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ABSTRACT The redistribution of light between micro- or
nanoobjects placed in counter-propagating laser fields leads to
their steady-state spatial configurations. Under appropriate con-
ditions, the objects are spatially separated and form optically
bound matter. This is a very exciting phenomenon that is still
not fully understood. In this article we present a new theoret-
ical model of how to study this phenomenon, which is based on
a coupled dipole method particularly amenable to nanoparticle
optical binding. Predictions of this model are compared with ex-
perimental data and other theoretical models with satisfactory
results.

PACS 42.25.-p; 42.50.Vk; 42.68.Mj

1 Introduction

The term ‘optical binding’ of microparticles refers
to a phenomenon where the scattering of light by microob-
jects combined with the mechanical effects of light that act
to confine these objects exhibit and interplay such that a spa-
tial equilibrium distribution of separated mesoscopic objects
is obtained. Such equilibrium positions are created by a very
weak balance between the optical forces from the incident
fields (laser beams) and from the scattered fields generated
by the microparticles. Every motional fluctuation of the ob-
ject modifies the final field distribution and consequently also
the equilibrium positions of the objects. Since all the objects
are subjects to thermal Brownian motion, it is a great chal-
lenge to understand and to describe this phenomenon due to
its potential importance for possible self-organisation of a par-
ticle array due to this co-operative interaction. Despite the
fact that the optical binding was recognised more than ten
years ago [1, 2], it was experimentally realised quite recently
in a coaxial arrangement [3, 4] with a large inter-particle spac-
ing. However, it is only partially understood from a theoretical
standpoint although some models have attempted to describe
this phenomenon [4, 5]. The previous theoretical and experi-
mental work was mainly focused on spherical objects having
a diameter of several micrometres. In this paper we focus
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on a different model applicable mainly to sub-micron objects
and nanoobjects that is based on the coupled dipole method
(CDM) of Purcell and Pennypacker [6], which is also known
as the discrete dipole approximation [7]. The main principle
of the CDM is to divide a scatterer into smaller parts which
can be assumed as individual dipoles. Since these dipoles are
much smaller than the light wavelength, Rayleigh scattering is
the dominant process. If one takes into account mutual inter-
actions between dipoles and self-interaction of the dipole with
itself, a set of linear equations has to be solved to obtain the
new spatial distribution of the light [6]. It is assumed that the
region occupied by individual dipoles is so small that the field
is uniform there. It gives the following condition:

|m|kd ≤ 1 , (1)

where m is a ratio of refractive indices of the particle and the
surrounding medium, k is a wavenumber and d is the short-
est distance between neighbouring dipoles. Since this method
is computational, its limitations occur if a huge number of
dipoles has to be treated. Therefore, it is useful especially for
the study of sub-micron objects. Moreover, the CDM is a very
flexible method even for objects of arbitrary shape.

2 Theory

We will briefly describe the principle of the CDM,
our symbolism of vectorial indexing, generalisation of the
CDM for efficient treatment of two or more objects and calcu-
lation of optical forces.

2.1 Theory of CDM

Several versions of the theory of the CDM are well
described [6–10]. The object scattering the incident electro-
magnetic field is divided into N sufficiently small domains
that can be approximated by a point dipole. The dipole placed
at the position ri in the total electric field Ei has polaris-
ability αi and instantaneous induced complex dipole moment
pi = αi Ei. There exist several modifications of the Clausius–
Mosotti expression for the polarisability. A very detailed
study of this problem can be found in [11]. The total field Ei is
composed of the incident field Einc,i and fields scattered from
all other dipoles. The scattered field at ri from dipole j with
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polarisation pj is given by −Aij pj , where the radiation matrix
Aij has the form [12]

Aij = exp(ik rij)

4πε0εrrij

×
[

k2 (
nijnij −13

)+ ik rij −1

r2
ij

(
3nijnij −13

)]
. (2)

Here k is a wavenumber in the medium, rij = |ri − rj |, nij =
(ri − rj)/rij and 13 is the 3 ×3 identity matrix. Therefore, the
total electric field Ei at ri is expressed as

Ei = Einc,i −
∑
j �=i

Aij pj . (3)

By setting Aii ≡ α−1
i 13, the basic equation of the CDM is ob-

tained as a system of 3N complex linear equations written in
matrix form:

