometers. For space-based experiments, the phase noise
spectra due to vibrations are different and the above solution
may not be optimum, because of the large weight of the rail.

5.2 Possible improvements of the rail

The stiffness of our rail has reduced to a low level
the bending and acceleration terms in the phase noise of our
interferometer. In our model, the rail stiffness is measured by
only one parameter, the period T0 of the lowest bending reson-
ance, which scales with the rail length L like L2. Our T0 value,
T0 = 2.2 ×10−3 s, is still 3.8 times larger than the time of
flight T ≈ 5.7 ×10−4 s in our experiment (lithium beam mean
velocity u = 1065 m/s, inter-grating distance L12 = 0.605 m)
and the bending term in (18) is three times larger than the ac-
celeration term. We can further reduce the bending term by
reducing T0, either by using an I-shaped rail to increase the
Iy/A ratio or by using a material with a larger E/� ratio than
aluminium alloy (for example, silicon carbide).

A defect of our rail is that it has no symmetry axis and the
x- and y-bending modes are partially mixed. As the moment
Ix is considerably smaller than Iy, the bending resonances in

the y direction are at lower frequencies than in the x direc-
tion. A better rail design should decouple almost completely
the x- and y-vibrations.

5.3 Possible improvements of the support
and the rail suspension

The structure supporting our interferometer is
made of heavy steel rails, so that it is rather stiff with numer-
ous resonances in the 8–60 Hz range. This structure and the
vacuum pipes could be modelled by structural dynamics com-
putational techniques and their vibration resonances could
thus be predicted and optimized, but this is a very complex
task.

The suspension of our rail is very primitive, with rather
large spring constants and pendular resonances in the
20–100 Hz range. A very different choice was made by Toen-
nies and co-workers [28]: the rail was suspended by wires,
the restoring forces being due to gravity. The in-phase pendu-
lar oscillation frequency is ωosc = √

g/l, where l is the wire
length. For a typical l value, l = 10 cm, ωosc/(2π) ≈ 1.5 Hz.
In this experiment, a servo loop was necessary to reduce the
amplitudes of the pendular motions.

Considering the seismic noise spectrum of Fig. 5, it seems
clear that the resonances of the suspension should not be in
the 5–30 Hz range, where there is an excess noise. Our choice
is not ideal and the choice of Toennies and co-workers [28]
seems better, as the seismic noise in this frequency range can
be largely reduced. Very low pendular resonance frequen-
cies, of the order of 0.1 Hz, can be achieved by clever designs
(crossed-wire pendulum, Roberts linkage) and a large know-
how has been developed for the construction of gravitational
wave detectors LIGO, VIRGO, GEO, TAMA, etc. Without
aiming at a comparable level of performance, it should be pos-
sible to build a very efficient suspension.

5.4 Fringe visibility in atom interferometers

Since the first atom interferometry experiments in
1991, many different interferometers have been operated and
much effort has been made to improve these experiments. We
are going to review the achieved fringe visibility, as this quan-
tity is very sensitive to phase noise and to all phase-averaging
effects (wavefront distortions, M-dependent phase due to
magnetic field gradient, etc). We have considered only Mach–
Zehnder atom interferometers in which the atom paths are
substantially different, excluding for instance atomic clocks.
Our review is not complete, in particular because some publi-
cations do not give the fringe visibility. The measured values
of the visibility are plotted in Fig. 7. Some low values are not
only due to phase noise but also to other reasons: maximum
visibility less than 100% in the case of Moiré detection [17],
parameters chosen to optimize the phase sensitivity [12]. Over
a 15-year period, impressive progress has been achieved and,
hopefully, the same trend will continue in the future. The com-
parison with optical interferometry is encouraging as very
high fringe visibility is routinely achieved in this domain.