A p = Einc . (4)

With increasing number of dipoles the classical methods
of solving a system of linear equations (LU Decomposition,
Gaussian elimination, etc.) are not applicable. Therefore, we
must use one of the several iterative methods (conjugate gra-
dient, bi-conjugate gradient [13]). These methods require cal-
culations of the matrix–vector products A p(k), where p(k) is
a kth guess of the polarisations. One such product requires
O(N2) numerical operations. However this number together
with memory storage requirements for a standard number of
dipoles (103–106) easily exceeds present-day computer ca-
pacities. Fortunately, this can be overcome by considering
the transitional symmetry of dipole locations and using a fast
Fourier transform (FFT) [9] algorithm to master such systems.

In this treatment it is assumed that the dipoles are located
on a cubic lattice with lattice constant d and size M × M × M
dipoles. We introduce a bold three-dimensional (3-D) index i:

i = (ix, i y, iz) , where ix ∈ {1, 2, . . . , M} ,

i y ∈ {1, 2, . . . , M} and iz ∈ {1, 2, . . . , M},
ri = di + r0 ,

ri j = d(i − j), ri j = d|i − j| and

ni j = (i − j)/|i − j| ,
and therefore the 3×3 matrices Ai j depend only on the differ-
ence i − j. For better clarity, let us explain the mathematical
objects in more detail. Vectors pj for a certain vector index
j = ( jx, jy, jz) are classical vectors with three components
(x, y and z components of the polarisation of the jth dipole).
Object p is a set of such vectors located in a space at pos-
itions given through rj by a 3-D index j . This is analogous
to a vector field but the vectors are only evaluated in discrete
points labelled by the 3-D index j . So, we will call an ob-
ject p a 3DDVF – a three-dimensional discrete vector field.
Similarly, object Ai j is a set of tensors evaluated on a six-
dimensional (6-D) space given by two 3-D indices i and j . The
object Ai j will be called a 6DDTF – a six-dimensional dis-
crete tensor field. As noted above, dipoles on a cubic lattice
Ai j depend only on i − j and therefore for the description of

radiation tensors there can be used a new object A′
m, which

depends only on one 3-D index m. Therefore, A′
m is only

a 3DDTF:

A′
m ≡ Ai j, for m = i − j , (5)

and consequently the memory requirements for storing this
form of radiation tensor are proportional only to 8M3 instead
of to M6 for the original Ai j . The matrix–vector products
A p(k) can now be rewritten in the form of a 3-D convolution:

′∑
j

Ai j p(k)
j =

′∑
j

A′
i− j pj

(k), for all i . (6)

The number of numerical operations is the same for both
forms and is proportional to M6. This problem was solved by
Goodman et al. [9]. They used the convolution theorem and
the FFT algorithm [13] for evaluation of the convolutions (6),
because the FFT algorithm requires only O(M3 ln M) numer-
ical operations.

According to the convolution theorem [13], the Fourier
transform of the convolution of two vectors equals the product
of the Fourier transforms of those vectors:

a �b = F −1 {F (a) ·F (b)} . (7)

The 3-D convolution in (6) consists in fact of six 3-D convolu-
tions of independent components of A. For example, we con-
sider a as a three-dimensional discrete scalar field (3DDSF)
made up from xx components of tensors A′

m and b as a 3DDSF
made up from x components of p:

am = (A′
xx)m and bm = (px)m . (8)

So, instead of the convolutions in (6) we perform Fourier
transforms of a and b:

ân ≡ F (am) =
∑

m

am exp
[

i

2M
(m ·n)

]
, (9)

b̂n ≡ F (bm) =
∑

m

bm exp
[

i

2M
(m ·n)

]
, (10)

and the required result is an inverse Fourier transform of their
product:

ym′ =
∑

n

(
ân · b̂n

)
exp

[ −i

2M

(
n ·m′)] . (11)

To the application of the FFT we must add some dimensional
considerations. Index m in tensors A′

m describes all mutual
positions of dipoles located on the lattice and its components
fulfil

mx, my, mz ∈ {−(M −1), . . . , 0, 1, . . . , (M −1)} .

Tensors A′
m are symmetric, so they can be described by six

independent elements and each such element, e.g. (A′
xy)m, is

described by a 2M ×2M ×2M matrix by zeroing extra elem-
ents. Also, we must extend by zeroing extra elements of the
components of p to have size 2M ×2M ×2M because of the
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application of the convolution theorem. We set A′
(0,0,0) = 0.

This tensor corresponds to tensors A j j = α−1
j 13 and this con-

tribution to the field at places ri by dipoles located at those
places is done separately by mere multiplication.

2.2 CDM applied to several objects

From the previous sections it is clear that the use
of a FFT is crucial to compute efficiently single objects with
many dipoles in a cubical lattice. If the object is not a cube
but a sphere, the number of dipoles needed to fill the sphere
is smaller than in the case of a cube forming the same cubi-
cal lattice. For example, a lattice consisting of 30 ×30 ×30
dipoles can be used to model a cube with 27 000 dipoles or
a sphere with 14 328 dipoles – both having the same maximal
size 30d, where d is a lattice constant. Therefore, for a sphere
the memory must be allocated for 30 ×30 ×30 dipoles even
though approximately only one-half of them is used for the
field calculations and the rest is in the code labelled as an un-
occupied dipole site. This problem would be much worse if
two separated objects were considered. A cuboid containing
both objects should be considered and all the dipole sites in the
space unoccupied by the objects (mainly the space between
them) would have to be taken into the computation.

Fortunately, this can be overcome if the total electric field
in places corresponding to one object C is considered as a sum
of a field created by dipoles inside this object C and a field
made by dipoles in the distant objects:

C E = C Eloc + C Edist .

Obviously, the first term satisfies the demands of the FFT be-
cause it is equivalent to the single object studied in Sect. 2.1.
The second term can be analysed using an example with two
cubes C and D of the same size a, where each of them is
formed from M × M × M dipoles. Cube C is separated with
respect to D by a vector Q as seen in Fig. 1. Dipoles belong-
ing to cube C are indexed by i and dipoles in cube D by j .
Therefore, for mutual distances between dipoles belonging to
different objects ri j , we can write

ri j = ri − rj = d(i − j)+ Q ,

ri j =
√

d2|i − j|2 +|Q|2 ,

ni j = ri j/ri j ,

and they depend only on the difference i − j. So, we conclude
that the FFT can be used in general for L separated objects

FIGURE 1 An example of two spheres. Each of them is made of 12×12×
12 dipoles in the lattice separated by Q

modelled by L lattices having L(L −1) mutual interactions

described by tensors
→

DC A′, where the letters C and D rep-
resent two arbitrary objects. Therefore, the unoccupied space
between the objects is not considered in the computations and
this fact greatly accelerates the calculations and permits con-
sideration of larger objects.

2.3 Calculation of optical forces using CDM
for several objects

There exist two CDM methods suitable for com-
puting forces between dipoles. The first, developed by Draine
and Weingartner [7], computes the force from the time-
averaged rate of transfer of momentum by the scattered radia-
tion and the second was developed by Hoekstra et al. [10] and
uses differentiation of the field. They showed the equivalence
of these two methods. We use the second method because it
is more suitable for a larger number of dipoles. We modi-
fied it slightly for computing with several objects using the
same principle as in the case of computing the field. The time-
averaged force acting on a dipole i can be written as

〈Fi〉 = 1

2
Re

[
(pi ·∇)Ei + iωp∗

i × Bi
]

. (12)

The principal step is the splitting of the total force into
forces acting from incident and scattered fields [7]. If the
incident field can be written in an analytical form (such as
a plane wave, Gaussian beam or Bessel beam), we can eas-
ily differentiate it and compute the force by (12). Hoekstra
et al. [10] showed that forces from the scattered field created
by all dipoles pj located on a cubic lattice can be computed
using a FFT, which greatly reduces the memory requirements.
Transitional symmetry in expressions for the force between
dipoles is preserved if the dipoles are in different objects, too.
So, we extended the computation of forces for several objects
in the same manner as for the computation of the field.