6 Conclusion

The present paper has analyzed the phase noise in-
duced in a Mach–Zehnder atom interferometer by mechanical
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FIGURE 7 Fringe visibility V in Mach–Zehnder atom interferometers as
a function of the date of submission of the publication. The data points are
taken from the following publications: Pritchard’s group [12, 17, 19, 31–34];
Chu’s group [3, 4, 6]; Siu Au Lee’s group [24, 25]; Zeilinger’s group [23];
Toennies’s group [35]; our works [30, 36]

vibrations. We have first recalled the inertial sensitivity of
atom interferometers, following the presentation of Schmied-
mayer et al. [19]. We have developed a simple but quite gen-
eral one-dimensional model of the rail supporting the diffrac-
tion gratings. This model gives a unified description of the
low-frequency dynamics, in which the rail behaves as a solid
object, and the high- frequency domain, in which rail bending
cannot be neglected.

We have then described the rail of our interferometer.
Our design has produced a very stiff rail and the bending
of the rail due to vibrations appears to be almost negligi-
ble, while it was important in several previous experiments.
In the low-frequency range, up to the frequency of the ro-
tational resonance of the rail suspension, the out-of-phase
vibrations of the two ends of the rail induce rotations of the
rail, which are converted into phase noise by the Sagnac ef-
fect: this is the dominant cause of inertial phase noise in our
interferometer. A rapid decrease of the fringe visibility with
the diffraction order has been observed by Siu Au Lee and
co-workers [24, 25] and by our group [30]: the observed be-
havior is well explained as due to an inertial phase noise and
the deduced phase noise value is in good agreement with
a value deduced from our model of the rail dynamics, using
as an input the seismic noise previously measured in our
setup.

In the final section, we have presented a general discus-
sion of the vibration-induced phase noise in three-grating
Mach–Zehnder interferometers. A reduction of this noise is
absolutely necessary in order to operate atom interferometers
either with higher diffraction orders or with slower atoms. In
our experiment, a large reduction of this noise should be ob-
tained by improving the suspension of the interferometer rail.
Finally, we have reviewed the published values of the fringe
visibility obtained with atom interferometers, thus illustrating
the rapid progress since 1991.
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Appendix: Amplitudes of vibration of the rail
and Q-factors of its resonances

Equations (6) and (8) relate the values of the a, b, c and d am-
plitudes to xε(ω). Using (11), we eliminate c and d to obtain
the system of equations (12), with

αε = [cosh(κL) sin(κL)− sinh(κL) cos(κL)] cosh(κL)

−2(κL) cosh(κL) sinh(κL) sin(κL)R−1
ε ,

βε = [cosh(κL) sin(κL)+ sinh(κL) cos(κL)] sinh(κL)

−2(κL) cosh(κL) sinh(κL) cos(κL)R−1
ε ,

γε = −(κL) cosh(κL) sinh(κL)R−1
ε , (A.1)

with Rε = �ALω2/ (Kε − iµεω). From now on, K− = K+ =
K and µ− = µ+ = µ. Then α, β and γ are independent of ε.
R can be expressed as a function of ωosc = √

K/(�AL) and
Qosc = �ALωosc/µ:

R = ω2
/[

ω2
osc − i

ωoscω

Qosc

]
. (A.2)

We obtain a and b:

a = γ(x+ − x−)/(2α) ,

b = γ(x+ + x−)/(2β) . (A.3)

When κL � 1, by expanding α, β and γ in powers of κL (up
to the third order for α), we obtain

a = x+ − x−
4κL

× 3

3 − R
, (A.4)

b = x+ + x−
4(1 − R)

. (A.5)

b exhibits a resonance when R = 1 (ω = ωosc) and a when
R = 3 (ω = ωosc

√
3). We have calculated the resonance Q-

factors, in the weak-damping limit. For an isolated resonance,
the Q-factor is related by Q = 2πEtot/∆E to the total energy
Etot and the energy ∆E lost during one vibration period. We
obtain

Qosc = �ALωosc/µ , (A.6)

Qrot = �ALωrot/(3µ) , (A.7)

Qn = �ALωn gκn L/(8µ) , (A.8)

where the function g(κn L) depends on the parity of n:

g(κn L) =
[

1 + sin(2κn L)

2κn L

][
1

cos2(κn L)
+ 1

cosh2(κn L)

]

for even n ,

=
[

1 − sin(2κn L)

2κn L

][
1

sin2(κn L)
+ 1

sinh2(κn L)

]

for odd n . (A.9)
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From the measured Q-factor of the first bending resonance
(n = 0), we find µ ≈ 560 kg s−1.
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