The total force acting on an object is obtained as the sum
of all forces acting on each dipole of the object. These forces
come from the incident fields and scattered fields generated by
the object itself and by all other objects. For the case of opti-
cal binding, we are interested in how this total force acting on
a single object depends on the distances among objects, on the
objects’ optical and geometrical properties, on the parameters
of the incident beams and on the properties of the surround-
ing medium. To find the equilibrium positions, this force must
be calculated for various distances among objects with other
parameters fixed. The equilibrium position is determined by
a zero force and a negative derivative of the force with respect
to the axial position.

2.4 CDM used for two spheres

It turns out that the optical binding is a very com-
plex problem and therefore we start its examination with
the simplest case of two identical dielectric spheres. These
spheres are placed in between beam waists of two identical
counter-propagating non-interfering Gaussian beams. We as-
sume that both sphere centres are placed on the axis formed
by both beams and they are equally distant from the nearest
beam waist. We changed the distance between both objects
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FIGURE 2 Two polystyrene (refractive index equal to 1.59) spheres of
diameter 400 nm placed in water are located (as the top picture shows) on the
common axis of two counter-propagating Gaussian beams having the same
beam waist (6 µm), a beam waist separation equal to 100 µm and a power in
a single beam of 100 mW. Optical forces acting on each of the spheres were
calculated for several inter-sphere distances (the middle picture). The bottom
picture shows the computed work needed to push the spheres apart from each
other, done by the forces when separating them from their contact to positions
given by their distance apart

and for each of them we calculated the axial component of the
force acting on each of the objects. In the chosen symmetrical
arrangement the forces acting on the left and right spheres dif-
fer only by sign (see Fig. 2). The stable configuration of both
spheres occurs for such sphere separations where the force
acting on each sphere is equal to zero and the derivative of the
force with respect to the axial position is negative. Several sta-
ble configurations with different sphere separations can even
be found. This is demonstrated in Fig. 2. Since we have not
included any other interactions between the spheres except
for the interaction between dipoles induced by the incident
and scattered fields, the laser power of the beams does not
change the equilibrium positions of the spheres. On the other
hand, the stable inter-sphere distance is strongly affected by
the sphere sizes, the refractive indices of the spheres and the
surrounding medium [14] and the parameters of the beams.

3 Measurement of distances
between optically bound objects
Experiments were carried out with a counter-

propagating single-mode fibre trap. The fibres (Thorlabs
HI1060) were illuminated by a diode-pumped ytterbium
fiber laser (IPG Photonics, output power 15 W, wavelength
λ = 1070 nm). The beam was linearly polarised, had coher-
ence length less than 1 mm and a collimated beam diameter
equal to 5 mm to fill the input aperture of the coupling optics.

FIGURE 3 Fibre coupling setup: light at 1070 nm from a fiber laser
is coupled via ND filters into fibres F1 and F2 to ensure equal power
distribution

The laser beam is split with a 50:50 beam-splitter cube into
two arms. The optical power in each could be separately ad-
justed with a variable neutral density filter (ND filter) before
entering the fibre coupling optics (see Fig. 3).

By carefully choosing the optical path difference (length
difference of the two fibres) well above the coherence length
of the laser, standing wave effects were avoided [4]. One fibre
(F1) was mounted on a cover slip at a fixed position with re-
spect to the imaging optics; the second fibre (F2) was mounted
on an XYZ micropositioning stage providing variable dis-
tance between the two fibre ends in the range from 70 to
100 µm with an error of ±3 µm.

The imaging system consisted of a ×60 microscope objec-
tive (Newport, NA = 0.85) and a CCD camera (Watec WAT
902DM2S) which was connected to a computer with a frame-
grabber card to capture the images. The experiment was illu-
minated from above the cover slip from a distance of 200 mm
to ensure coherent illumination and to minimise additional
heating of the sample (see Fig. 4).

The observation setup was calibrated by taking images
from a microscope calibration grid with a pitch of 100 µm in

FIGURE 4 Fibre trap side view: the array is formed in the gap between the
two fibres F1 and F2
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the X and Y plane on top of the cover slip; the error in these
measurements was smaller than 1 µm. Data analysis was per-
formed by utilising a LabVIEW script (similar to [15]) with
a pattern-recognition algorithm to determine the position of
the beads or cells within each frame of a captured movie.
The program enables us to average the position of the micro-
spheres up to several hundred measurements dependent on the
length of the captured footage.

The investigated arrays were formed by silica micro-
spheres (Bangs Laboratories) of diameter 1.28 µm with an
estimated error of ±0.02 µm. Refractive-index measurements
on silica microspheres were carried out by Bangs Labora-
tories using an index-matching technique and the follow-
ing three results obtained: n = 1.431, 1.442 and 1.458 at
588.9 nm. For fused silica the refractive index dependent on
the wavelength was approximated to the dispersion equation
and showed a shift of ∆n = 0.007 from n = 1.458 at 588 nm
to n = 1.451 at 1070 nm. Furthermore, factors such as the
storage time can also alter the refractive index as the bead ab-
sorbs water. The refractive index changes from 1.36 to 1.42 (at
575 nm) over a period of 800 h [16]. In our case the refractive
index was estimated to be n = 1.39.

4 Theoretical conclusions and comparison
with experiments

In this paper we focus on a configuration with two
optically bound spheres. The distance between them in stable
configuration is a parameter that can be measured experimen-
tally and compared with theoretical predictions. Moreover,
this parameter should not depend on the intensities of both
beams if only the optical forces are concerned. We applied
the experimental and theoretical procedures described in the
previous sections to obtain the results presented below.

4.1 Influence of the sphere refractive index
and the waist size

As was described above, it was difficult to deter-
mine the refractive index of the silica sphere with sufficient
precision. Therefore, we studied theoretically how the dis-
tance between spheres in the stable configuration depends
on their refractive index. Selected results presented in Fig. 5
show the force acting on the right-hand sphere as the function
of the distance between spheres. We considered sphere diam-
eter 1.24 µm, beam waist separation 75 µm and laser power
in one beam equal to 100 mW. Three refractive indices n of
the sphere were taken for three sizes of beam waists 5.5 µm,
5.7 µm, and 5.9 µm.

The noticeable oscillatory behaviour of the force is caused
by the interference of the field coming from a single inci-
dent beam but scattered by both spheres. Under proper cir-
cumstances these oscillations generate several stable con-
figurations of spheres apart from each other by about half
a wavelength. These multiple stable configurations increase
the spread of the experimentally detected sphere separations
and may complicate the exact comparison with theory.

Figure 5 reveals that the spheres of refractive index 1.38
form a stable configuration only if they are in touch. On
the contrary, the spheres of refractive index 1.4 form three
well-separated regions of stable positions. But the middle one

FIGURE 5 The dependence of the total force acting on the right-hand
sphere for three different refractive indices n of the spheres. The zero value of
the force with a negative slope corresponds to the stable configuration of the
spheres. Other parameters used for the calculations were: beam waist of each
Gaussian beam 5.5 µm, 5.7 µm and 5.9 µm, distance between beam waists
75 µm, power in one beam 100 mW

would be stable enough only if the kinetic energy of the ther-
mal (Brownian) motion of the spheres was much lower than
the work needed to move the spheres to other equilibrium con-
figurations. In the case of the refractive index 1.39 and the
beam waist 5.5 µm, only one region of several equilibrium
configurations survives but only if the kinetic energy of the
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FIGURE 6 The measured distances of spheres (∗) in comparison with
CDM simulations (�) for sphere size 1.24 µm and three Gaussian beam waist
sizes

thermal (Brownian) motion of the spheres is much lower than
the work needed to move the spheres to other equilibrium con-
figurations. Spheres of refractive index 1.39 and other studied
beam waists show similar behaviour as those with n = 1.4.

These results illustrate how dramatically even 1% changes
of the refractive index of the spheres influences the interaction
between two optically bound spheres.

4.2 Comparison with experiment

Figures 6 and 7 compare the experimental data (∗)
with the theoretical predictions of the CDM model (�). Each

FIGURE 7 The measured distances of spheres (∗) in comparison with
CDM simulations (�) for sphere size 1.28 µm and three Gaussian beam waist
sizes

sub-plot shows one combination of sphere sizes (1.24 µm
and 1.28 µm) and beam waists (5.5 µm, 5.7 µm and 5.9 µm)
compared with the same experimental data. Repeated meas-
urements with other spheres under the same conditions are
shown as ‘other’ (∗). Based on the studies partially presented
in Fig. 5, we choose the refractive index n = 1.39.

Three kinds of stable configuration can be distinguished.
The first arises for a sphere centre separation of about 2 µm
and does not depend too much on the varied parameters. The
second occurs for sphere separations larger than 7 µm for the
displayed case and it exists for all studied beam waist separa-
tions except for the combination of the 1.24-µm sphere with
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the 5.5-µm beam waist, where it fused with the third type
of stable configuration. With increasing beam waists the sta-
ble distances between both spheres increase, too. The same
is valid for increasing diameter of the spheres and in the case
of the beam waist 5.5 µm the number of possible equilibrium
positions is considerably reduced. The third type of stable
configuration occurred for sphere separations in between the
previous two. Under the studied conditions this one exists for
the smaller spheres for all studied beam waist separations. On
the contrary, for the bigger spheres it exists only for certain
combinations of sizes and separations of beam waists and the
bigger the separation the further apart the spheres are settled.
The spheres survive in this configuration only if the energy of
the thermal fluctuations is lower than the work needed to move
the spheres to other equilibrium configurations. This could be
the reason why the coincidence with experimental data is so
problematic in this region.

The closer the distance between the spheres, the stronger
the interactions between them in reality and not all of them
come from the light scattering. Therefore, bigger discrepan-
cies between theory and data occurred here because the theory
considered only optical forces.

The theoretical results revealed that the distance between
the optically bound spheres is extremely sensitive to any of the
parameters entering the problem. This substantially compli-
cates the quantitative comparison of experimental and theor-
etical results because the experimental parameters should be
known with high precision. This is not always possible and, as
is demonstrated here, changes of the parameters in the order
of 1% can dramatically modify the spheres’ behaviour. We
found a very good coincidence of the theory with the experi-
ments for the configuration where the spheres are far apart.
Here we can offer an explanation of why the spread of the
measured positions is so large. It is caused by the oscilla-
tory behaviour of the interacting force as shown in Fig. 5.
Unfortunately, we have not found an excellent coincidence

FIGURE 8 Comparison of the distance between two spheres D in the stable
configuration predicted by the coupled dipole model with the data presented
in [14]. Sphere size is 3 µm, refractive index of the sphere n = 1.41, refrac-
tive index of the surrounding medium nm was chosen to fulfil: ∆n = n −
nm, Gaussian beam waist size 3.4 µm, the distance between the beam waists
90 µm. Dotted curves show the results of another theoretical model [14], ×
denotes the measured data with error bars, � shows the results from the CDM

of the theory with the experiments for configurations where
the spheres are closer to each other, but the theory can ex-
plain why several different stable configurations experimen-
tally occurred.

The sphere size 1.28 µm, beam waist 5.7 µm and sphere
refractive index 1.39 give the stable configurations that resem-
ble most of the experimental observations.

The second comparison is based on the data presented by
Metzger et al. [14] for a sphere of diameter 3 µm. Figure 8
shows experimental measurements (×) with error bars, their
theoretical results (dotted) and our results calculated for the
same parameters (�). Contrary to the previous model, the
CDM predicts several stable configurations especially in the
region where the experimental error bar is the biggest. We
believe that it is caused by the fact that the spheres could
be stably arranged in several equilibrium positions and this
probably led to a bigger spread of the experimental data. The
comparison with the theoretical data taken from [14] shows
a good coincidence, especially for smaller distances between
the spheres.

5 Conclusions

We have presented a new theoretical description
using a coupled dipole model approach for the optically bound
system of two mesoscopic objects in counter-propagating
non-interfering Gaussian beams. This model was applied to
the study of how the sphere diameters, beam waist distances
and beam waists influence the equilibrium positions of both
spheres with respect to each other. The theoretical results
were compared with the experimental data. It revealed that the
whole phenomenon of optical binding is extremely sensitive
to the studied parameters – some of them are very difficult
to measure experimentally with sufficient precision. Conse-
quently, we observed a wide variety in the response of the
sphere behaviour – from no binding to for example several
possible equilibrium positions. Larger quantitative deviations
occurred especially for smaller sphere separations, possibly
due to effects such as hydrodynamic coupling or apprecia-
ble electrostatic interactions between them. Comparison with
other theoretical models showed a good coincidence but with-
out the prediction of multiple stable configurations of two
spheres.
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